www.binils.com

Anna University | Polytechnic | Schools

UNIT-I

Operating System Introduction: Operating Systems Objectives and functions, Computer System
Architecture, OS Structure, OS Operations, Evolution of Operating Systems - Simple Batch, Multi
programmed, time shared, Personal Computer, Parallel, Distributed Systems, Real-Time Systems, Special -
Purpose Systems, Operating System services, user OS Interface, System Calls, Types of System Calls,

System Programs, Operating System Design and Implementation, OS Structure, Virtual machines

A computer system is a collection of hardware and software components designed to provide an
effective tool for computation.

Hardware generally refers to the electrical, mechanical and electronic parts that make up the
computer(i.c., Internal architecture of the computer (or) physical computing equipment). However
the hardware is sophisticated, it cannot function properly without a proper driver which can drive
itand bring it to the best advantage. For example, a car, even though sophisticated in its features, it
cannot function independently without being properly driven by an efficient driver.

Similarly the hardware though technologically innovative, and which presents enhanced fea-
tures, which needs set of programs to bring it to operation and to the best advantage. So, the driver
that drives the hardware 1s software.

Software refers to the set of programs written to provide services to the system. It gives life and
meaning to the hardware and bring it to the operational level, which otherwise is a useless piece of
metal.

Software is basically of two types:

1. Application software
2. Svstem software
Na? 1 B HE D S I W W B 1 &

Application Software: Set of programs written for a specific area of application. For example,
word processors, spreadsheets and data base management systems, etc.

System Software: Set of programs written from the point of view of the machine i.e., for the sake of
the system. System software provides environment for execution of application software. One cannot
aim to develop or write application software, without the presence and aid of system software.

NEED OF AN OPERATING SYSTEM

Operating svstem is an interface between user and hardware. OS creates user friendly environment.

Suppose when working with DOS-OS, if the user want to delete the program ,he has to type the
command C:\DEL FILENAME and press the enter, then the program will be deleted. So ,the user
delete the program very easily with the help of OS.

Suppose user want to delete the program without using OS, then he has to write a separate
program for DEL command and perform the operation. Every time for doing any operation he has to
write a separate program. So ,it is very difficult for the programmer, for that OS provides user friendly

environment it is the main function of the OS. For example, MS-DOS provides different commands
for performing different operations.

When the user sends a command, the OS must make sure that the command is executed or if itis
not executed, must arrange for the user to get a message about explaining the error.

Page 1
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Another important function is resource management. The O5 acts like a government, the govern-
ment collects money from various resources and distribute to the different development activities.
Similarly the OS collects all resources in the network environment and allocates the resources to
requesting processes in an efficient manner. So, it is called as “Resource Manager”.

The OS controls and co-ordinates the execution of the programs. So, it is sometimes called as
Control program (It provides interface to various hardware components such as printer, monitor,
keyboard, etc. So, it can able to control the execution of a program).

Application disk drive
monitor mouse
keyboard printer

Fig. OS Acts as Control Program

OBJECTIVES OF 0.S (GOALS)

The OS has 3 main objectives.
¢ Convenience. An OS makes a computer more convenient to the user for using. (Easy-to-use
commands, graphical user interface(GUI))

» Efficiency. An OS allows the computer system resources to be used in an efficient manner, to
ensure good resource utilization efficiency, and provide appropriate corrective actions when
it becomes low.

* Ability to evolve. An OS should be constructed in such a way as to permit the effective devel-
opment, testing and introduction of new system functions without interfering with service.

Page 2
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Operating system performs the following functions:

1. Booting

Booting is a process of starting the computer operating system starts the computer to work.

It checks the computer and makes it ready to work.

2. Memory Management

It is also an important function of operating system. The memory cannot be managed
without operating system. Different programs and data execute in memory at one time. if
there is no operating system, the programs may mix with each other. The system will not
work properly.

3. Loading and Execution

A program is loaded in the memory before it can be executed. Operating system provides

the facility to load programs in memory easily and then execute it.

4. Data security

Data is an important part of computer system. The operating system protects the data stored on
the computer from illegal use, modification or deletion.

5. Disk Management

Operating system manages the disk space. It manages the stored files and folders in a proper way.
6. Process Manag

ent -
CPU can perform one t oge ti if ther@lar ny tas eraki sy'ﬁﬁ' es which
task should get the CPb rﬁ i I g é 6
7. Device Control B

operating system also controls all devices attached to computer. The hardware devices

are controlled with the help of small software called device drivers..

8. Providing interface

It is used in order that user interface acts with a computer mutually. User interface controls
how you input data and instruction and how information is displayed on screen. The operating
system offers two types of the interface to the user:

1. Graphical-line interface: It interacts with of visual environment to communicate

with the computer. It uses windows, icons, menus and other graphical objects to issues
commands.

2. Command-line interface:it provides an interface to communicate with the computer by
typing commands.

Page 3

binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Computer System Architecture
Computer system can be divided into four components Har dwar e — provides
basic computing resources

CPU, memory, /O devices, Operat ing system
Controls and coordinates use of hardware among various applications and users
Application programs — define the ways in which the system resources are used to solve the computing
problems of the users

Word processors, compilers, web browsers, database systems, video
games Users

People, machines, other computers Four
Components of a Computer System

s or wisRerr wusmoer LS err
1 =2 = ECAEHE e

I == S

Coormipiler assarmibhler teaxt esdditor - - = ddatabas e

BSystarnmn andcd application programs

| Oprerraating systesrm

Computer architecture means construction/design of a computer. A computer system may be
organized in different ways. Some computer systems have single processor and others have
multiprocessors. So based on the processors used in computer systems, they are categorized
into the following systems.

1. Single-processor system
2. Multiprocessor system

3. Clustered Systems:

1. Single-Processor Systems:

Some computers use only one processor such as microcomputers (or personal computers PCs).
On a single-processor system, there is only one CPU that performs all the activities in the
computer system. However, most of these systems have other special purpose processors, such
as 1/0 processors that move data quickly among different components of the computers. These

Page 4

binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

they are managed by the operating system. Similarly, PCs contain a special purpose
microprocessor in the keyboard, which converts the keystrokes into computer codes to be sent to
the CPU. The use of special purpose microprocessors is common in microcomputer. But it does
not mean that this system is multiprocessor. A system that has only one general-purpose CPU,
is considered as single- processor system.

2. Multiprocessor Systems:

In multiprocessor system, two or more processors work together. In this system, multiple programs
(more than one program) are executed on different processors at the same time. This type of
processing is known as multiprocessing. Some operating systems have features of multiprocessing.
UNIX is an example of multiprocessing operating system. Some versions of Microsoft Windows
also support multiprocessing.

Multiprocessor system is also known as parallel system. Mostly the processors of
multiprocessor system share the common system bus, clock, memory and peripheral devices.

This system is very fast in data processing.

Types of Multiprocessg

Systegs:
The multiprocessor sy,

|
aifs.com
types; (i). Asymmetricirguldipr@cessin e [}

(ii). Symmetric multiprocessing system

o) Asymmetric Multiprocessing System(AMS):

The multiprocessing system, in which each processor is assigned a specific task, is known as
Asymmetric Multiprocessing System. For example, one processor is dedicated for handling
user's requests, one processor is dedicated for running application program, and one processor
is dedicated for running image processing and so on. In this system, one processor works as
master processor, while other processors work as slave processors. The master processor
controls the operations of system. It also schedules and distributes tasks among the slave
processors. The slave processors perform the predefined tasks.

(ii) Symmetric Multiprocessing System(SMP):

The multiprocessing system, in which multiple processors work together on the same task, is
known as Symmetric Multiprocessing System. In this system, each processor can perform all
types of tasks. All processors are treated equally and no master-slave relationship exists
between the processors.

Page 5
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

For example, different processors in the system can communicate with each other. Similarly, an
I/0 can be processed on any processor. However, 1/0 must be controlled to ensure that the data
reaches the appropriate processor. Because all the processors share the same memory, so the
input data given to the processors and their results must be separately controlled. Today all
modern operating systems including Windows and Linux provide support for SMP.

It must be noted that in the same computer system, the asymmetric multiprocessing and
symmetric multiprocessing technique can be used through different operating systems.

CPU coreg CPU coreqy

[registers | | registers I

| cache | | cache |
| memory |

A Dual-Core Design
| |

3. Clustered Syst

Clustered system is another form of multlprocessor system This system also contains multiple
processors but it differs from multiprocessor system. The clustered system consists of two or
more individual systems that are coupled together. In clustered system, individual systems (or
clustered computers) share the same storage and are linked together ,via Local Area Network
(LAN).

A layer of cluster software runs on the cluster nodes. Each node can monitor one or more of
the other nodes over the LAN. If the monitored machine fails due to some technical fault (or
due to other reason), the monitoring machine can take ownership of its storage. The
monitoring machine can also restart the applications that were running on the failed machine.
The users of the applications see only an interruption of service.

Types of Clustered Systems:

Like multiprocessor systems, clustered system can also be of two

types (i). Asymmetric Clustered System

(i1). Symmetric Clustered System

. Asymmetric Clustered System:

In asymmetric clustered system, one machine is in hot-standby mode while the other

Page 6

binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

machine is running the application. The hot-standby host machine does nothing. It only
monitors the active server. If the server fails, the hot-standby machine becomes the active
server.

(ii). Symmetric Clustered System:

In symmetric clustered system, multiple hosts (machines) run the applications. They also
monitor each other. This mode is more efficient than asymmetric system, because it uses all
the available hardware. This mode is used only if more than one application be available to
run.

1
computer I

interconnect interconnect

computer computer

@i
{ i élorage area
o network

Operating System — Structure

Operating System Structure
Multiprogramming negded for efficiepcy

Single user canfibikeep LR, I Vi usy at ghltime
i @ iZ8s jols e ata) 3@ C m
Execute A subs@ing jols ingsysterfl i ingme

" s & @
<
=
S
o
«
)
3
3

Page 7

binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Multiprogramming

When two or more programs are residing in memory at the same time, then sharing the
processor is referred to the multiprograrmming. Multiprogramming assumes a single shared

processor. Multiprogramming increases CPLU utilization by organizing jobs so that the CPU
always has one to execute.

Following figure shows the memaory layout for a multiprogramming systerm.

. operating system
job 1
job 2
job 3
job 4
512M

binils.com

Cperating systermn does the following activities related to multiprogramming.

2 The operating system keeps several jobs in memary at a time.

2 This set of johs is a subset of the johs kept in the joh poal.

= The operating system picks and begins to execute one of the job in the memory.

= Multiprogramming operating system monitors the state of all active programs and

systemn resources Using memaory management programs to ensures that the CPU is
never idle unless there are no jobs

Advantages
= High and efficient CPU utilization.

=2 User feels that marny programs are allotted CRU almost simultaneoushy.
Disadwvantages
=2 CPU scheduling is required.

=

To accommodate many Jobs in memony, memory management is required.

Page 8
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

2) Multitasking

Multitasking

rultitasking refers to term where multiple jobs are executed by the CPU simultaneouslky by
switching between them Switches occur so frequently that the users may interact with each
program while it is running. Operating system does the following activities related to
multitasking.

= The user gives instructions to the operating system or to a program directly, and
receives an immediate response.

2 Operating System handles multitasking in the way that it can handle multiple
operations f executes multiple programs at a time.

= Multitasking Operating Systems are also known as Time-sharing systems.

= These Operating Systems were developed to provide interactive Use of a computer
systerm at a reasonable cost.

= A time-shared operating system uses concept of CRPU scheduling and
multiprogramming to provide each user with a small portion of a time-shared CPU.

= Each user has at least one separate program in memory.

= A program that is loaded into memory and is executing is commonly referred to as a
process.

= When a process executes, it typically executes for only a very short time before it
either finishes or needs to perform 1FO.

Page 9

binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

= Since interactive YO typically runs at people speeds, it may take a long time to
completed. During this time a CRPLU can be utilized by another process.

= Operating swstem allows the users to share the computer simultaneouslky. Since each
action or command in a time-shared system tends to be short, only a little CPU time is

needed for each user.

= A5 the system switches CPU rapidly from one userf/program to the next, each useris
givwen the impression that hesshe has hissher own CRU, whereas actually aone CRLU s

being shared among many LUSers.

Operating-system Operations

1) Dual-Mode Operation-

In order to ensure the proper execution of the operating system, we must be able to distinguish
between the execution of operating-system code and user defined code. The approach taken by
most computer systems is to provide hardware support that allows us to differentiate among
various modes of execution.

At the very least we need two separate modes of operation.user mode and kernel mode.

A bit, called the mode bit is added to the hardware of the computer to indicate the current mode:
kernel (0) or user (1).with the mode bit we are able to distinguish between a task that is
executed on behalf of 'e gperaing sxstenlar' one | that is exe(iuted on behalf of the user, When

USer Process n
user mode
user process executing — calls syste call rtum fom system cal | | 08 01=1)
| i
i]
> 7
kernel trap retum
< mode bit= 0 mode bit = 1
{ kemel mode
execute system call (mode bit = 0)

the computer system is executing on behalf of a user application, the system is in user mode.
However, when a user application requests a service from the operating system (via a.. system
call), it must transition from user to kernel mode to fulfill the request.

At system boot time, the hardware starts in kernel mode. The operating system is then loaded
and starts user applications in user mode. Whenever a trap or interrupt occurs, the hardware
switches from user mode to kernel mode (that is, changes the state of the mode bit to 0). Thus,
whenever the operating system gains control of the computer, it is in kernel mode. The system
always switches to user mode (by setting the mode bit to 1) before passing control to a user

Page 10

binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

The dual mode of operation provides us with the means for protecting the operating system
from errant users-and errant users from one another. We accomplish this protection by
designating some of the machine instructions that may cause harm as privileged instructions.
the hardware allows privileged instructions to be executed only in kernel mode. If an attempt is
made to execute a privileged instruction in user mode, the hardware does not execute the
instruction but rather treats it as illegal and traps it to the operating system. The instruction to
switch to kernel mode is an example of a privileged instruction. Some other examples include
1/0 control timer management and interrupt management.

Timer

We must ensure that the operating system maintains control over the CPU.
We must prevent a user program from getting stuck in an infinite loop or not
calling system services and never returning control to the operating system.
To accomplish this goal, we can use a timer. A timer can be set to interrupt
the computer after a specified period.

Before turning over control to the user, the operating system ensures

that the timer is set to interrupt. If the timer interrupts, control transfers
automatically to the operating systenn, which may treat the interrupt as a fatal
error or may give the program more time. Clearly, instructions that modify the
content of the timer are privileged.

Thus, we can use the timer to prevent a user program from running too
long.

Operating system and computer architecture have had a great deal of influence on each other.
Operating systems were developed mainly to facilitate the use of the hardware and to bring it to the
best advantage. Here we will briefly make a sketch of the evolutionary path of OS development.

Serial Processing

.Before 1950's the programmers directly interact with computer hardware, there was no OS at that
time. If the programmer want to execute the program on those days, he has to follow some serial

StCPSZ

Page 11

binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

e Type the program on punched card.

» Convert the punched card to card reader.

* Submit to the computing machine, if any error in the program, the error condition was indi-
cated by lights.

» The programmer examine the registers and main memory to identify the cause of error.

¢ Take the output on the printers. '

® Then the programmer is ready for the next program.

This type of processing is difficult for users, it takes much time and next program should wait for

the completion of previous one. The programs are submitted to the machine one after the other. So,
this method is called as “Serial processing”.

Batch Processing

In olden days(before 1960%s), it is difficult to execute a program using computer. Because the compu-
ter is located in different rooms, one room for card reader and one for executing the program and
another room for printing the output. The user or machine operator, running between these three
rooms to complete a job. This problem was solved by batch processing system.

In batch processing technique similar type of jobs batch together and execute at a time. The
operator carries the group of jobs at a time from one room to another. Therefore the programmer need

not run between thesgthree rgpms severalginges.

The batch process a gyl ne batg® e c T, the loader
etc had to be loaded g time t@some ofexalip RTRAN
programs were grou 1ghe ifgo batch

sav Batch 2, the COBOL programs into another batch say Batch 3, and so on. Now the operator can
arrange for the execution of these source programs which has been batched together one by one.
After the execution of batch1 was over, the operator would load the compiler, assembler and loader,
etc for the batch 2 and so on.

Setup Runtime | Setup Runtime
time for | for time for | for
| batch 1 batch 1 batch 2 batch 2

Fig. Batch Processing

The main advantage of batch processing is setup time will be reduced to a large extent, but the
disadvantage is that the CPU is idle for the time in between two batches.

If the programs were not batched up together, the set up time would be much more higher.

Setup time | Runtime Setup time | Runtime
for for for for

| program 1 | program1 | program2 | program 2

Page 12

binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Multiproxammang niversity | Polytechnic | Schools

Multiprogramming is a rudimentary form of parallel processing in which several programs are run
at the same time on a uniprocessor. Since there is only one processor, there can be no true simultane-
ous execution of different programs. Instead the processor executes part of one program, then part of
another, and so on. But to the user it appears that all programs are executing at the same time.

In multiprogramming, number of processes are reside in main memory ata time. The OS picks and
begins to execute one of the jobs in the main memory. For example, consider the main memory
_consisting of 5jobs at a time, the CPU executes one by one.

0s

CPU
Job 1 I

Job 2

Job 3

Job 4

Job 5

pINfiS”Com

[n non-multiprogramming system, the CPU can execute only one program at a time, if the running
program waiting for any I/0O device, the CPU becomes idle, so it will effect on the performance of the
CPU.

But in multiprogramming environment, any /O wait happened in a process, then the CPU
switches from that job to another job in the job pool. If enough jobs could be held in main memory at
once, the CPU is not idle at any time.

For Example: The idea is common in other life situations. The doctor does not have only one
patient at a time, number of patients reside in the hospital under treatment. If the doctor has enough
patients a doctor never needs to be idle.

13
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Distributed Systems

A recent trend in computer system is to distribute computation among several processors. The proc-
essors in distribute system may vary in size and function, and referred by a number of different
names such as sites, nodes, computers and so on depending on the context.

A distributed system is basically a collection of autonomous (independent by function) computer
systems which co-operate with one another through their hardware and software interconnections.

In distributed systems, the processors cannot share memory or time, each processor has its own
local memory. The processors communicate with one another through various communication lines
such as high speed buses .These systems are also called as “Loosely Coupled systems”.

Distributed system = Network + Transparency(Invisible)

Advantages

1. Resource sharing: If a number of sites connected by a high speed communication lines, it is
possible to share the resousces from ome gite to another site.

For example, 5, an ﬂ ectedfy S8 @ oflines, the site
5, having the prin inker b el cajju eprmter at
5, without moving from S, to 5. Therefore resource sharing is possible in distributed systems.

2. Computation speedup: A big computation is partitioned into number of partitions, these sub-
partitions run concurrently in distributed systems.

For example, site S, need to execute a big computation, this computation is divided into sub
computations and these are executed by some other machines in different sites.

3. Reliability: If a resource or a system failed in one site due to technical problems. We can use
other systems or other resources in some other sites.

4. Communication: Distributed systems provides communication which is not at all possible,
that much in a centralized system. For Example, E-mail

14
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Time Sharing Systems

Multiprogramming features were superimposed on batch processing to ensure good utilization of
CPU but from the point of view of a user the service was poor as the response time, i.¢, the time
elapsed between submitting a job and getting the results was unacceptably high. Development of
interactive terminals changed the scenario. Computation became an on-line activity. A user could
provide inputs to a computation from a terminal and could also examine the output of the computa-
tion on the same terminal. Hence the response time needed to be drastically reduced. This was
achieved by storing programs of several users in memory and providing each user a slice of time on
CPU to process his/her program.

Time sharing or multitasking is a logical extension of multiprogramming. In time sharing envi-
ronment, a number of jobs are loaded on to the memory and a number of users are communicating
with the computer through different terminals. The OS allocates a fixed time interval (TIME SLICE)

to each program in memory. Thus each program in memory is executed for a fixed interval of time.

As soon as the time allotted for a particular program is completed, the CPU starts executing the
next program. This process is continued till all the programs in the memory are executed. A program
may need number of time slices for its complete execution. Although the computer system is execut-
ing one job at a time, due to the speed of the CPU, every user on a terminal has the feeling that his
program that is beinﬁukd continumugly, because, after every time slice, the user gets a response

from the computer. ¥t t s S mmuglici g program, and is
Q t With Qisgr@am. -

able to debug and e

Thus, the OS for a time sharing computer system has all the capabilities of a multiprogrammi
OS, but along with an additional capacity of allocating a fixed time slice of CPU to each progran

» Main advantage of time sharing system is efficient CPU utilization.

» The user can interact with the job while it is executing, butit is not possible in batch systems

Personal-Computer Systems(PCs)

A personal computer (PC) is a small, relatively inexpensive computer designed for an
individual user. In price, personal computers range anywhere from a few hundred dollars to
thousands of dollars. All are based on the microprocessor technology that enables
manufacturers to put an entire CPU on one chip.

At home, the most popular use for personal computers is for playing games. Businesses

use personal computers for word processing, accounting, desktop publishing, and for
running spreadsheet and database management applications.

15
binils.com

ng

£

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Parallel Systems

Almost all the systems are uni-processor systems i.c., they have only one CPU. Systems in which
there are more than one CPU is called as Multi-processor systems. These systems have been developed
to enhance the computing power of a computing system, and the features of this system is that, they
share the memory, bus and the peripheral devices. These systems are referred as “Tightly coupled
systems”. A system consisting of more than one processor and it is a tightly coupled, then the system
is called “Parallel system”.
In parallel systems number of processors executing their jobs in parallel (simultaneous process).
Multi-processor systems are divided into following categories:
¢ Symmetric
¢ Asymmetric
In symmetric multi-processing, each processor runs a shared copy of operating system . The
processors can communicate with each other and execute these copies concurrently. Thus, in a
symmetric system, all the processors share an equal amount of load .Encore’s version of UNIX for the

Multimax computer is an example of symmetric multiprocessing. In this system various processors
execute copies of UNIX operating system, thereby executing M processes if there are M processors.

Asymmetric mull’-proceﬁsing is basgd gn the principle of master-slave relationship. In this sys-

tem, one of the proc $ egtille sadem and rgsagsorgsaallgdhthe master proces-
'\Ie T SE n knowl as sl @ . I§ other words, the
ul s fhe oNasak pibceghors. Asymmetric

sor. Other processo
master processor ¢

multi-processing is more common in extremely large systems, where one of the time consuming tasks
is processing I/O requests. In the asymmetric systems the processors do not share the equal load.

Advantages:

1. It results in saving money compared to the stand alone systems, since CPU’S can share
~ memory, bus and peripherals.

2. Throughput can be increased

3. They increase the reliability.

Since there are more than one CPU, the failure of one or more of the CPU does not halt the entire
system, but only slows down the work. For example, if there are five processors, all the five working
together gives full efficiency. If two CPU'’s fail, then the system still works but only at 60% efficiency.
This indicates increased aspect of reliability compared to stand alone systems.

Special purpose systems

a) Real-Time EmbeddedSystems

These devices are found everywhere, from car engines and manufacturing robots to DVDs
and microwave ovens. Theytend to have very specific tasks.

They have little or no user interface, preferring to spend their time monitoring and
managing hardware devices, such as automobile engines and robotic arms.

16
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

b) Multimedia Systems

Most operating systems are designed to handle conventional data such as text files, programs,
word-processing documents, and spreadsheets. However, a recent trend in technology is the
incorporation of multimedia data into computer systems. Multimedia data consist of audio
and video files as well as conventional files. These data differ from conventional data in that
multimedia data-such as frames of video-must be delivered (streamed) according to certain
time restrictions (for example, 30 frames per second). Multimedia describes a wide range of
applications in popular use today. These include audio files such as MP3, DVD movies,
video conferencing, and short video clips of movie previews or news stories downloaded
over the Internet. Multimedia applications may also include live webcasts (broadcasting over

the World Wide Web)

J Hand held Systems

Handheld Systems include personal digital assistants (PDAs, cellular telephones. Developers of
handheld systems and applications face many challenges, most of which are due to the limited
size of such devices. For example, a PDA is typically about 5 inches in height and 3 inches in
width, and it weighs less than one-half pound. Because of their size, most handheld devices

have small amounts of memory, slow processors, and small display screens.
REAL-TIME 0S

r syster®, generally the lomputer response time is of the order of 0.5 to 2

T ilRe t €] fter e. nse
@ 1 g
However a real-time colledifor u tedlls C li s oa rdil time

situation, such as a machine or a satellite. In this case two important points to be noticed are:

In a time shared compu
seconds, which means a
times may be irritating

¢ The OSshould provide for interactive processing.
o The response time should be very small.

The sensors bring in the data from a device, the OS instructs the computer to analyze the data and
send appropriate signals back to the device. Any delay on the part of the computer system or the OS
can be catastrophic. Thus, the real-time OS have to work strict time limits and have to be quick. Apart
from this, these systems must be highly reliable to avoid failure of the system being controlled.

Here the main job of OS is instant handling of the signals or interrupts sent by the device which is
being controlled by the computer system.

Real-time systems are systems that have in-built characteristics as supplying immediate response.
A primary objective of the real-time system is to provide quick response time. User convenience and
resource utilization are of secondary concern to real-time systems.

binils.com

17

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Real time System is of two types:
» Hard real-time
¢ Guarantees that critical tasks complete within time.
o Allthe delays in the system are bounded.
e Secondary storage limited or absent, data stored in short term memory, or read-only
memory (ROM)
¢ Conflicts with time-sharing systems, not supported by general-purpose operating sys-
tems.
» Softreal-time
o Critical time tasks gets priority over other tasks, and retails that priority until it completes.
* Limited utility in industrial control of robotics

o Useful in applications (multimedia, virtual reality) requiring advanced operating-system
features.

Operating System Services

user and other system programs

batch
|
usl i

I command line

eprgg’;g‘n ope:iaotions sysﬁtfms communication ;ﬁgg;{i%i accounting
error protencz:ion
detection X se?:urity
services
operating system
hardware

= One set of operating-system services provides functions that are helpful to the user

Communications — Processes may exchange information, onthe same computer or between computers

over a network Communications may be via shared memory or through message passing (packets moved
by the OS)
- Error detection — OS needs to be constantly aware of possible errors May occur in the CPU and
memory hardware, in I/O devices, in user program For each type of error, OS should take the appropriate
action to ensure correct and consistent computing Debugging facilities can greatly enhance the user’s
and programmer’s abilities to efficiently use the system
Another set of OS functions exists for ensuring the efficient operation of the system itself via resource
Sharing

18
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

¢ Resource allocation - When multiple users or multiple jobs running concurrently, resources must
be allocated to each of them
* Many types of resources - Some (such as CPU cycles, main memory, and file storage) may have special
allocation code, others (such as 1/0 devices) may have general request and release code
Accounting - To keep track of which users use how much and what kinds of computer resources

* Protection and security - The owners of information stored in a multiuser or networked computer
system may want to control use of that information, concurrent processes should not interfere with each
other
Protection involves ensuring that all access to system resources is controlled

* Security of the system from outsiders requires user authentication, extends to defending external 1/0
devices from invalid access attempts
e Ifasystemis to be protected and secure, precautions must be instituted throughout it. A chain is only as
strong as its weakest link.
User Operating System Interface - CLI
. Command Line Interface (CLI) or command interpreter allows direct command entry
Sometimes implemented in kernel, sometimes by systems program
sometimes multiple flavors implemented — shells
Primarily fetches a command from user and executes it

User Operating Syste

InterfaEe GUI
e User-friendly

* Usually mouse, eyboard an monltor cons

* represent files, programs, actions, etc

®* Various mouse buttons over objects in the interface cause various actions (provide information,
options, execute function, open directory (known as a folder)

« Invented at Xerox PARC

Many systems now include both CLI and GUI

interfaces Microsoft Windows is GUI with CLI

* “command” shell
* Apple Mac OS X as “Aqua” GUI interface with UNIX kernel underneath and shells
available Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)
System Calls

« Programming interface to the services provided by the OS

¢ Typically written in a high-level language (C or C++)

* Mostly accessed by programs via a high-level Application Program Interface (API) rather than
direct system call usenThree most common APIs are Win32 API for Windows, POSIX API for POSIX-
based systems (including virtually all versions of UNIX, Linux, and Mac OS X), and Java API for the
Java virtual machine (JVM)
= Why use APIs rather than system calls?

19
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Example of System Calls

source file - destination file

i Example System Call Sequence a0

Acquire input file name
Write prompt to screen
Accept input
Acquire output file name
Write prompt to screen
Accept input
Open the input file
if file doesn't exist, abort
Create output file
if file exists, abort
Loop
Read from input file
Write to output file
Until read fails
Close output file
Write completion message to screen
Terminate normally Yy

b

Example of Standard API
Consider the ReadFile() function in the

Win32 APl—a function for reading froma file

return value

BOOL ReadF < AN 1.8,
LEPRECORD ffe
DWHER k T s R ad arameters
LeBwESrE LS =& P.a

> N =J 2 15 H - -
function name LPOVERLAPPED ovl) ;

A description of the parameters passed to ReadFile() HANDLE file—the file to be read
LPVOID buffer—a buffer where the data will be read into and written
from DWORD bytesToRead—the number of bytes to be read into the
buffer LPDWORD bytesRead—the number of bytes read during the
last read LPOVERLAPPED ovl—indicates if overlapped 1/0 is being
used
System Call Implementation
Typically, a number associated with each system call
System-call interface maintains a table indexed according to these Numbers
The system call interface invokes intended system call in OS kernel and returns status of the system
call and any return values
The caller need know nothing about how the system call is
implemented Just needs to obey API and understand what OS will

20
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools
do as a result call Most details of OS interface hidden from
programmer by API
Managed by run-time support library (set of functions built into libraries included with compiler)
API — System Call — OS Relationship

Standard C Library Example

: '< % D e e S T) A >

l B e e e e I

g € 3
Tevagpslosrvsanrstantiosry
- S— cof cagpremrs € 3
N e L)
[TEPPPEN

#include <=stdio.h=
int main ()

{

HI(

printf ("Greetings");

return O:

user

node
4‘ standard C library Ii
ernel

node

write

Iﬂi‘lS com

System Call Parameter Passing

« Often, more information is required than simply identity of desired system

+ call Exact type and amount of information vary according to OS and call

* Three general methods used to pass parameters to the

* OS Simplest: pass the parameters in registers
In some cases, may be more parameters than registers
= Parameters stored in a block, or table, in memory, and address of block passed as a parameter
in a register

This approach taken by Linux and Solaris

= Parameters placed, or pushed, onto the stack by the program and popped off the stack by the operating
system
. Block and stack methods do not limit the number or length of parameters being passed

21
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Parameter Passing via Table

i __%

register

l__

X: parameters
for call

™ use parameters code for
load address X from table X system
system call 13 — - call 13

user program

operating system

Types of System Calls

1. Process control

2. File management

3. Device management

4, Information maintenance
5. Communications

Process control
A running needs to halt its execution either normally or abnormally.

If a system call js madegio terminatg the running program, a dump of memory is sometimes

taken and an err srehatii hiSr be dhceﬁdm
|

o end,
0 load, exec
0 create process, terminate process
0 get process attributes, set process attributes
0 wait for time
0 wait event, signal event
o allocate and free memory
File management

OS provides an API to make these system calls for managing files

o create file, delete file

o open, close file

o read, write, reposition

o0 get and set file attributes

Device management

Process requires several resources to execute, if these resources are available, they will be
granted and control retuned to user process. Some are physical such as video card and other
such as file. User program request the device and release when finished

0 request device, release device

o0 read, write, reposition

0 get device attributes, set device attributes

o logically attach or detach devices

22
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

o}
o}
o}

Anna University | Polytechnic | Schools

Information maintenance

System calls exist purely for transferring information between the user
program and OS. It can return information about the system, such as the number of current users,
the version number of the operating system, the amount of free memory or disk space and so on.

get time or date, set time or date
get system data, set system data
get and set process, file, or device attributes

Communications

Two common models of communication

Message-passing model, information is exchanged through an inter process-
communication facility provided by the OS.
Shared-memory model, processes use map memory system calls to gain access to regions of
memory owned by other processes.
0 create, delete communication connection
0 send, receive messages
o transfer status information
0 attach and detach remote devices

process A — Brojess A

—1 process B I hge EOI I I
roge [|

message queue

> mo|my|my|ms| ... [mp |«

kernel
kernel

(@) (b)

Examples of Windows and Unix System Calls

23
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Comumunication

Protection

Windows

CreateProces= ()
ExitProces= ()
WaitForSingleObject ()

CreateFiledl)
ReadFile ()
WriteFiled)
CloseHandle ()

SetConsoleMode ()
ReadConsole ()
WriteC onsole()

GetCurrentProces=IDCO
SetTimer (D
Sleep()

CreatePipe()
CreateFileMapping ()
MapViewOfFile (D)

SetFileSecurity ()
InitlializeSecurityDescriptox ()
SetSecurityDescriptorGroupd()

MS-DOS execution

free memory

command
interpreter

kernel

(@)

(a) At system startup
program FreeBSD Running Multiple Programs

free memory

command
interpreter

kernel

(b)

(b) running a

binils.com

Unix

fork()
axitdd
wait ()

open ()
readd)
writed)
clomed)

ioctl (D
raeadd)
write()

getpidd)
Aalarm)
mleep ()

pipe ()
shmget (D
mmap D

chmod C D
umasik D
chown (D

Is.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

process D

free memory

process C

interpreter

process B

kernel

System Programs

System programs provide a convenient environment for program development and execution. The can
be divided into:

File manipulation

Status information

File modification

Programming lafiguage $ipport ™
Program lo a eXeclti
Communicatio

g |

Application pro

Most users’ view of the operation system is defined by system programs, not the actual
system calls provide a convenient environment for program development and execution
Some of them are simply user interfaces to system calls; others are considerably more complex
File management - Create, delete, copy, rename, print, dump, list, and generally manipulate files and
directories
e Status information
Some ask the system for info - date, time, amount of available memory, disk space, number of users
Others provide detailed performance, logging, and debugging information
Typically, these programs format and print the output to the terminal or other output devices
Some systems implement a registry - used to store and retrieve configuration information
e File modification
Text editors to create and modify files
Special commands to search contents of files or perform transformations of the text
Programming-language support - Compilers, assemblers, debuggers and interpreters sometimes
provided
. Program loading and execution- Absolute loaders, relocatable loaders, linkage editors, and overlay-
loaders, debugging systems for higher-level and machine language

25
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

» Communications - Provide the mechanism for creating virtual connections among processes, users, and
computer systems

» Allow users to send messages to one another’s screens, browse web pages, send electronic-mail
messages, log inremotely, transfer files from one machine to another

STRUCTURE OF OPERATING
SYSTEM.:

Application Programs
o

System Programs

Software (Operating System)

HARDWARE 5

=

Design and Implemen tio ofgOS not “sqdvable”, but some approaches have proven successful

choice of hardware, tyipe

System goals — operating system should be easy to design, implement, and maintain, as well as flexible,

Policy: What will be done?

The separation of policy from mechanism is a very important principle, it allows maximum flexibility if
e MS-DOS — written to provide the most functionality in the least space Not divided into

Internal structure of difligs efajing, Systelins ary wi
ifigati sif CS OI I I
stém Wsel gla [

System goals

reliable, error-free, and efficient

Mechanism: How to do it?

policy decisions are to be changed later

¢ modules

Operating System Design and Implementation
Start by defining goalg @
User goals — operating system should be convenient to use, easyto learn, reliable, safe, and fast
Important principle to separate
Mechanisms determine how to do something, policies decide what will be done
Simple Structure
Altlrough MS-DOS has some structure, its interfaces and levels of Functionality are not well separated

26

binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

MS-DOS Layer Structure
P

application program

resident system program

MS-DOS device driversb

ROM BIOS device drivers —'

 The operating system is divided into a number of layers (levels), each built on top of lower layers. The
bottom layer (layer 0), is the hardware; the highest (layer N) is the user interface.

« With modularity, layers are selected such that each uses functions (operations) and services of

only lower-level layers
Traditional UNIX System Structure

(the users)

shells and commands

— ermir scheduling
g 3 handling swapping block VO page replacement

2 character IO system system demand paging

terminal drivers disk and tape drivers virtual memory

" kernel interface to the hardware

terminal controllers device controllers memory controllers

terminals disks and tapes physical memory

UNIX

* UNIX - limited by hardware functionality, the original UNIX operating system had limited structuring.
The UNIX OS consists of two separable parts
L

Systems programs e
The kernel
Consists of everything below the system-call interface and above the physical hardware

Provides the file system, CPU scheduling, memory management, and other operating-system

27
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools
functions; a large number of functions for one level
Layered Operating System

layer N
user intarface

layer 1

f [layer O \ \|
\ hardware | } |

Micro kernel System Structure

Moves as much fromthe kernel into “user” space

Communication takes place between user modules using message passing
Benefits:

Easier to extend a microkernel

Easier to port the operating system to new architectures More reliable (less code

is running in kernel mode)
More secure

| [
Detriments: b m
Performance overhead rIJaMeIeI pgmmu@O

MacQOS X Structure n

application environments

and common services
kernel BSD
environment
Mach

binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools
Modules

Most modern operating systems implement kernel modules
Uses object-oriented approach

Each core component is separate

Each talks to the others over known interfaces

Each is loadable as needed within the kernel

Overall, similar to layers but with more flexibl

device and
bus drivers

scheduling
classes

core Solaris
kernel

STREAMS executable
- - I modules formats
Virtual Machines Ij I | l I S | CO I I I

A virtual machine takes the layered approach to its logical conclusion. It treats hardware and the
operating system kernel as though they were all hardware
A virtual machine provides an interface identical to the underlying bare hardware
The operating system host creates the illusion that a process has its own processor and (virtual memory)
Each guest provided with a (virtual) copy of underlying computer
Virtual Machines History and Benefits
First appeared commercially in IBM mainframes in 1972
Fundamentally, multiple execution environments (different operating systems) can share the same hardware
Protect from each other
Some sharing of file can be permitted, controlled
Commutate with each other, other physical systems via networking
Useful for development, testing
Consolidation of many low-resource use systems onto fewer busier systems
“Open Virtual Machine Format”, standard format of virtual machines, allows a VM to run within many
different virtual machine (host) platforms

Solaris Modular Approach

miscellaneous
modules

loadable
system calls

29
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

processes
processes
processes processes
‘ o i et kernel kernel kernel
KErEl VM1 VM2 VM3
virtual-machine
implementation
RShwars hardware
(a) (b)

Para-virtualization

Presents guest with system similar but not identical to hardware

Guest must be modified to run on par virtualized hardware

Guest can be an OS, or in the case of Solaris 10 applications running in containers
Solaris 10 with Two Containers

user prograrnmi s
aaddresses

user PpProgararn
syvysterm prigr=a =
TP res e

rMmermiory” re| Accccess

sSourcess
resourcess

NmNe =

wvirtu=a Pl <Orrr

global =onmne device rmanagermientt

| ZonmNne rmanagermnent I

Solaris kermel|

Network addresses

T 1
S - &

30
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

VVMware Architecture

application

application

guest operating
system

(free BSD)

virtual CPU
virtual memory

application

guast oparating
system

(Windows NT)
virtual CPU

application

guest oparating
system

(Windows XP)
virtual CPU

virtual memory

virtual memaory
virtual devices

virtual devices virtual devices

virtualization layer

v L
host operating system
(Linux)
hérdware
cPuU memaory | 17O devices

The Java Virtual Machine

Java program®_ _ _ | _
I | | I

Operating-System Debugging

Java API
class loader |« -4 --

Java
interpreter

Debugging is finding and fixing errors, or bugs

generate log files containing error information

Failure of an application can generate core dump file capturing memory of the process
Operating system failure can generate crash dump file containing kernel memory Beyond

crashes, performance tuning can optimize system performance

Kernighan’s Law: “Debugging is twice as hard as writing the code in the rst place. Therefore, if you
write the code as cleverly as possible, you are, by definition, not smart enough to debug it.”

DTrace tool in Solaris, FreeBSD, Mac OS X allows live instrumentation on production systems
Probes fire when code is executed, capturing state data and sending it to consumers of those probes

31
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Process
A process is a program at the time of execution.
Differences between Process and Program

Process Program

Process is a dynamic object Program is a static object

Process is sequence of instruction Program is a sequence of instructions

execution

Process loaded into main memory Program loaded into secondary storage
devices

Time span of process is limited Time span of program is unlimited

Process is a active entity Program is a passive entity

Process States

When a process executed, it changes the state, generally the state of process is determined by
the current activity of the process. Each process may be in one of the following states:

1. New : The process is beingcreated.

2. Running : The process is beingexecuted.

3. Waitipg : The process jg waiting for some event tooccur.
4. Read

)

- Tiie pIeegss | it beasc t 0
: Term :fﬁ{a fi execuytion. Q I I I
Only one process can Peg@nihglin a 0 amy yiprogess fhay be in
ready and waiting states. The ready processes are loaded into a “ready queue”.
Diagram of process state

admitted interrupt exit terminated

scheduler dispatch

I/O or event completion I/O or event wait

binils.com

32

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

a) New ->Ready : OS creates process and prepares the
process to be executed,thenOSmoved the process into readyqueue.
b) Ready->Running : OS selects one of the Jobs from ready Queue and move themfrom

ready to Running.

c) Running->Terminated : When the Execution of a process has Completed,
OSterminatesthatprocess from running state. Sometimes OS terminates the process for
someother reasons including Time exceeded, memory unavailable, access violation,
protection Error, 1/O failure and soon.

d) Running->Ready : When the time slot of the processor expired (or) If the
processorreceivedanyinterrupt signal, the OS shifted Running -> ReadyState.

e) Running -> Waiting : A process is put into the waiting state, if the process need an
event occur (or) an 1/0 Devicerequire.
f) Waiting->Ready : A process in the waiting state is moved to ready

state whenthe eventforwhichit has beenCompleted.
Process Control Block:

| |
Each process is repres in the ti st a Pro Co Bl
It is also called Task moli iiea njgssagiatell with a specific

Process.

Process State

Program Counter

CPU Registers

CPU Scheduling Information

Memory — Management Information

Accounting Information

I/0O Status Information

Process Control Block

1. ProcessState : The State may be new, ready, running, and waiting, Terminated...
2. ProgramCounter - indicates the Address ofthe next Instruction to be executed.
3. CPUregisters - registers include accumulators, stack pointers,

General purpose Registers....

binils.com

33

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

4. CPU-Schedulinginfo : includes a process pointer, pointers to
schedulingQueues,other scheduling parametersetc.
5. Memory management Info: includes page tables, segmentation tables, value of
base and limit registers.
6. AccountingInformation: includes amount of CPU used, time limits, Jobs(or)Process numbers.
7. I/0 Statusinformation: Includes the list of 1/0 Devices Allocated to theprocesses, list of open
files.

Threads:

A process is divide into number of light weight process, each light weight process is said to be
a Thread. The Thread has a program counter (Keeps track of which instruction to execute
next), registers (holds its current working variables), stack (execution History).

Thread States:

1. bornState : Arthread is justcreated.

2. readystate : The thread is waiting forCPU.

3. running . System assigns the processor to thethread.

4. sleep : Agsleeping thread becomes ready after the designated sleep timeexpires.
5

. dead : T'e ﬁti t adfini
Eg: Word processor. '] OI I I

Typing, Formatting, Spell check, saving are threads.
Differences between Process and Thread

Process

Thread

Process takes more time to create.

Thread takes less time to create.

it takes more time to complete execution &
terminate.

Less time to terminate.

Execution is very slow.

Execution is very fast.

It takes more time to switch b/w two
processes.

It takes less time to switch b/w two
threads.

Communication b/w two processes is difficult .

Communication b/w two threads is
gasy.

Process can’t share the same memory area.

Threads can share same memory area.

System calls are requested to communicate
each other.

System calls are not required.

Process is loosely coupled.

Threads are tightly coupled.

It requires more resources to execute.

Requires few resources to execute.

34

binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Multithreading

A process is divided into number of smaller tasks each task is called a Thread. Number of
Threads with in a Process execute at a time is called Multithreading.
If a program, is multithreaded, even when some portion of it is blocked, the whole program is
not blocked. The rest of the program continues working If multiple CPU’s are available.
Multithreading gives best performance.If we have only a single thread, number of CPU’s
available, No performance benefits achieved.
e Process creation is heavy-weight while thread creation is light-weight
Can simplify code, increase efficiency

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
thread —» S <«— thread
:1 [] |
I I l I [|
single-threaded process multithreaded process

Kernels are generally multithreaded
CODE- Contains instruction

DATA- holds global variable FILES-

opening and closing files

REGISTER- contain information about CPU state
STACK-parameters, local variables, functions
Types Of Threads:

1) User Threads : Thread creation, scheduling, management happen in user space by
Thread Library. user threads are faster to create and manage. If a user thread performs a system

call, which blocks it, all the other threads in that process one also automatically blocked, whole
process is blocked.

Advantages

e Thread switching does not require Kernel mode privileges.

e User level thread can run on any operating system.

e Scheduling can be application specific in the user level thread.
e User level threads are fast to create and manage.

binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Disadvantages

e Inatypical operating system, most system calls areblocking.
o Multithreaded application cannot take advantage ofmultiprocessing.

2) Kernel Threads: kernel creates, schedules, manages these threads .these threads are
slower, manage. Ifone thread in a process blocked, over all process need not be blocked.

Advantages
o Kernel can simultaneously schedule multiple threads from the same process on multiple
Processes.

o Ifonethread ina process is blocked, the Kernel can schedule another thread of the sameprocess.
o Kernel routines themselves can multithreaded.

Disadvantages

o Kernel threads are generally slower to create and manage than the userthreads.
e Transfer of control from one thread to another within same process requires a mode switch to
the Kernel.

DINLS’

User Space

Thread Library

Kernel Space

Multithreading Models

Some operating system provides a combined user level thread and Kernel level thread facility. Solaris is
a good example of this combined approach. In a combined system, multiple threads within the same
application can run in parallel on multiple processors and a blocking system call need not block the entire
process. Multithreading models are three types

e Many to many relationship.
e Many to one relationship.
e Oneto one relationship.

Many to Many Model

In this model, many user level threads multiplexes to the Kernel thread of smaller or equal numbers. The
number of Kernel threads may be specific to either a particular application or a particular machine.
Following diagram shows the many to many model. In this model, developers can create as many user
threads as necessary and the corresponding Kernel threads can run in parallels on a multiprocessor.

36

- - -~ =-°- =-"=J4 1 ° N A - - - - - = - - =

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

¢ ¢ §
¢ «— user thread
P

AN

N
k | «<—kemel thread

Many to One Model

Many to one model maps many user level threads to one Kernel level thread. Thread management is done
in user space. When thread makes a blocking system call, the entire process will be blocks. Only one
thread can access the Kernel at a time,so multiple threads are unable to run in parallel on multiprocessors.

If the user level thread libraries are implemented in the operating system in such a way that system does

not support them then Kernel threads use the many to one relationship modes.

€ User Level Threads

INlls.com

Kernel Level Thread

One to One Model

There is one to one relationship of user level thread to the kernel level thread. This model provides more
concurrency than the many to one model. It also another thread to run when a thread makes a blocking
system call. It support multiple thread to execute in parallel on microprocessors.

Disadvantage of this model is that creating user thread requires the corresponding Kernel thread. OS/2,
windows NT and windows 2000 use one to one relationship model.

€ User Level Threads

S Kernellevel Threads

37
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Difference between User Level & Kernel Level Thread

S.N. User Level Threads Kemel Level Thread

1 Tser level threads are faster to create and Eernel level threads are slower to create and
manage. manage.

2 Implementation is by a thread library at the Oiperating systern supports creation of K ernel
user level threads.

3 Taer level thread i3 generic and can run on Eernel level thread iz specific to the operating
any operating systetn. systetn.

4 hulti-threaded applhcation cannot take Eemel routines themselves can be
advantage of multiprocessing, rultithreaded.

binils.com

38
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

UNIT-1I

Process Scheduling: Foundation and Scheduling objectives, Types of Schedulers, Scheduling criteria:
CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time; Scheduling algorithms:
Pre-emptive and Non pre-emptive, FCFS, SJF, RR; Multiprocessor scheduling: Real Time scheduling: RM
and EDF.

Inter-process Communication: Critical Section, Race Conditions, Mutual Exclusion, Hardware Solution,
Strict Alternation, Peterson’s Solution, The Producer/Consumer Problem, Semaphores, Event Counters,
Monitors, Message Passing, Classical IPC Problems: Reader’s & Writer Problem, Dinning Philosopher
Problem etc.

PROCESS SCHEDULING:

CPU is always busy in Multiprogramming. Because CPU switches from one job to another job. But in
simple computers CPU sit idle until the 1/0 request granted.

scheduling is a important OS function. All resources are scheduled before use.(cpu,

memory, devices.....)

Process scheduling is an essential part of a Multiprogramming operating systems. Such

operating systems allow more than one process to be loaded into the executable memory at

atime and the loaded grocess ghares the (I’Llusing time multiplexing
b

Scheduling Objective
Maximize throughput. II ll I I I
Maximize number of u elving acgep ef@m

Be predictable.

Balance resource use.

Avoid indefinite postponement.

Enforce Priorities.

Give preference to processes holding key resources

SCHEDULING QUEUES: people live in rooms. Process are present in rooms knows

as queues. There are 3types

1. job queue: when processes enter the system, they are put into a job queue, which
consists all processes in the system. Processes in the job queue reside on mass storage and await
the allocation of main memory.

2. ready queue: if a process is present in main memory and is ready to be allocated to
cpu forexecution, is kept in readyqueue.
3. device queue: if a process is present in waiting state (or) waiting for an i/o event to

complete is said to bein device queue.(or)
The processes waiting for a particular 1/0 device is called device queue.

39
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Schedulers : There are 3 schedulers

1. Long term scheduler.
) Medium term scheduler
3. Short term scheduler.

Scheduler duties:

. Maintains the queue.
. Select the process from queues assign to CPU.
Types of schedulers

1. Long term scheduler:

select the jobs from the job pool and loaded these jobs into main memory (ready queue).
Long term scheduler is also called job scheduler.

2. Short term scheduler:

select the process from ready queue, and allocates it to the cpu.

If a process requires arII/O deygce, which s not present available then process enters device

queue.
@ sl:eﬂu) eue. Allso cal @ pll schigdulér.
3. Medium flergy sche@uled iflp ugst evife I the migidle of the

short term scheduler

execution, then the process removed from the main memory and loaded into the waiting queue.
When the I/O operation completed, then the job moved from waiting queue to ready queue.
These two operations performed by medium term scheduler.

Comparison between Scheduler

S.N. Long Term Scheduler Short Term Scheduler Medium Term Scheduler

Itis a process swapping

1 It is a job scheduler It is a CPU scheduler scheduler.

Speed is lesser than short Speed is fastest among Speed is in between both
term scheduler other two short and long term scheduler.

It provides lesser control
over degree of
multiprogramming

It reduces the degree of

3 It controls the degree of
multiprogramming.

multipragrarmming

It is almost absent or minimal It is also minimal in time It is a part of Time sharing

in time sharing system sharing systemn systems.

It selects processes from It selects those processes It can re-introduce the process 40
5 pool and loads them into which are ready to into memory and execulion

memary for execution execute can be continued.

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Context Switch: Assume, main memory contains more than one process. If cpu is executing a process, if
time expires or if a high priority process enters into main memory, then the scheduler saves information
about current process in the PCB and switches to execute the another process. The concept of moving CPU
by scheduler from one process to other process is known as context switch.

Non-Preemptive Scheduling: CPU is assigned to one process, CPU do not release until the competition of
that process. The CPU will assigned to some other process only after the previous process has finished.

Preemptive scheduling: here CPU can release the processes even in the middle of the

execution. CPU received a signal from process p2. OS compares the priorities of pl ,p2. If

p1>p2, CPU continues the execution of pl. If p1<p2 CPU preempt pl and assigned to p2.

Dispatcher: The main job of dispatcher is switching the cpu from one process to another

process. Dispatcher connects the cpu to the process selected by the short term scheduler.

Dispatcher latency: The time it takes by the dispatcher to stop one process and start another

process is known as dispatcher latency. If the dispatcher latency is increasing, then the degree of

multiprogramming decreases.

SCHEDULING CRITERIA:

1. Throughput: how many jobs are completed by the cpu with in a timeperiod.

2. Turn around time : The time interval between the submission of the process
and time of the completion is tyrn around tim

TAT = Waiting time dyq + axedlitiggetime + Waiking thaag ing/yadti ueue for
= binils.co

3. Waiting tifhe s b e38 toail f ofbealibcated.

4, Response time: Time duration between the submission and firstresponse.

5. Cpu Utilization: CPU is costly device, it must be kept as busy aspossible.

Eg: CPU efficiency is 90% means it is busy for 90 units, 10 units idle.
CPU SCHEDULINGALGORITHMS:

1. First come First served scheduling: (FCFS): The process that request the CPU
first is holds the cpu first. If a process request the cpu then it is loaded into the ready queue,
connect CPU to that process.

Consider the following set of processes that arrive at time 0, the length of the cpu burst time
given in milli seconds.

burst time is the time, required the cpu to execute that job, it is in milli seconds.

Process Burst time(milliseconds)
P1 5
P2 24
P3 16
P4 10
P5 3
41
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Chart:

[P P2 P3 P4 PS5

0 5 29 45 55

Average turn around time:

58

| Turn around time= waiting time + burst time

Turn around time for p1= 0+5=5.

Turn around time for

p2=5+24=29 Turn around time

for p3=29+16=45 Turn around

time for p4=45+10=55 Turn

around time for p5= 55+3=58

Average turn around time= (5+29++45+55+58/5) = 187/5 =37.5 millisecounds

Average waiting time:

A
| waiting time= starting tinli- 3 e |

Waiting time for p1=0

Waiting time for p2=5-0=5

Waiting time for p3=29-0=29

Waiting time for p4=45-0=45

Waiting time for p5=55-0=55

Average waiting time= 0+5+29+45+55/5 = 125/5 = 25 ms.

Average Response Time :

Formula : First Response - Arrival

Time Response Time for P1 =0

Response Time for P2 =>5-0=5

Response Time for P3 =>29-0 =29

Response Time for P4 => 45-0 = 45

Response Time for P5 => 55-0 = 55

Average Response Time => (0+5+29+45+55)/5 =>25ms

binils.com

42

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

1 First Come FirstServe:

It is Non Primitive Scheduling Algorithm.

PROCESS BURST ARRIVAL
TIME TIME

P1 3 0

P2 6 2

P3 4 4

P4 5 6

PS 2 8

Process arrived in the order P1, P2, P3, P4, P5.
P1 arrived at 0 ms.

P2 arrived at 2 ms.

P3 arrived at 4 mes.

) [[|
P4 arrived at 6 ms.
P5 arrived at 8 ms.
P1 P2 P3 P4 PS5
0 3 9 13 18 20

Formula : Turnaround Time = waiting time + burst time

Turn Around Time for P1 =>0+3=3

Turn Around Time for P2 => 1+6 =7

Turn Around Time for P3 =>5+4 =9

Turn Around Time for P4 => 7+ 5=12

Turn Around Time for P5 => 2+ 10=12

Average Turn Around Time => (3+7+9+12+12)/5 =>43/5 = 8.50 ms.
Average Response Time :

Formula : Response Time = First Response - Arrival Time
Response Time of P1 =0

Response Time of P2 =>3-2=1

Response Time of P3 =>9-4 =5

Response Time of P4 =>13-6 =7

Response Time of P5 => 18-8 =10

Average Response Time => (0+1+5+7+10)/5 =>23/5 = 4.6 ms
Advantages: Easy to Implement, Simple.

43
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools
Disadvantage: Average waiting time is very high.
2) hor Fir hedulin E):

Which process having the smallest CPU burst time, CPU is assigned to that process . If
two process having the same CPU burst time, FCFS is used.

PROCESS CPU BURST TIME
P1 5
P2 24
P3 16
P4 10
P5 3
P5

P5 having the least CPU burst time (3ms). CPU assigned to that (P5). After completion of
P5 short term scheduler search for nest (P1).......

Formula = Staring Time - Arrival Time

waiting Time for P1=>3-0=3

waiting Time for P2 => 34-0 = 34

waiting Time for P3 =>18-0 =18

waiting Time for P4 =>8-0=8

waiting time for P5=0

Average waiting time => (3+34+18+8+0)/5 => 63/5 =12.6 ms

Average Turn Around Time :

Formula = waiting Time + burst Time

Turn Around Time for P1 => 3+5 =8
Turn Around for P2 => 34424 =58
Turn Around for P3 =>18+16 = 34
44

binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Turn Around Time for P4 =>8+10 =18
Turn Around Time for P5=>0+3 =3
Average Turn around time => (8+58+34+18+3)/5=>121/5 = 24.2 ms

Average Response Time :

Formula : First Response - Arrival Time

First Response time for P1 =>3-0=3

First Response time for P2 => 34-0 = 34

First Response time for P3 => 18-0 = 18

First Response time for P4 =>8-0 =8

First Response time for P5 =0

Average Response Time => (3+34+18+8+0)/5 => 63/5 = 12.6 ms
SJF is Non primitive scheduling algorithm

Advantages : Least average waiting time

Least average turn around time Least

average response time

Average waiting time (FCFS) =25 ms

Average waiting time (SJF) = 12.6 ms 30% time saved in SJF.

Disadvantages:
i/tmt b ime is @ifficul I I I
eMvalling fior i r gP

° Knowing the
This is primitive scheduling algorithm.

° Aging (Big e

3

Short term scheduler always chooses the process that has term shortest remaining time. When a
new process joins the ready queue , short term scheduler compare the remaining time of

executing process and new process. If the new process has the least CPU burst time
scheduler selects that job and connect to CPU. Otherwise continue the old process.

PROCESS BURST TIME ARRIVAL TIME
P1 3 0
P2 6 2
P3 4 4
P4 5 [§)
P5 2 8
binils.com

, The

45

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

P1 P2 P3 P5 P2 P4

P1 arrives at time 0, P1 executing First , P2 arrives at time 2. Compare P1 remaining time and P2 (3-2 =
1) and 6. So, continue P1 after P1, executing P2, at time 4, P3 arrives, compare P2 remaining time (6-1=5
) and 4 (4<5) .So, executing P3 at time 6, P4 arrives. Compare P3 remaining time and P4 (4-

2=2) and 5 (2<5). So, continue P3 , after P3, ready queue consisting P5 is the least out of

three. So execute P5, next P2, P4.

FORMULA : Finish time - Arrival

Time Finish Time for P1 =>3-0=3

Finish Time for P2 =>15-2 =13

Finish Time for P3 =>8-4 =4

Finish Time for P4 => 20-6 = 14

Finish Time for P5=>10-8 =2

Average Turn around time => 36/5 = 7.2 ms.
It is designed especial

l A D . : u k‘ :
ile m%l/s nSre C swittm:ocesses.
When the time quantu irdel, the C amotNekgoD. ghal IlUnitio T tine, called

a time quantum or time slice. A time quantum is generally from 10 to 100 ms. The time
quantum is generally depending on OS. Here ready queue is a circular queue. CPU scheduler
picks the first process from ready queue, sets timer to interrupt after one time quantum and
dispatches the process.

PROCESS BURST TIME

P1 30

P2 6

P3 8

P1 P2 P3 P1 P2 P3 P1 P1 P1 P1
Q 5 10 15 20 21 24 29 34 39 44
46
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

AVERAGE WAITING TIME .

Waiting time for P1 => 0+(15-5)+(24-20) => 0+10+4 = 14
Waiting time for P2 => 5+(20-10) =>5+10 = 15

Waiting time for P3 => 10+(21-15) => 10+6 = 16
Average waiting time => (14+15+16)/3 = 15 ms.

AVERAGE TURN AROUND TIME :

FORMULA : Turn around time = waiting time + burst Time
Turn around time for P1 => 14+30 =44

Turn around time for P2 => 15+6 = 21

Turn around time for P3 => 16+8 = 24

Average turn around time => (44+21+24)/3 =29.66 ms

5) PRIORITY SCHEDULING :

PROCESS BURST PRIORITY
P1

P2

P3

P4 3 1

P5 4 3

P4 has the highest priority. Allocate the CPU to process P4 first next P1, P5, P2, P3.

P4 P1 P5 P2 P3

0 3] 13 25 26

AVERAGE WAITING TIME :

Waiting time for P1 => 3-0 =3
Waiting time for P2 => 13-0 = 13
Waiting time for P3 => 25-0 = 25
Waiting time for P4 =>0

Waiting time for P5 =>9-0 =9

Average waiting time => (3+13+25+0+9)/5 =10 ms
47

binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

AVERAGE TURN AROUND TIME :

Turn around time for P1 =>3+6 =9
Turn around time for P2 => 13+12= 25
Turn around time for P3 => 25+1 = 26
Turn around time for P4 => 0+3=3
Turn around time for P5 => 9+4 = 13

Average Turn around time => (9+25+26+3+13)/5=15.2 ms
Disadvantage: Starvation

Starvation means only high priority process are executing, but low priority
process are waiting for the CPU for the longest period of the time.

Multiple — processor scheduling:
When multiple processes are available, then the scheduling gets more complicated,
because there is more than one CPU which must be kept busy and in effective use

at all times.

Load sharifig_resolves around_balancing the load between multiple processors.
Multi proce @ yste y fbefih eneouf (It7c @ > ghffegent Bkinds of
CPU’s) (or jNdamog@engous(@ll e Kihdof

1) Approaches to multiple-processor scheduling

a)Asymmetric multiprocessing

One processor is the master, controlling all activities and running all kernel code,

while the other runs only user code.

b)Symmetric multiprocessing:

Each processor schedules its own job. Each processor may have its own private queue of ready
processes.

2) Processor Affinity

Successive memory accesses by the process are often satisfied in cache memory.
what happens if the process migrates to another processor. the contents of cache
memory must be invalidated for the first processor, cache for the second processor
must be repopulated. Most Symmetric multi processor systems try to avoid
migration of processes from one processor to another processor, keep a process
running on the same processor. This is called processor affinity.

a) Soft affinity:

Soft affinity occurs when the system attempts to keep processes on the same
processor but makes no guarantees.

48
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

b) Hard affinity:

Process specifies that it is not to be moved between processors.

3) Load balancing:

One processor wont be sitting idle while another is overloaded.
Balancing can be achived through push migration or pull migration.

Push migration:

Push migration involves a separate process that runs periodically(e.g every 200 ms)

and moves processes from heavily loaded processors onto less loaded processors.

Pull migration:

Pull migration involves idle processors taking processes from the ready queues of the other
processors.

Real time scheduling:

Real time scheduling is generally used in the case of multimedia operating systems.
Here multiple processes compete for the CPU. How to schedule processes A,B,C so
that each one meets its deadlines. The general tendency is to make them pre-
emptable, so that a process in danger of missing its deadline can preempt another
process. When this process sends its frame, the preempted process can continue

from where fit had | ere tfifoughput is not significan ortant is that
‘ asipal th adli
M) G 4L

tasks start a

RATE MO

Rate monotonic scheduling Algorithm works on the principle of preemption. Preemption occurs
on a given processor when higher priority task blocked lower priority task from execution. This
blocking occurs due to priority level of different tasks in a given task set. rate monotonic is a
preemptive algorithm which means if a task with shorter period comes during execution it will
gain a higher priority and can block or preemptive currently running tasks. In RM priorities are
assigned according to time period. Priority of a task is inversely proportional to its timer period.
Task with lowest time period has highest priority and the task with highest period will have
lowest priority.

For example, we have a task set that consists of three tasks as follows

Tasks Execution time(Ci) Time period(Ti)
T1 0.5 3
T2 1 4
T3 2 6
49
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

= W N e

o

Anna University | Polytechnic | Schools

Table 1. Task set

U= 0.5/3 +1/4 +2/6 = 0.167+ 0.25 + 0.333 = 0.75
As processor utilization is less than 1 or 100% so task set is schedulable and it also satisfies the above
equation of rate monotonic scheduling algorithm.

i 4 < > 7 L 10 11 12 12

13

o | o e = —
" s | [

Figure 1. RM scheduling of Task set in table 1.
Atask set given intable 1 it RM scheduling is given in figure 1. The explanation of above is as follows

1. According to RM scheduling algorithm task with shorter period has higher priority so T1 has
high priority, T2 has intermediate priority and T3 has lowest priority. At t=0 all the tasks are
released. Now T1 has highest priority so it executes first till t=0.5.

2. At t=0.5task T2 has higher priority than T3 so it executes first for one-time units till t=1.5. After
its completion only one task is remained in the system that is T3, so it starts its execution and
executes till tz3.

| [|

3. Att=3Tlr , @ | highell pigewsgy than 0 jismége cks T3 and starts it
execution till [le thatithdlirefiha Miag, part Ol T3 ex @

4. Att=4 T2 re a mletd ile § :8 iINaasasilruringin the system at this
time.

5. At t=6 both T1 and T3 are released at the same time but T1 has higher priority due to shorter
period so it preempts T3 and executes till t=6.5, after that T3 starts running and executes till t=8.

6. At t=8 T2 with higher priority than T3 releases so it preempts T3 and starts its execution.
7. At t=9 T1 is released again and it preempts T3 and executes first and at t=9.5 T3 executes its

remaining part. Similarly, the execution goes on.

Earliest Deadline First (EDF) Scheduler Algorithm
The EDF is a dynamic algorithm, Job priorities are re-evaluated at every decision point, this re-
evaluation is based on relative deadline of a job or task, the closer to the deadline, the higher the priority.
The EDF has the following advantages:
Very flexible (arrival times and deadlines do not need to be known before implementation).
Moderate complexity.
Able to handle aperiodic jobs.
The EDF has the following disadvantages:
Optimally requires pre-emptive jobs.
Not optimal on several processors.
Difficult to verify.

50
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Example
Consider the following task set in Table 1. P represents the Period, e the Execution time and D stands
for the Deadline. Assume that the job priorities are re-evaluated at the release and deadline ofa job.

P e D

T1 2 0.5 2

T2 4 1 4

T3 5 15 5

Solution

.

T3
I I 1 Ti | Tl Il T I | I'l
i - [| i | | | |

0 1 2 3 4 5_a 17 *lltlllll'i 4 15 16 17 18 19 20
Mark all deadlines related to @l the tasks

First mark all deadlin% r]elated to th@itas shov@ in Ei , 2 a8d TR are represented
with Red, Green and Blue cofour respectively. chBul ronto — 20ms ds shown.

At T =0, T1 has the closest deadline, so schedule T1.

At T =0.5, T1 is completed, its next release time is at 2ms. T2 is closer to its deadline so T2 is
scheduled next and executes for 1s.

At T =15, T2 job is completed. T3 is next because it is closer to its deadline while T2 has not
been released.

At T =2, anew instance of T1 is released, therefore, T3 is interrupted and has 1ms left to
complete execution. T1 executes

At T =25, The only ready job is T3 which is scheduled until completion.

At T =4, anew instance of T1 is released which executes for 0.5ms.

At T =45, T1is now completed, so T2 is now the task closest to its deadline and is scheduled.

At T =5.5, T3 is scheduled but is pre-empted at T = 6 so runs for 0.5ms

At T =6, anew instance of T1 is released and therefore scheduled.

At T =6.5, T3 is closest to its deadline because T1 and T3 have not been released. So T3 is
allowed to complete its execution which is 1ms.

At T =8, anew instance of T1 is released and is scheduled.

At T =8.5, T2 is the task having the closest deadline and so is scheduled to run for its execution
time.

At T = 10, the next release of T1 is scheduled.

51
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

At T =10.5, the next job with the closest deadline is T3 because the next T2 job will be released
at T =12. So T3 is scheduled until completion.

At T =12, the next release of T1 is scheduled.

At T =125, T2 isscheduled as it is the job with the closest deadline.

At T =14, the next release of T1 is scheduled.

At T =15, the next release of T3 is scheduled because it is now the job with the closest deadline
because the next release of T1 and T2 is at 16ms. T3 runs for 1ms.

At T =16, T3 is pre=empted because a new release of T1 which has the closest deadline is now
available.

T =16.5, T2 is the job with the closest deadline, so it is scheduled for the duration of its
execution time.

At T =17.5, since T1 and T2 have completed, T3 resumes execution to complete its task which
ran for only 1ms the last time. T3 completes execution at T = 18.

At T =18, anew instance of T1 is released and scheduled to run for its entire execution time.

At T =18.5, no job is released yet because a new release of T1, T2 and T3 are at 20ms.

Fig. 2 shows the EDF schedule fromT =0to T = 20.

Inter Process communication:

Process synchronization refers to the idea that multiple processes are to join up or
handshake at a certain point, in order to reach an agreement or commit to a certain
sequence of action. Coordination of simultaneous processes to complete a task is
known as process synchronization.

The critical section problem

Consider a system , assume that it consisting of n processes. Each process having a
segment of code. This segment of code is said to be critical section.

E.G: Railway Reservation System.

Two persons from different stations want to reserve their tickets, the train number,
destination is common, the two persons try to get the reservation at the same time.
Unfortunately, the available berths are only one; both are trying for that berth.

It is also called the critical section problem. Solution is when one process is
executing in its critical section, no other process is to be allowed to execute in

its critical section.

52
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

The critical section problem is to design a protocol that the processes can use to
cooperate. Each process must request permission to enter its critical section. The
section of code implementing this request is the entry section. The critical section
may be followed by an exit section. The remaining code is the remainder section.

do {

critical section

exit section

remainder section
} while (1);

Figure General structure of a typical process P;.

A solution

0 the cijtical sectign problem must satisfy the following 3
requireme
Only one pre

S u lusio
% afiexgcut@thgir Bri ectiongat any @ I I I
2. Progke B

When no process is executing a critical section for a data, one of the processes
wishing to enter a critical section for data will be granted entry.

3. Bounded wait:

No process should wait for a resource for infinite amount of time.

Critical section:
The portion in any program that accesses a shared resource is called as critical section (or)
critical region.

Peterson’s solution:
Peterson solution is one of the solutions to critical section problem involving two
processes. This solution states that when one process is executing its critical section
then the other process executes the rest of the code and vice versa.
Peterson solution requires two shared data items:
1) turn: indicates whose turn it is to enter
into the critical section. If turn == i ,then
process i is allowed into their critical section.
2) flag: indicates when a process wants to enter into critical section. when

53
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

process i wants to entertheir critical section, it sets flag[i] to true.
do {flag[i] = TRUE; turn = j;

while (flag[j] && turn ==j);

critical section

flag[i] = FALSE;

remainder section

} while (TRUE);

Synchronization hardware
In a uniprocessor multiprogrammed system, mutual exclusion can be obtained by
disabling the interrupts before the process enters its critical section and enabling
them after it has exited the critical section.

Disable
interrupts
Critical section
Enable interrupts

| |
Once a pro @ itic ction§iL_cannot @e irte @» hig¥solltion
cannot be (ultipr@c efvigonigen : ceSses@ run
independently on different processors.
In multiprocessor systems, Testandset instruction is provided,it completes
execution without interruption. Each process when entering their critical section

must set lock,to prevent other processes from entering their critical sections
simultaneously and must release the lock when exiting their critical sections.

do {

acquire

lock

critical

section

release

lock

remainder
section

} while (TRUE);

54
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

A process wants to enter critical section and value of lock is false then testandset
returns false and the value of lock becomes true. thus for other processes wanting
to enter their critical sections testandset returns true and the processes do busy
waiting until the process exits critical section and sets the value of lock to false.
» Definition:
boolean TestAndSet(boolean&lock){
boolean temp=lock;
Lock=true;
return temp;
}
Algorithm for TestAndSet
do{
while testandset(&lock)
//do nothing
/[critical section
lock=false
remainder section
while(TRUE);

- HAHS-E0M

V0|d swap(boolean &a, boolean &b)

boolean temp=a;
a=b;

b=temp;

}

Algorithm

do

{

key=true;
while(key=true)
swap(lock,key);
critical section
lock=false;
remainder section
Jwhile(2);

55
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

lock is global variable initialized to false.each process has a local variable key. A
process wants to enter critical section,since the value of lock is false and key is
true.

lock=false

key=true

after swap instruction,
lock=true

key=false

now key=false becomes true,process exits repeat-until,and enter into critical section.
When process is in critical section (lock=true),so other processes wanting to enter
critical section will have

lock=true

key=true

Hence they will do busy waiting in repeat-until loop until the process exits critical
section and sets the value of lock to false.

Semaphores

A semaphore is an integer variable.semaphore accesses only through two operations.

1) wait to.r i0 dec. nts the count byl.
@ ivesthelpr xecutingfthe on I§ bl@cked.
opaera]

If the result
2) signa

Signal operation increments by 1,if the value is not positive then one of the
process blocked in wait operation unblocked.

wait (S) {
while S<=0;//
no-op

S--;

}

signal (S)
{

S++;

In binary semaphore count can be 0 or 1. The value of semaphore is
initialized to 1.

56
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

do {

walit (mutex);

/I Critical Section
signal (mutex);

/l remainder section

} while (TRUE);

First process that executes wait operation will be immediately granted sem.count to 0.
If some other process wants critical section and executes wait() then it is
blocked,since value becomes -1. If the process exits critical section it executes
signal().sem.count is incremented by 1.blocked process is removed from queue and
added to ready queue.

Problems:

1) Deadlock

Deadlock occurs when multiple processes are blocked.each waiting for a resource
that can only be freed by one of the other blocked processes.

[| |]
SS S Dlbc ofEver™and negWer 0 Yetketheir
turninthe c 5eBtian. .

3) Priority inversion

If low priority process is running ,medium priority processes are waiting for low
priority process,high priority processes are waiting for medium priority
processes.this is called Priority inversion.

The two most common kinds of semaphores are counting semaphores and
binary semaphores. Counting semaphores represent multiple resources,

while binary semaphores, as the name implies, represents two possible states
(generally 0 or 1; locked or unlocked).

Classic problems of synchronization

1) Bounded-buffer problem

Two processes share a common ,fixed —size buffer.

Producer puts information into the buffer, consumer takes it out.

The problem arise when the producer wants to put a new item in the buffer,but it is
already full. The solution is for the producer has to wait until the consumer has
consumed atleast one buffer. similarly if the consumer wants to remove an item
from the buffer and sees that the buffer is empty,it goes to sleep until the producer
puts something in the buffer and wakes it up.

57
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

synchronisation problems:

i) we must guard against attempting to write data to the buffer when the buffer is full; ie the
producer must wait for an ‘empty space’.

ii) we must prevent the consumer from attempting to read data when the buffer is empty; ie,
the consumer must wait for ‘data available’.

To provide for each of these conditions, we require to employ three semaphores which are
defined in the following table:

Semaphore Purpose Initial Value
free mutual exclusion for buffer access 1
space space available in buffer N
data data available in buffer 0

The structure of the producer process
do {
/I produce an item in
nextp wait (empty);
wait (mutex);

/I add the it@m to tie u

buffer signa
==pinils.com
} while (TRE®Y u

The structure of the consumer process
do {

wait

(full);

wait

(mutex);

/l remove an item from buffer to
nextc signal (mutex);

signal (empty);

I/ consume the item in nextc

} while (TRUE);

2) The readers-writers problem

A database is to be shared among several concurrent processes.some processes may
want only to read the database,some may want to update the database.If two readers
access the shared data simultaneously no problem.if a write,some other process
access the database simultaneously problem arised.Writes have excusive access to

58
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

the shared database while writing to the database.This problem is known as
readers- writes problem.

First readers-writers problem

No reader be kept waiting unless a writer has already obtained permission to
use the shared resource.

Second readers-writes problem:

Once writer is ready,that writer performs its write as soon as possible.

A process wishing to modify the shared data must request the lock in write mode.
multiple processes are permitted to concurrently acquire a reader-writer lock in
read mode. A reader writer lock in read mode. but only one process may acquire
the lock for writing as exclusive access is required for writers.

Semaphore mutex initialized to 1

o Semaphore wrt initialized to 1
o Integer read count initialized to 0

The structure of a writer process

do {

wait (wrt) ; - -

/I writing

performed =
signal (wrt) ;

} while (TRUE);

The structure of a reader process
do {

wait (mutex) ;

readcount ++;

if (readcount == 1)

wait (wrt) ;

signal (mutex)

/I reading is performed wait (mutex) ;
readcount

if (readcount == 0)

signal (wrt) ;

signal (mutex) ;

} while (TRUE);

3) Dining Philosophers problem

59
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Five philosophers are seated on 5 chairs across a table. Each philosopher has a
plate full of noodles. Each philosopher needs a pair of forks to eat it. There are only
5 forks available all together. There is only one fork between any two plates of
noodles.

In order to eat, a philosopher lifts two forks, one to his left and the other to his
right. if he is successful in obtaining two forks, he starts eating after some time, he
stops eating and keeps both the forks down.

What if all t !)H(I atth same I I I
All the 5 philg ' ould afte safe tiine. So,none of them

succeed.

One simple solution is to represent each fork with a semaphore.a philosopher

tries to grab a fork by executing wait() operation on that semaphore.he
releases his forks by executing the signal() operation.This solution guarantees

that no two neighbours are eating simultaneously.

Suppose all 5 philosophers become hungry simultaneously and each grabs his left
fork,he will be delayed forever.

The structure of Philosopher i:
do{

wait (chopstick[i]);

wait (chopStick[(i+ 1) % 5]);

Il eat

signal (chopstick[i]);

signal (chopstick[(i+ 1) % 5]);
/1 think

} while (TRUE);

60
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Several remedies:

1) Allow at most 4 philosophers to be sitting simultaneously at the table.

2) Allow a philosopher to pickup his fork only if both forks are available.

3) An odd philosopher picks up first his left fork and then right fork. an even philosopher picks up
his right fork and then his left fork.

MONITORS

The disadvantage of semaphore is that it is unstructured construct. Wait and signal operations
can be scattered in a program and hence debugging becomes difficult.

A monitor is an object that contains both the data and procedures needed to perform allocation of
a shared resource. To accomplish resource allocation using monitors, a process must call a
monitor entry routine. Many processes may want to enter the monitor at the same time. but
only one process at a time is allowed to enter. Data inside a monitor may be either global to all
routines within the monitor (or) local to a specific routine. Monitor data is accessible only within
the monitor. There is no way for processes outside the monitor to access monitor data. This is a
form of information hiding.

If a process calls a monitor entry routine while no other processes are executing inside the
monitor, the process acquires a lock on the monitor and enters it. while a process is in the

monitor, othel p ocesses nat eliter the monitor to acquire the resource. If a process calls a
@ ndiwhile the Bther Gonitor is fock g or hak@s the calling process
ofitaf unfil the Mogk o tff niger ¢ d. Brhefprocess that has the

monitor entr

wait outside

resource will call a monitor entry routine to release the resource. This routine could free the
resource and wait for another requesting process to arrive monitor entry routine calls signal to
allow one of the waiting processes to enter the monitor and acquire the resource. Monitor gives
high priority to waiting processes than to newly arriving ones.

Structure:

monitor monitor-name

{

/I shared variable declarations
procedure P1 (...) {.... }
procedurePn (...) {...... }
Initialization code (...) { ... }

¥
¥

Processes can call procedures pl,p2,p3...... They cannot access the local variables of the
monitor

61
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Schematic view of a Monitor

entry qu.le\.le»)(;\ k‘é\ k—c—-
/’ shared dnta \R’A x(é\

operations

iNnitialization //
code .. —

Monitor with Condition Variables

entry queue :

. shared data

queues associat Wlth ’. x B
x, y condiity n] O m
s
oporatlon°

. initialization g
ke code e

= aoalll

Monitor provides condition variables along with two operations on them i.e. wait and signal.

wait(condition variable)

signal(condition variable)

Every condition variable has an associated queue.A process calling wait on a
particular condition variable is placed into the queue associated with that condition
variable.A process calling signal on a particular condition variable causes a process
waiting on that condition variable to be removed from the queue associated with it.

62
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

lution to Pr r consumer problem using monitors:

monitor
producerconsumer
condition
full,empty;

int count;
procedure insert(item)
{

if(count==MAX)
wait(full) ;
insert_item(item);
count=count+1;

if(count==1)
signal(empty);
}

procedure remove()

walt(empt

|f(count

remove_ite

count=cou -
if(count= MAX 1)

signal(full);
}

procedure producer()

{

producerconsumer.insert(item);

}

procedure consumer()

{

producerconsumer.remove();

}

binils.com

63

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

lution inina phil hers problem using monitor

void test(int i) {

if ((state[(i + 4) ¥ 5] '= eating) &&
(stateli] == hungry) &&
(statel(i + 1) ¥ 5] != eating)) {
state[i] = eating;

self[i] .signal();
}
}

void init() {

for (int i = 0; i < B5; i++)
state[i] = thinking;

}

Figure A monitor solution to the dining-philosopher problem.

test((i + 1) ¥ 5);

}

A philosopfier maf plcku orks only if both of them are available.A
philosopher |ghb .
philosopher ﬂ e h is

Diningphilosophers. Ta e orks(: acquires orks ,which may block the process.

Eat noodles ()

Diningphilosophers.put_forks(): releases the forks.

Resuming processes within a monitor

If several processes are suspended on condion x and x.signal() is executed by some process.
then

how do we determine which of the suspended processes should be resumed next ?

solution is FCFS(process that has been waiting the longest is resumed first).In

many circumstances, such simple technique is not adequate. alternate solution is to

assign priorities and wake up the process with the highest priority.

('D

Resource allocation using monitor
boolean inuse=false;
conditionavailable;
/[conditionvariable

64
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

monitorentry void get resource()

{

if(inuse) /1is resource inuse

{

wait(available); wait until available issignaled
}

inuse=true; /lindicate resource is now inuse

}

monitor entry void return resource()

{

inuse=false; /lindicate resource

is not in use signal(available); //signal a
waiting process to proceed

}

binils.com

binils.com

65

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

UNIT-I11

Memory Management: Basic concept, Logical and Physical address map, Memory allocation:
Contiguous Memory allocation — Fixed and variable partition—Internal and External fragmentation and
Compaction; Paging: Principle of operation — Page allocation — Hardware support for paging, protection
and sharing, Disadvantages of paging.

Virtual Memory: Basics of Virtual Memory — Hardware and control structures — Locality of reference,
Page fault , Working Set , Dirty page/Dirty bit — Demand paging, Page Replacement algorithms:
Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently
used (LRU).

Logical And Physical Addresses

An address generated by the CPU is commonly refereed as Logical Address, whereas the
address seen by the memory unit that is one loaded into the memory address register of the
memory is commonly refereed as the Physical Address. The compile time and load time
address binding generates the identical logical and physical addresses. However, the
execution time addresses binding scheme results in differing logical and physical addresses.

The set of all logicdll addre§$es generaféd [y a program is known as Logical Address Space,
where as the set

pRysical Yaddr COPrespogiling. t ase Moo dresses is
Physical Address Q . b nBtime Mapping fr ﬁ | @ddrgss physical
address is done by a fardware device wnas Meémo anagement Uhit. Here in the
case of mapping the base register is known as relocation register. The value in the relocation
register is added to the address generated by a user process at the time it is sent to memory
.Let's understand this situation with the help of example: If the base register contains the
value 1000,then an attempt by the user to address location 0 is dynamically relocated to
location 1000,an access to location 346 is mapped to location 1346.

Memory-Management Unit (MMU)

Hardware device that maps virtual to physical address
[]

e In MMU scheme, the value in the relocation register is added to every address generated by a user
process at the time it is sent to memory

* The user program deals with logical addresses; it never sees the real physical addresses

register

(14000 |
-
-

logical

relocation
address

cPU |
| 346

memory

66
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

The user program never sees the real physical address space, it always deals
with the Logical addresses. As we have two different type of addresses Logical address
in the range (0 to max) and Physical addresses in the range(R to R+max) where R is
the value of relocation register. The user generates only logical addresses and thinks that
the process runs in location to 0 to max. As it is clear from the above text that user program
supplies only logical addresses, these logical addresses must be mapped to physical address
before they are used.

Base and Limit Registers

A pair of base and limit registers define the logical address space

operating
system
256000
pr()ceSS
300040 300040
process base
r =
420940 1120900]
procesdll il"
880000 |
1024000
[|

HARDWARE PROTECTION WITH BASE AND LIMIT

tase base 4+ hmit

| address 7 ™\ yes T s
CPU p———<l 2 Dt R e

trap 1o oparating syslem

montor—addrassing error mamory

Binding of Instructions and Data to Memory

Address binding of instructions and data to memory addresses can happen at three different stages
[]

e Compile time: If memory location known a priori, absolute code can be generated; must recompile
code if starting location changes
Load time: Must generate relocatable code if memory location is not known at compile time

67
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

[]

e Execution time: Binding delayed until run time if the process can be moved during its execution
from

one memory segment to another. Need hardware support for address maps (e.g., base and limit

registers)

Multistep Processing of a User Program

£ source
program

compilar or l compile
assembler | time

— object ‘j
= module

aditor

— { load)

linkage l
‘._ module

. load
time

,COIM

o lllnu(lun
[time)

~ dynamic
linking

blnaly
memory
image

Dynamic Loading
sRoutine is not loaded until it is called
*Better memory-space utilization; unused routine is never loaded
*Useful when large amounts of code are needed to handle infrequently occurring cases
*No special support from the operating system is required implemented through program design

Dynamic Linking
«Linking postponed until execution time
«Small piece of code, stub, used to locate the appropriate memory-resident library
*routine Stub replaces itself with the address of the routine, and executes the routine
*Operating system needed to check if routine is in processes’ memory address Dynamic
*linking is particularly useful for libraries
'System also known as shared libraries

68
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Swapping

A process can be swapped temporarily out of memory to a backing store, and then brought back into
memory for continued execution Backing store — fast disk large enough to accommodate copies of all
memory images for all users; must provide direct access to these memory images Roll out, roll in —
swapping variant used for priority-based scheduling algorithms; lower-priority process is swapped out
so higher-priority process can be loaded and executed Major part of swap time is transfer time; total
transfer time is directly proportional to the amount of memory swapped and Modified versions of
swapping are found on many systems (i.e., UNIX, Linux, and Windows)

System maintains a ready queue of ready-to-run processes which have memory images on disk

Schematic View of Swapping

operating B o = __ﬂ——’/
system
@ SWap out process M,
I o
. process /.
@ swap Iin
- L R ——|
user o
space

bHc King store

main memory

Cont.guousA.mlnlls com

«Main memory usually into two partitions:
sResident operating system, usually held in low memory with interrupt vector

sUser processes then held in high memorynRelocation registers used to protect user processes from each
other, and from changing operating-system code and data

Base register contains value of smallest physical address
.

e Limit register contains range of logical addresses — each logical address must be less than the limit
register

» MMU maps logical address dynamically
Hardware Support for Relocation and Limit Registers

T 1
Irelocation |

| limit
’ | register |

register

logical o 3 phys=sical
| address TS, yes o Aaddress
cPuy : - g g memorry

no

trap: addressing error

69
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

sMultiple-partition allocation
eHole — block of available memory; holes of various size are scattered throughout memory
*When a process arrives, it is allocated memory from a hole large enough to accommodate it

Contiguous memory allocation is one of the efficient ways of allocating main memory to
the processes. The memory is divided into two partitions. One for the Operating System and
another for the user processes. Operating System is placed in low or high memory depending
on the interrupt vector placed. In contiguous memory allocation each process is contained in
a single contiguous section of memory.

Memory protection

Memory protection is required to protect Operating System from the user processes and user
processes from one another. A relocation register contains the value of the smallest physical
address for example say 100040. The limit register contains the range of logical address for
example say 74600. Each logical address must be less than limit register. If a logical address
is greater than the limit register, then there is an addressing error and it is trapped. The limit
register hence offers memory protection.

The MMU, that is, Memory®Manageméht nit maps the logical address dynamically, that is
at run time, by addi I

icgf adg@r te vatue in gelocati jStef. TWs akided value
is the physical me ssivhich igisefit to mﬁm y.

The CPU scheduler selects a process for execution and a dispatcher loads the limit and
relocation registers with correct values. The advantage of relocation register is that it provides
an efficient wayto allow the Operating System size to change dynamically.

Memory allocation

There are two methods namely, multiple partition method and a general fixed partition
method. In multiple partition method, the memory is divided into several fixed size
partitions. One process occupies each partition. This scheme is rarely used nowadays.
Degree of multiprogramming depends on the number of partitions. Degree of
multiprogramming is the number of programs that are in the main memory. The CPU is
never left idle in multiprogramming. This was used by IBM 0OS/360 called MFT. MFT
stands for Multiprogramming with a Fixed number of Tasks.

Generalization of fixed partition scheme is used in MVT. MVT stands for Multiprogramming
with a Variable number of Tasks. The Operating System keeps track of which parts of
memory are available and which is occupied. This is done with the help of a table that is
maintained by the Operating System. Initially the whole of the available memory is treated as

70
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

one large block of memory called a hole. The programs that enter a system are maintained in
an input queue. From the hole, blocks of main memory are allocated to the programs in the
input queue. If the hole is large, then it is split into two, and one half is allocated to the
arriving process and the other half is returned. As and when memory is allocated, a set of
holes in scattered. If holes are adjacent, they can be merged.

Now there comes a general dynamic storage allocation problem. The following are the
solutions to the dynamic storage allocation problem.

. First fit: The first hole that is large enough is allocated. Searching for the holes
starts from the beginning of the set of holes or from where the previous first fit search
ended.

. Best fit: The smallest hole that is big enough to accommodate the incoming
process is allocated. If the available holes are ordered, then the searching can be reduced.

. Worst fit: The largest of the available holes is allocated.
Example:

[|
13 K
request
Im use
Best - fit - 14
Im use
1L

First and best fits decrease time and storage utilization. First fit is generally faster.
Fragmentation

The disadvantage of contiguous memory allocation is fragmentation. There are two
types of fragmentation, namely, internal fragmentation and External fragmentation.
Internal fragmentation

When memory is free internally, that is inside a process but it cannot be used, we call that
fragment as internal fragment. For example say a hole of size 18464 bytes is available. Let
the size of the process be 18462. If the hole is allocated to this process, then two bytes are
left which is not used. These two bytes which cannot be used forms the internal
fragmentation. The worst part of it is that the overhead to maintain these two bytes is more
than two bytes.

External fragmentation

All the three dynamic storage allocation methods discussed above suffer external
fragmentation. When the total memory space that is got by adding the scattered holes is
sufficient to satisfy a request but it is not available contiguously, then this type of

71
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

fragmentation is called external fragmentation.

The solution to this kind of external fragmentation is compaction. Compaction is a method
by which all free memory that are scattered are placed together in one large memory block.
It is to be noted that compaction cannot be done if relocation is done at compile time or
assembly time. It is possible only if dynamic relocation is done, that is relocation at
execution time.

One more solution to external fragmentation is to have the logical address space and
physical address space to be non contiguous. Paging and Segmentation are popular non
contiguous allocation methods.

Example for internal and external fragmentation

(O]
2K P1 (2K)
6K| Empty (6k) |, External

fragmentation

_=BAHS.com

A computer can address more memory than the amount physically installed on the system.
This extra memory is actually called virtual memory and it is a section of a hard that's set up
to emulate the computer's RAM. Paging technique plays an important role in implementing
virtual memory.

Paging is a memory management technique in which process address space is broken into
blocks of the same size called pages (size is power of 2, between 512 bytes and 8192 bytes).
The size of the process is measured in the number of pages.

Similarly, main memory is divided into small fixed-sized blocks of (physical) memory
called frames and the size of a frame is kept the same as that of a page to have optimum
utilization of the main memory and to avoid external fragmentation.

72
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Paging Hardware

logical physical
address address

CPU }‘;p <!I_I L__LI'_C".

paqe table

Address Translation

{0000 . .. 0000 |

1111 ... 1111 |

physical
memory

Page address is called logical address and represented by page number and the offset.

Physical Address ¥ Frame umber+ set

Frame address is called phygical addr]; ; Tiepresented by a frame nurber and the offset.

A data structure called page map table'is used to keep track of the relation between a page

of a process to a frame in physical memory.
Paging Model of Logical and Physical Memory

Page O

Ppage 1

r):‘: e =

age 3 Foan

lorggicaal
e rTory

pPage O

paage =

3
R Fraagges 1
=

=

z Page 3

Phy=silcal

73

binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Paging Example

o] a
1 b
2 [+
3 L=}
a e
=) f
& 9
7 h
a8 i
9 i
10 K
e 1 | 1
12| m
13 n
14 o
15| p

logical memory

32-byte memory and 4-byte pages

]]
Free Frames b I I l I IS

free-frame list
14

-\
noow

(=)

Ppage table

16

20

VO =F==

T8 - 0/0.0 08|

physical memory

.COM

free-frame list
15

olola

WN=0
Nl]
0

new-process page table

()

When the system allocates a frame to any page, it translates this logical address into a
physical address and create entry into the page table to be used throughout execution of the

program.

When a process is to be executed, its corresponding pages are loaded into any available
memory frames. Suppose you have a program of 8Kb but your memory can accommodate
only 5Kb at a given point in time, then the paging concept will come into picture. When a

binils.com

74

13

14

'i
page O

page 2

Ppage 3

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

computer runs out of RAM, the operating system (OS) will move idle or unwanted pages of
memory to secondary memory to free up RAM for other processes and brings them back
when needed by the program.

This process continues during the whole execution of the program where the OS keeps
removing idle pages from the main memory and write them onto the secondary memory and
bring them back when required by the program.

Implementation of Page Table

«Page table is kept in main memory

*Page-table base register (PTBR) points to the page table

*Page-table length register (PRLR) indicates size of the page table

*In this scheme every data/instruction access requires two memory accesses. One for the page table
and one for the data/instruction.
The two memory access problem can be solved by the use of a special fast-lookup hardware
cache called associative memory or translation look-aside buffers (TLBs)
Paging Hardware With TLB

logical

page frame
Nnumbeaer NmnuMmbaer

| =)

TLEB miss

1

physical
Mmeermaory

page table

Memory Protection
«Memory protection implemented by associating protection bit with each frame
sValid-invalid bit attached to each entry in the page table:
*“valid” indicates that the associated page is in the process’ logical address space, and is thus a legal
*page “invalid” indicates that the page is not in the process’ logical address space
*Valid (v) or Invalid (i) Bit In A Page Table

75
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

|
0]
1 |
2 l page O
00000 - frame number valid—invalid bit
page O \ / 3| page 1
i i of2]v T '
page 1 il3| v 4[page 2
2|4 | v |
age 2 i 5
s 3[7 v C
page 3 418 |V Gi
i : 5/9|v I
page 4 elo| i 7| page 3
710 i |
10,468 | page 5 ' 8| page 4
12,287 - - page table —
9 i page 5
| -
page n

Shared Pages

Shared code

= One copy of read-only (reentrant) code shared among processes (i.e., text editors, compilers,
window systems).

* Shared code must appear in same location in the logical address space of all processes

Private code and ddia = u

Each process keepsbr f the I> data

L

* The pages fort arcmdlt cSeajarGrQ IMess space

Shared Pages Example

ed 1 (o]
3
ed 2 a 1 data 1
ed 3 S 2 data 3
1 =
data 1 page table 3 Ll
oy ed 1
process P, i 3 4 ed?2
ed2 4 %
ed 3 B4
7 6 ed3
data 2 page table
¢ data 2
d1 for P,
e process P, -
3 8
ed 2 a
9
ed 3 g
= 10
data 3 page table
for P, 11
process P,

76
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Structure of the Page Table

eHierarchical Paging
*Hashed Page Tables
*Inverted Page Tables

Hierarchical Page Tables
Break up the logical address space into multiple page tables A simple technique

is a two-level page table
Two-Level Page-Table Scheme

rfmerTmaonry

o
1]
/ . :
/ = 100, =
sS00
= \><
\ = -
— -
] 100 —| soo
- -
= == -
Tos — =
— Zos
— - _
outer page [oo -
e = e SOoo
I | || —
-
3
I | l I :

Two-Level Paging Example

#A logical address (on 32-bit machine with 1K page size) is divided
«into: a page number consisting of 22 bits

*a page offset consisting of 10 bits

*Since the page table is paged, the page number is further divided into:
*a 12-bit page number a 10-bit page offset

:Thus, a logical address is as follows:

where pj is an index into the outer page table, and p2 is the displacement within the page of the
outer page table

Page number page offset
P w [

10

77
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Address-Translation Scheme

logical address
| Pi [P2 | a |

o

P

pz{

outer page d
table

page of
page table

Three-level Paging Scheme

2nNnd outer page outer page iNnnNner page

offset

.

d

L

Hashed Page Tables

«Common in address spaces > 32 bits
*The virtual page number is hashed into a page table
*This page table contains a chain of elements hashing to the same
*location Virtual page numbers are compared in this chain searching for
*a match

If a match is found, the corresponding physical frame is extracted

physical
logical address address
=S e TTd——

A =5 physical
<fu?\£é?ign) » —+— |lal s| Il]lplrl.l]"‘ memory

h‘ash table

Hashed Page Table

78
binils.com

12

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Inverted Page Table

One entry for each real page of memory

e Entry consists of the virtual address of the page stored in that real memory location, with information
about the process that owns that page
*= Decreases memory needed to store each page table, but increases time needed to search the table
when a page reference occurs

*Use hash table to limit the search to one — or at most a few — page-table entries
Inverted Page Table Architecture

logical i
address physica)
. | : 1 address physical
CPU Hpid| p [d| EEN, memory
search l

page table

Advantages and Disadvantages of Paging

Here is a list of advantages and disadvantages of paging —

. Paging reduces external fragmentation, but still suffers from internal fragmentation.
. Paging is simple to implement and assumed as an efficient memory management
technique.

. Due to equal size of the pages and frames, swapping becomes very easy.

. Page table requires extra memory space, so may not be good for a system having
small RAM.

Segmentation
« Memory-management scheme that supports user view of memory A program is a
collection of segments
= Asegment is a logical unit such as:
= main program
= Procedure
= function method
= Object
79

binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

= Jocal variables, global variables
= common block

= stack
= symboltable
* arrays P—

[sler()Ltlirle I stack |

symbol
table

main
program

sSqrt

— —

logical address

User’s View of a Program

Segmentation Architecture
* Logical address onsist?ofatwot l

0 <segment-numbe

«Segment table — ‘ $:
«base — contains the starting phyS|caI ad ress where the segments reside in memory
slimit — specifies the length of the segment
sSegment-table base register (STBR) points to the segment table’s location in memory
*Segment-table length register (STLR) indicates number of segments used by a program;

segment number s is legal if s < STLR
«Protection
«\With each entry in segment table associate:
svalidation bit = 0 b illegal segment
*read/write/execute privileges
*Protection bits associated with segments; code sharing occurs at segment level
*Since segments vary in length, memory allocation is a dynamic storage-allocation
'problem A segmentation example is shown in the following diagram

80
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Segmentation Hardware

limit |base |—

segment
table

CPU —b‘sldl

trap: addressing error physical memory

Example of Segmentation

A
subroutine I I

11S.com

/ segment 3 segment 0
2400
symbol
segment 0 table
limit | base
Sqrt segment 4 0| 1000 | 1400 |
1| 400 | 6300 | 3200
main 2| 400 | 4300
program 3| 1100 | 3200 segment 3
4| 1000 | 4700

segment table 4300

segment 1 segment 2 ment 2
4700 e
logical address space segment 4
5700
6300
@ment 1
6700 ‘

physical memory

Segmentation with paging
81
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Instead of an actual memory location the segment information includes the address of a page
table for the segment. When a program references a memory location the offset is translated
to a memory address using the page table. A segment can be extended simply by allocating
another memory page and adding it to the segment’s page table.

An implementation of virtual memory on a system using segmentation with paging usually
only moves individual pages back and forth between main memory and secondary storage,
similar to a paged non-segmented system. Pages of the segment can be located anywhere in
main memory and need not be contiguous. This usually results in a reduced amount of
input/output between primary and secondary storage and reduced memory fragmentation.

Virtual Memory

Virtual Memory is a space where large programs can store themselves in form of pages
while their execution and only the required pages or portions of processes are loaded into
the main memory. This technique is useful as large virtual memory is provided for user
programs when a very small physical memory is there.

In real scenarios, most processes never need all their pages at once, for following reasons :

. Error handling code is not needed unless that specific error occurs, some of which
are quite rare.
. Arrays are often over-sized for worst-case scenarios, and only a small fraction ofthe

arrays are actually

ed inpfactice. ™
. Certain featubelaimriwslrgy useC O m
page O
page 1 .

page 2
e

| W = -

N e

N | __— ~N H = =
N | | m .
| | N
| = .

memory = ! ~—
map o

page v physical
- memory

virtual
memory

Fig. Diagram showing virtual memory that is larger than physical memory.
Virtual memory is commonly implemented by demand paging. It can also be implemented in a
segmentation system. Demand segmentation can also be used to provide virtual memory.

Benefits of having Virtual Memory :
1. Large programs can be written, as virtual space available is huge compared to

physical memory.

82
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

2. Less 1/O required, leads to faster and easy swapping of processes.
3. More physical memory available, as programs are stored on virtual memory, so they
occupy very less space on actual physical memory.

Demand Paging

A demand paging is similar to a paging system with swapping(Fig 5.2). When we want to execute a
process, we swap it into memory. Rather than swapping the entire process into memory.

When a process is to be swapped in, the pager guesses which pages will be used before the process is
swapped out again Instead of swapping in a whole process, the pager brings only those necessary pages
into memory. Thus, it avoids reading into memory pages that will not be used in anyway, decreasing the
swap time and the amount of physical memory needed.

Hardware support is required to distinguish between those pages that are in memory and those pages
that are on the disk using the valid-invalid bit scheme. Where valid and invalid pages can be checked
checking the bit and marking a page will have no effect if the process never attempts to access the
pages. While the process executes and accesses pages that are memory resident, execution proceeds
normally.

Fig. Transfer of a pied mefhory to corﬂn[us disk space

program | swap out o] 1[] 2] 3]
;A 4|ﬁ 5[£|] 6|£] 7&]
8] o[J1o[J11[]
: 12 13 J14[15[]
;pro%ram M Sswap in 16D17[;]1_8;]19;]
20[J21[J22[123[]

main
memorv

Access to a page marked invalid causes a page-fault trap. This trap is the result of the operating system's
failure to bring the desired page into memory.

Initially only those pages are loaded which will be required the process immediately.
The pages that are not moved into the memory are marked as invalid in the page table. For

83
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

an invalid entry the rest of the table is empty. In case of pages that are loaded in the
memory, they are marked as valid along with the information about where to find the
swapped out page.

When the process requires any of the page that is not loaded into the memory, a page fault
trap is triggered and following steps are followed,

1. The memory address which is requested by the process is first checked, to verify the
request made by the process.

2. If its found to be invalid, the process is terminated.

3. In case the request by the process is valid, a free frame is located, possibly from a
free-frame list, where the required page will be moved.

4, A new operation is scheduled to move the necessary page from disk to the specified
memory location. (This will usually block the process on an 1/0 wait, allowing some other
process to use the CPU inthe meantime.)

5. When the 1/0O operation is complete, the process's page table is updated with the
new frame number, and the invalid bit is changed to valid.

Fig. Steps in handling a page fault

=) page is on
(3) backing store

S.C

load M

&>
restart
instruction

page table

free frame — e

<D Cad
reset page bring in
table missing page
i physical)

meamaory

6. The instruction that caused the page fault must now be restarted from the beginning.
There are cases when no pages are loaded into the memory initially, pages are only loaded
when demanded by the process by generating page faults. This is called Pure Demand
Paging.

The only major issue with Demand Paging is, after a new page is loaded, the process starts
execution from the beginning. It is not a big issue for small programs, but for larger programs
it affects performance drastically.

What is dirty bit?

84
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

When a bit is modified by the CPU and not written back to the storage, it is called as a dirty

bit. This bit is present in the memory cache or the virtual storage space.

Advantages of Demand Paging:

1. Large virtual memory.

2. More efficient use of memory.

3. Unconstrained multiprogramming. There is no limit on degree of multiprogramming.
Disadvantages of Demand Paging:

1. Number of tables and amount of processor over head for handling page interrupts are greater than in
the case of the simple paged management techniques.

2. due to the lack of an explicit constraints on a jobs address space size.

Page Replacement

As studied in Demand Paging, only certain pages of a process are loaded initially into the

memory. This allows us to get more number of processes into the memory at the same time.

but what happens when a process requests for more pages and no free memory is available

to bring them in. Following steps can be taken to deal with this problem :

1. Put the process in the wait queue, until any other process finishes its execution

thereby freeing frames.

2. Or, remove some other process completely from the memory to free frames.

3. Or, find somdlipages tHat are not Beifl§) used right now, move them to the disk to get free
;%

frames. This techni@ cdlle e t and S y W6edd We have
g afty @n page cemem efficigntl
Page Replacement Algorithm "

some great algorith

Page replacement algorithms are the techniques using which an Operating System decides
which memory pages to swap out, write to disk when a page of memory needs to be
allocated. Paging happens whenever a page fault occurs and a free page cannot be used for
allocation purpose accounting to reason that pages are not available or the number of free
pages is lower than required pages.

When the page that was selected for replacement and was paged out, is referenced again, it
has to read in from disk, and this requires for I/0O completion. This process determines the
quality of the page replacement algorithm: the lesser the time waiting for page-ins, the better
is the algorithm.

A page replacement algorithm looks at the limited information about accessing the pages
provided by hardware, and tries to select which pages should be replaced to minimize the
total number of page misses, while balancing it with the costs of primary storage and
processor time of the algorithm itself. There are many different page replacement
algorithms. We evaluate an algorithm by running it on a particular string of memory
reference and computing the number of page faults,

Reference String

The string of memory references is called reference string. Reference strings are generated
artificially or by tracing a given system and recording the address of each memory reference.

85
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

The latter choice produces a large number of data, where we note two things.

. For a given page size, we need to consider only the page number, not the entire address.
. If we have a reference to a page p, then any immediately following references

to page p will never cause a page fault. Page p will be in memory after the first reference; the
immediately following references will not fault.

. For example, consider the following sequence of addresses — 123,215,600,1234,76,96
. If page size is 100, then the reference string is

1,2,6,12,0,0 First InFirst Out(FIFO)algorithm

. Oldest page in main memory is the one which will be selected for replacement.

. Easy to implement, keep a list, replace pages from the tail and add new pages at
the head.

ReferenceString:0,2,1,6,4,0,1,0,3,1,2,1

Misses 1 4) i BED &3 4 Xix X
0 4 4 4 4 2
[|
- 1
2 , 0 0 0
1 3
6 6 6 6 1 1

FaultRate=9/12 =0.75

Optimal Page algorithm
. An optimal page-replacement algorithm has the lowest page-fault rate of all

algorithms. An optimal page-replacement algorithm exists, and has been called OPT or
MIN.

86
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

. Replace the page that will not be used for the longest period of time. Use the time
whena page is to be used.

ReferenceString:0,2,1,6,4,0,1,0,3,1,2, 1

Misses SRR, X
0 0 3
4 3
2 — 2 —_— 2
1 1 1
6 4 4

FaultRate=6/12 =0.50
Least Recently Usggl (LRUY algorithrm

. Page whigjp=ing t u r ongesigiimge | in js the one
@ :II ement. a Q I I I
Dledfle ep alisy repl gell b in iAto tume.

which will be select
ReferenceString:0,2,1,6,4,0,1,0,3,1,2,1

. Easyto i

Misses b A G E8 SO0 Q) ¢ X X
0 4 4 a4 2

4 0
2 . 2 . 0 3 . 0 2 . 0
1 1 1 1 1
6 6 6 3 3

FaultRate=8 /12 =0.67
87
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Second chance page replacement algorithm
o Second Chance replacement policy is called the Clock replacement policy...
e In the Second Chance page replacement policy, the candidate pages for removal are consider in a
round robin matter, and a page that has been accessed between consecutive considerations will not be
replaced.
The page replaced is the one that - considered in a round robin matter - has not been accessed since its
last consideration.
o Implementation:
o Add a"second chance" bit to each memory frame.
o Each time a memory frame is referenced, set the "second chance™ bit to ONE (1) - this will give the
frame a second chance...
A new page read into a memory frame has the second chance bit set to ZERO (0)
o When you need to find a page for removal, look in a round robin manner in the memory frames:
If the second chance bit is ONE, reset its second chance bit (to ZERO) and continue.
If the second chance bit is ZERO, replace the page in that memory frame.
o The following figure shows the behavior of the program in paging using the Second Chance page
replacement policy:
Page request summary: O 4 1 4

(@)

—i—
Imitial
state
Pagerequestsummary: 0 4 1 42 4342404142434
(second chance !) \ (se d chance I3
) 2 — 2 - 1 2| =1 \‘2 —=) 2| == 0 \2
o] 4 1| 4 1 4 1 "4 0] ‘g4 1 "4
0 3 0 3 0 3 0 3 0 1] 0 (1]
Page request summary: 0 4 1 42434240 142434
(second chance I} \1\
o] 1 of 1/~ of 1 0 o 3 0[3
= 1 4 —1 4 0 4 1 =1 4 - 1 4
0 0 0 0 0 2 0 2 o 2 0 2

o We can see notably that the bad replacement decision made by FIFO is not present in Second
chance!!!

o There are a total of 9 page read operations to satisfy the total of 18 page requests - just as good as
the more computationally expensive LRU method !!!

88
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

NRU (Not Recently Used) Page Replacement Algorithm - This algorithm requires that each page
have two additional status bits 'R" and 'M' called reference bit and change bit respectively. The reference
bit(R) is automatically set to 1 whenever the page is referenced. The change bit (M) is set to 1 whenever
the page is modified. These bits are stored in the PMT and are updated on every memory reference.
When a page fault occurs, the memory manager inspects all the pages and divides them into 4 classes
based on R and M bits.

e Class 1: (0,0) — neither recently used nor modified - the best page to replace.

e Class 2: (0,1) — not recently used but modified - the page will need to be written out before
replacement.

o Class 3: (1,0) —recently used but clean - probably will be used again soon.

e Class 4: (1,1) — recently used and modified - probably will be used again, and write out will be
needed before replacing it.

This algorithm removes a page at random from the lowest numbered non-empty class.

Thrashing

If the number of frames allocated to a low-priority process falls below the

minimum number required by the computer architecture, we must suspend
that process’ execution. We should then page out its remaining pages, freeing
all its allocated grameyg This pipvpsion introduces a swap-in, swap-out level of
intermediate C 2

In fact, loo t not " Wfarfles. Although
it is technically e of a e mg@s to the mini-
mum, there is (1@r f agesy . INthfl process does
not have this number of frames, it will quickly page fault. At this point, it
must replace some page. However, since all its pages are in active use, it must
replace a page that will be needed again right away. Consequently, it quickly
faults again, and again, and again. The process continues to fault, replacing
pages for which it then faults and brings back in right away.

This high paging activity is called thrashing. A process is thrashing if it is
spending more time paging than executing.

A

thrashing

CPU Utilization

degree of multiprogramming

89
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

UNIT-IV

File Management: Concept of File, Access methods, File types, File operation, Directory structure,
File System structure, Allocation methods (contiguous, linked, indexed), Free-space management (bit
vector, linked list, grouping), directory implementation (linear list, hash table), efficiency and
performance.

1/0 Hardware: 1/0O devices, Device controllers, Direct memory access Principles of 1/0

Software: Goals of Interrupt handlers, Device drivers, Device independent 1/0O software.

File System
File Concept:

Computers can store information on various storage media such as, magnetic disks,
magnetic tapes, optical disks. The physical storage is converted into a logical storage
unit by operating system. The logical storage unit is called FILE. A file is a collection of
similar records. A record is a collection of related fields that can be treated as a unit by
some application program. A field is some basic element of data. Any individual field
contains a single value. A data base is collection of related data.

Student = Marks Marks Fail/Pas
KUM 86 P

LAK P
DATAFILE ™

Student name, Marks in subl, sub2, Fail/Pass is fields. The collection of fields is
called a RECORD. RECORD:

LAKSH 93 92 P
Collection of these records is called a data file.

FILEATTRIBUTES :

1. Name : A file is named for the convenience of the user and is referred by its

name. A name is usually a string of characters.

2. Identifier : This unique tag, usually a number ,identifies the file within the file system.
3. Type : Files are of so many types. The type depends on the extension of the file.

Example:

.exe Executable file

.0bj Object file

.src Source file

4, Location : This information is a pointer to a device and to the location of
the file on that device.

90
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

5. Size : The current size of the file (in bytes, words,blocks).

6. Protection : Access control information determines who can do reading,
writing, executing and so on.

7. Time, Date, User identification : This information may be kept for

creation, last modification,last use.

FILE OPERATIONS

1. Creating a file : Two steps are needed to create a file. They are:

. Check whether the space is available ornot.

. If the space is available then made an entry for the new file in the
directory. The entry includes name of the file, path of the file,etc...

2. Writing a file : To write a file, we have to know 2 things. One is name of the

file and second is the information or data to be written on the file, the system searches
the entired given location for the file. If the file is found, the system must keep a write
pointer to the location in the file where the next write is to take place.

3. Reading a file : To read a file, first of all we search the directories for the file, if
the file is found, the system needs to keep a read pointer to the location in the file where
the next read is to take place. Once the read has taken place, the read pointer is updated.

4, Repositioning Wlthln a f|Ie The dlrectory is searched for the approprlate

entry and the curiien f|| n 0| er reposm dt . This
operation is also c: @
a 0 eIe au S y fi

5. Deleting
file, then released the file space and erase the dlrectoryentry

6. Truncating a file : To truncate a file, remove the file contents only but, the
attributes are as itis.

FILE TYPES:The name of the file split into 2 parts. One is name and second is
Extension. The file type is depending on extension of the file.

File Type Extension Purpose
Executable .exe Ready to run
.com (or) ready
.bin to run
machine
Source code .C Source code in
.cpp various
.asm languages.
Object .0bj Compiled,
.0 machine
Batch .bat Commands to
.sh the command
91
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Text Axt Textual
.doc data,
docume
nts
Word processor .doc Various word
\Wp proc
1tf essor
form
ats
Library lib Libraries of
dll routines for
Print or View pdf Binary file ina
Jpg format for
Archive .arc Related files
.Zip grouped into a
Multimedia .mpeg Binary
.mp3 containing
.avi audio
or audio/video

~~P|N||S.COM

File types also can be used to indicate the internal structure of the file. The operating
system requires that an executable file have a specific structure so that it can determine
where in memory to load the file and what the location of the first instruction is. If OS
supports multiple file structures, the resulting size of OS is large. If the OS defines 5
different file structures, it needs to contain the code to support these file structures. All
OS must support at least one structure that of an executable file so that the system is able
to load and run programs.

INTERNAL FILE STRUCTURE

In UNIX OS, defines all files to be simply stream of bytes. Each byte is individually
addressable by its offset from the beginning or end of the file. In this case, the logical
record size is 1 byte. The file system automatically packs and unpacks bytes into
physical disk blocks, say 512 bytes per block.

The logical record size, physical block size, packing determines how many logical
records are in each physical block. The packing can be done by the user’s application
program or OS. A file may be considered a sequence of blocks. If each block were 512
bytes, a file of 1949 bytes would be allocated 4 blocks (2048 bytes). The last 99 bytes

92
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

would be wasted. It is called internal fragmentation all file systems suffer from internal
fragmentation, the larger the block size, the greater the internal fragmentation.
FILE ACCESS METHODS

Files stores information, this information must be accessed and read into computer
memory. There are so many ways that the information in the file can be accessed.

1. Sequential file access:

Information in the file is processed in order i.e. one record after the other.
Magnetic tapes are supporting this type of file accessing.

Eg : A file consisting of 100 records, the current position of read/write head is 45th

record, suppose we want to read the 75th

46, 47
........ 74, 75. So the read/write head traverse all the records between 45 to 75.

record then, it access sequentially from 45,

hedgining current position target record end

4:: - 100

1; inils.com

Direct access is also called relative access. Here records can read/write randomly
without any order. The direct access method is based on a disk model of a file, because
disks allow random access to any file block.

Eg : A disk containing of 256 blocks, the position of read/write head is at 95" block. The

block is to be read or write is 250" block. Then we can access the 250t block directly
without any restrictions.

Eg : CD consists of 10 songs, at present we are listening song 3, If we want to listen
song 10, we can shift to 10.

3. Indexed Sequential File access

The main disadvantage in the sequential file is, it takes more time to access a Record
.Records are organized in sequence based on a key field.

Eg:

A file consisting of 60000 records,the master index divide the total records into 6 blocks,
each block consisiting of a pointer to secondary index.The secondary index divide the
10,000 records into 10 indexes.Each index consisting of a pointer to its orginal

93
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

location.Each record in the index file consisting of 2 field, A key field and a pointer field.

logical record
lastname number

Adams
Arthur
Asher smith, john social-securityl age
Smith
index file relative file

DIRECTORY STRUCTURE
Sometimes the file system consisting of millions of files,at that situation it is very hard
to manage the files. To manage these files grouped these files and load one group into

one partition.
[| |]
IS com:
0 the fille syStem. =

OPERATION ON THE DIRECTORIES :
1. Search for a file : Search a directory structure for requiredfile.

Each partition is
organizing many f

2. createafile : New files need to be created, added to thedirectory.

3. Deleteafile : When a file is no longer needed,we want to remove it fromthe
directory.

4. List adirectory : We can know the list of files in thedirectory.

5. Renameafile When ever we need to change the name of the file,wecanchange
thename.

6. Traverse the file system : We need to access every directory and every file
with in a directory structure we can traverse the file system

binils.com

94

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

(| directory | | " | directory |)

partition A < fies > disk 2
\ | » disk 1
| | directory | partition C < 3
P files
partition B < fios
» disk 3

The various directory structures
1. Single level directory:

The directory system having only one directory,it consisting of
all files some times it is said to be root directory.

SINGLE LEVEL DIRECTORY

E.g :- Here directory containing 4 files (A,B.C,D).the advantage of the scheme
is its simplicity and the ability to locate files quickly.The problem is different
users may accidentally use the same names for their files.

E.g :- If user 1 creates a files caled sample and then later user 2 to creates a file
called sample,then user2’s file will overwrite user 1 file.Thats why it is not used

in the multi user system.

2. Two level directory:

The problem in single level directory is different user may be accidentally use

binils.com

95

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

the same name for their files. To avoid this problem each user need a private
directory,

Names chosen by one user don't interfere with names chosen by a different
user.

Root directory

‘ User 1 ‘ User2 user 3

Root directory is the first level directory.user 1,user2,user3 are user level of
directory A,B,C are files.

3. Treestructured directory:

Two level direct S amg DUt i
satisfactory for u ’Ela ﬁ'u]w iles. To ‘vm m
directory and load

have as many directories are needed.

Root directary

‘ User 1 ‘ ‘ User 2 ‘ ‘ user 3 ‘
Sub-sub directory
o ° Sub directory
Sub-sub Sub-sub
directory directory Sub-sub S'_"b_s"'b
directory directory

96
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

There are 2 types of path

1. Absoulte path

2. Relative path

Absoulte path : Begging with root and follows a path down to specified
files giving directory, directory name on the path.

Relative path : A path from current directory.

4. Acyclic graphdirectory

Multiple users are working on a project, the project files can be stored in a
comman sub-directory of the multiple users. This type of directory is called
acyclic graph directory .The common directory will be declared a shared
directory. The graph contain no cycles with shared files, changes made by one
user are made visible to other users.A file may now have multiple absolute paths.
when shared directory/file is deleted, all pointers to the directory/ files also to be
removed.

5. General graph directory:
When we add links to an existing tree structured directory, the tree

. . N
structure is destro esu InﬁSIipI g§tructt

Root directory

User 1 ‘ User 2 ‘ user 3
]

Sub-sub directory

o ° Sub directory
Sub-sub Sub-sub
directory directory Sub-sub Sf"b_SUb
directory directory

Advantages :- Traversing is easy. Easy sharing is possible.

binils.com

97

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

File system structure:

Disk provides the bulk of secondary storage on which a file system is maintained.
They have 2 characteristics that make them a convenient medium for storing
multiple files.

1. A disk can be rewritten in place. It is possible to read a block from
the disk, modify the block, and write it back into same place.

2. A disk can access directly any block of information it contains.

Application Programs

Logical File System

File Organisation Module

Basic File System

inis.com

Devices

I/0 Control:_ consists of device drivers and interrupt handlers to transfer
information between the main memory and the disk system. The device driver
writes specific bit patterns to special locations in the I/O controller’s memory to
tell the controller which device location to act on and what actions to take.

The Basic File System needs only to issue commands to the appropriate device
driver to read and write physical blocks on the disk. Each physical block is
identified by its numeric disk address (Eg. Drive 1, cylinder 73, track2, sector
10).

The File Organization Module knows about files and their logical blocks and
physical blocks. By knowing the type of file allocation used and the location of
the file, file organization module can translate logical block address to physical
addresses for the basic file system to transfer. Each file’s logical blocks are
numbered from 0 to n. so, physical blocks containing the data usually do not
match the logical numbers. A translation is needed to locate each block.

binils.com

98

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

The Logical File System manages all file system structure except the actual data
(contents of file). It maintains file structure via file control blocks. A file control
block (inode in Unix file systems) contains information about the file, ownership,
permissions, location of the file contents.

File System Implementation:
Overview:

A Boot Control Block (per volume) can contain information needed by the system
to boot an OS from that volume. If the disk does not contain an OS, this block can
be empty.

A Volume Control Block (per volume) contains volume (or partition) details, such
as number of blocks in the partition, size of the blocks, a free block, count and
free block pointers, free FCB count, FCB pointers.

A Typical File Control Block

file permggsions

file date

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

A Directory Structure (per file system) is used to organize the files. A PER-FILE
FCB contains many details about the file.

A file has been created; it can be used for 1/0. First, it must be opened. The open()
call passes a file name to the logical file system. The open() system call First
searches the system wide open file table to see if the file is already in use by another
process. If it is ,a per process open file table entry is created pointing to the existing
system wide open file table. If the file is not already open, the directory structure is
searched for the given file name. Once the file is found, FCB is copied into a system

binils.com

99

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

wide open file table in memory. This table not only stores the FCB but also tracks
the number of processes that have the file open.

Next, an entry is made in the per — process open file table, with the pointer to the
entry in the system wide open file table and some other fields. These are the fields
include a pointer to the current location in the file (for the next read/write operation)
and the access mode in which the file is open. The open () call returns a pointer to
the appropriate entry in the per-process file system table. All file operations are
preformed via this pointer. When a process closes the file the per- process table
entry is removed. And the system wide entry open count is decremented. When all
users that have opened the file close it, any updated metadata is copied back to the
disk base directory structure. System wide open file table entry is removed.

System wide open file table contains a copy of the FCB of each open

file, other information. Per process open file table, contains a pointer

to the appropriate entry in the system wide open file

table, other information.

|
> G:J
directory s

structure

5]
\
| L1 L
r l | : data blocks
read (index) | '\\l:]
per-process system-wide file-control block
open-file table open-file table
user space kernel memory secondary storage
(b)
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Allocation Methods — Contiguous

An allocation method refers to how disk blocks are allocated for files:

Contiguous allocation — each file occupies set of contiguous blocks o Best
performance in most cases

0 Simple — only starting location (block #) and length (number ofblocks) are required
0 Problems include finding space for file, knowing file size, external
fragmentation, need for compaction off-line (downtime) or on-line

T = directory
count file start length
DESaEH 2 1 '3] count (o) 2
f tr 14 3
4] 5 iG] - 1O o
81 o[110111 s = %
tr f 6 2
12113 J1alJ1s5]
16 117[Ji1sJ19o[]
mail
zo[Jz1[Jz2z2[l1=23[]
24 les[Jze127[]

28[:]29l:“§t0 31lf] "
Linked n I I I

Linked allocation — each file a linked list

of blocks o File ends at nil pointer

No external fragmentation

Each block contains pointer to next block

No compaction, external fragmentation

Free space management system called when new block needed
Improve efficiency by clustering blocks into groups but
increases internal fragmentation

0 Reliability can be a problem

0 Locating a block can take many 1/Os

and disk seeks FAT (File Allocation

Table) variation

0 Beginning of volume has table, indexed by block number
0 Much like a linked list, but faster on disk and cacheable

O O O O O

101
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

el 1 71

directory

file start end
jeep o 25

81 10 < -
12 13 J14 15[]
16 178119]

20[]21 2 1=23[]

2a_ 125 261271

28 _J2o[jsol 31 []
S g

File-Allocation Table

directory entry

| test | - - -

| 217 —

nNname

start block

— 217

binils.c

Indexed allocation

0 Each file has its own index block(s) of pointers to its data blocks

o] 1[:\2[3 <

no. of disk blocks —1

directory
file index block
jeep 1 l9

41 s[] =l |
g1 9o

16)
20 J21[J=22 <IN

24 J2s[26 J27[]

28 129]380 181[]
< L

——

binils.com

e18

I3

FAT

102

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Free-Space Management

File system maintains free-space list to track available
blocks/clusters Linked list (free list)

0 Cannot get contiguous space easily

0 No waste of space

0 No need to traverse the entire list

1. Bitmap or Bit vector -
A Bitmap or Bit Vector is series or collection of bits where each bit corresponds to a disk block. The bit
can take two values: 0 and 1: O indicates that the block is allocated and 1 indicates a free block.
The given instance of disk blocks on the disk in Figure 1 (where green blocks are allocated) can be
represented by a bitmap of 16 bits as: 0000111000000110.

Advantages —

e Simple to understand.

« Finding the first free block is efficient. It requires scanning the words (a group of 8 bits) in a bitmap
for a non-zero word. (A 0-valued word has all bits 0). The first free block is then found by scanning for
the first 1 bit in the non-zero word.

Blockl| BlockZ| Block3

Block4 BlocksS glockS [}

aINils.com

EBlockl3 Elockld Blockls

Block7| |Block8

EBlockl? EBElockll

Elocklg

Figure - 1

Linked Free Space List on Disk

Tree-aspace list head

o - =2
a 70 T PR |
s T Sl Tiol L

|
]
|
12 T2t 014 1150]
o T 3 e B i = e o 1~
I
1
|

=20 21| 2= =23
=24a | |125] 26 =27

2| |z ja3cl_l=1|

In this approach, the free disk blocks are linked together i.e. a free block contains a pointer to the next
free block. The block number of the very first disk block is stored at a separate location on disk and is

also cached in memory.

103
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

Grouping

Modify linked list to store address of next n-1 free blocks in first free block, plus

a pointer to next block that contains free-block-pointers (like this one).

An advantage of this approach is that the addresses of a group of free disk blocks
can be found easily

Counting

Because space is frequently contiguously used and freed, with contiguous- allocation
allocation, extents, or clustering.

Keep address of first free block and count of following free blocks. Free space list
then has entries containing addresses and counts.

Directory Implementation

1. Linear List

In this algorithm, all the files in a directory are maintained as singly lined list. Each file contains the
pointers to the data blocks which are assigned to it and the next file in the directory.

Characteristics

1. When a new file is created, then the entire list is checked whether the new file name is matching to a
existing file name or not. In case, it doesn't exist, the file can be created at the beginning or at the end.
Therefore, searching for a unique name is a big concern because traversing the whole list takes time.

2. The list needs to be traversed in case of every operation (creation, deletion, updating, etc) on the
files therefore the systems become inefficient.

4 |
— | File name 1 | Flle name 2 | >
Pointers to Pointers to
data blocks data blocks
Linear List

2. Hash Table

To overcome the drawbacks of singly linked list implementation of directories, there is an alternative
approach that is hash table. This approach suggests to use hash table along with the linked lists.

A key-value pair for each file in the directory gets generated and stored in the hash table. The key can
be determined by applying the hash function on the file name while the key points to the corresponding
file stored in the directory.

Now, searching becomes efficient due to the fact that now, entire list will not be searched on every
operating. Only hash table entries are checked using the key and if an entry found then the
corresponding file will be fetched using the value.

104
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

—{ File name 1 | » File name 2 >
! T
Pointers to Pointers to
data blocks data blocks

Key 1 Walue 1

Key2 | value2

Hash_Function(file_name) = key

Key n Walue n
Hash Table

Value ——» File

Efficiency and Performance

Efficiency dependent on:

e Disk allocation and directory algorithms

e Types of data kept in file’s directory entry

Performance

e Disk cache — separate section of main memory for frequently used blocks
e free-behind and read-ahead — techniques to optimize sequential access

e improve PC perf rmanc@by dedicatmg ection of memory as virtual disk, or RAM disk

I/0 Hardware: 1/¢ @ EI I l ! S - O I I I

Input/output devices are the devices that are responsible Tor the Input/output operations in a computer
system.

Basically there are following two types of input/output devices:

o Block devices

e Character devices

Block Devices

A block device stores information in block with fixed-size and own-address.

It is possible to read/write each and every block independently in case of block device.

In case of disk, it is always possible to seek another cylinder and then wait for required block to rotate
under head without mattering where the arm currently is. Therefore, disk is a block addressable device.
Character Devices

A character device accepts/delivers a stream of characters without regarding to any block structure.
Character device isn't addressable.

Character device doesn't have any seek operation.
There are too many character devices present in a computer system such as printer, mice, rats, network
interfaces etc. These four are the common character devices.

105
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

DeviceControllers

Device drivers are software modules that can be plugged into an OS to handle a particular device.
Operating System takes help from device drivers to handle all 1/0O devices.

The Device Controller works like an interface between a device and a device driver. 1/O units
(Keyboard, mouse, printer, etc.) typically consist of a mechanical component and an electronic
component where electronic component is called the device controller.

There is always a device controller and a device driver for each device to communicate with the
Operating Systems. A device controller may be able to handle multiple devices. As an interface its
main task is to convert serial bit streamto block of bytes, perform error correction as necessary.

Any device connected to the computer is connected by a plug and socket, and the socket is connected to
a device controller. Following is a model for connecting the CPU, memory, controllers, and 1/O devices
where CPU and device controllers all use a common bus for communication.

Memory Monitor Keyboard USB Drive Disk Drive
cPU Memory Video Keyboard uss Disk

Controller Controller Controller Controller Controller

-~

i u v

- . 8 5

+ & <
Synchronousvsasynchronousl
e Synchronous I/O —In thimnlc &tiw \@/ ;m
e Asynchronous I/O — 1/O proceeds concurrently with CPU execution
Communicationto I/ODevices
The CPU must have a way to pass information to and from an 1/0 device. There are three approaches
available to communicate with the CPU and Device.
e Special Instruction 1/0
e Memory-mapped 1/0
e Direct memory access (DMA)
Special Instruction 1/0
This uses CPU instructions that are specifically made for controlling 1/O devices. These instructions
typically allow data to be sent to an I/O device or read froman 1/O device.
Memory-mapped 1/0
When using memory-mapped 1/0O, the same address space is shared by memory and 1/O devices. The
device is connected directly to certain main memory locations so that 1/0 device can transfer block of
data to/from memory without going through CPU.

106
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

I/O Commands

1/O Device

cPU |
Data Data
-

Memory | -&

While using memory mapped 10, OS allocates buffer in memory and informs 1/0O device to use that
buffer to send data to the CPU. /O device operates asynchronously with CPU, interrupts CPU when
finished.

The advantage to this method is that every instruction which can access memory can be used to
manipulate an 1/0 device. Memory mapped 10 is used for most high-speed 1/O devices like disks,
communication interfaces.

DirectMemoryAccess(DMA)

Slow devices like keyboards will generate an interrupt to the main CPU after each byte is transferred. If
a fast device such as a disk generated an interrupt for each byte, the operating system would spend most
of its time handling these interrupts. So a typical computer uses direct memory access (DMA) hardware

to reduce this overhead. . -
(e P ants 1/Qmodule, 3
nt® D ulgyitself corirols @
isjorlly irfo Wediaigthe Beginn d\end

uthori read from or write to
e @f data etween main memory
e t@nsf@r and interrupted only

Direct Memory A

memory without i

and the 1/0 device

after entire block has been transferred.

Direct Memory Access needs a special hardware called DMA controller (DMAC) that manages the
data transfers and arbitrates access to the system bus. The controllers are programmed with source and
destination pointers (where to read/write the data), counters to track the number of transferred bytes,
and settings, which includes I/0 and memory types, interrupts and states for the CPU cycles.

| _

" i] CcPU Memory
l Data Bus
- > DMA
| — T
Device ‘ Device Device
Controller ‘ ‘ Controller Controller
USB Drive ‘ Disk Printer
107

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

The operating system uses the DMA hardware as follows —

Step Description

1 Device driver is instructed to transfer disk datato a buffer address X.

2 Device driver then instruct disk controller to transfer data to buffer.

3 Disk controller starts DMA transfer.

4 Disk controller sends each byte to DMA controller.

5 DMA controller transfers bytes to buffer, increases the memory address,

decreases the counter C until C becomes zero.

6 When C becomes zero, DMA interrupts CPU to signal transfer
completion.

I/0O software is often organized in the following layers —

e User Level Libraries — This provides simple interface to the user program to perform input and
output. For example, stdio is a library provided by C and C++ programming languages.

o Kernel Level Modules — This pmeviges device driver to interact with the device controller and
device independe 8 u diby ice drivgrs®

e Hardware — @ {Im lt I are a@aromﬂch interact with the
device drivers and ¥iak€s MardWvare®aliVe. u

A key concept in the design of 1/0 software is that it should be device independent where it should be
possible to write programs that can access any 1/O device without having to specify the device in
advance. For example, a program that reads a file as input should be able to read a file on a floppy disk,
on a hard disk, or on a CD-ROM, without having to modify the program for each different device.

108
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

-

User — User I/O Libraries

Device Independent 1/O

Kernel ~
Device Driver Device Driver Device Driver
Device Controller Device Controller Device Controller
| ! .
Hardware - l J
|
USB Drive Disk Printer

DeviceDrivers

Device drivers are software modules that can be plugged into an OS to handle a particular device.
Operating System takes help from device drivers to handle all 1/0 devices. Device drivers encapsulate
device-dependent code and implement a standard interface in such a way that code contains device-
specific register rgads/wriggs. Devicggdriver, is generally written by the device's manufacturer and

delivered along wilhdiag dayi -RO
ti llowlingl jols ‘ OI I I
hellevi€e ihd S 0 t.

A device driver pe @
o To accept reques

o Interact with the device controller to take and give 1/O and perform required error handling

e Making sure that the request is executed successfully

How a device driver handles a request is as follows: Suppose a request comes to read a block N. If the
driver is idle at the time a request arrives, it starts carrying out the request immediately. Otherwise, if
the driver is already busy with some other request, it places the new request in the queue of pending
requests.

J,

Interrupthandlers
An interrupt handler, also known as an interrupt service routine or ISR, is a piece of software or more

specifically a callback functions in an operating system or more specifically in a device driver, whose
execution is triggered by the reception of an interrupt.

When the interrupt happens, the interrupt procedure does whatever it has to in order to handle the
interrupt, updates data structures and wakes up process that was waiting for an interrupt to happen.

The interrupt mechanism accepts an address — a number that selects a specific interrupt handling
routine/function from a small set. In most architecture, this address is an offset stored in a table called
the interrupt vector table. This vector contains the memory addresses of specialized interrupt handlers.
Device-Independentl/OSoftware

The basic function of the device-independent software is to performthe 1/O functions that are common
to all devices and to provide a uniform interface to the user-level software. Though it is difficult to

109
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

www.binils.com

Anna University | Polytechnic | Schools

write completely device independent software but we can write some modules which are common

among all the devices. Following is a list of functions of device-independent 1/0 Software —

o Uniform interfacing for device drivers

o Device naming - Mnemonic names mapped to Major and Minor device numbers

o Device protection

« Providing a device-independent block size

o Buffering because data coming off a device cannot be stored in final destination.

o Storage allocation on block devices

o Allocation and releasing dedicated devices

o Error Reporting

User-Spacel/OSoftware

These are the libraries which provide richer and simplified interface to access the functionality of the
kernel or ultimately interactive with the device drivers. Most of the user-level 1/0 software consists of
library procedures with some exception like spooling system which is a way of dealing with dedicated
I/O devices in a multiprogramming system.

I/O Libraries (e.g., stdio) are in user-space to provide an interface to the OS resident device-
independent 1/0 SW. For example putchar(), getchar(), printf() and scanf() are example of user level
I/O library stdio available in C programming.

Kernell/OSubsystem

Kernel 1/0 Subsystem is reﬂ)onsible to provide many services related to 1/0. Following are some of the

services provided. -

e Scheduling — @ ulesia et @f equestfito det @ ood order in which to execute
them. When an apphicat sslles aol /O Systemigal giest is placall on the queue for that
device. The Kernel 1/0 scheduler rearranges the order of the queue to improve the overall system
efficiency and the average response time experienced by the applications.

e Buffering — Kernel I/O Subsystem maintains a memory area known as buffer that stores data while
they are transferred between two devices or between a device with an application operation. Buffering
is done to cope with a speed mismatch between the producer and consumer of a data stream or to adapt
between devices that have different data transfer sizes.

e Caching — Kernel maintains cache memory which is region of fast memory that holds copies of
data. Access to the cached copy is more efficient than access to the original.

e Spooling and Device Reservation — A spool is a buffer that holds output for a device, such as a
printer, that cannot accept interleaved data streams. The spooling system copies the queued spool files
to the printer one at a time. In some operating systems, spooling is managed by a system daemon
process. Inother operating systems, it is handled by an in kernel thread.

e Error Handling — An operating system that uses protected memory can guard against many kinds
of hardware and application errors.

110
binils.com

Anna University, Polytechnic & Schools

http://www.binils.com/

	UNIT-I
	Operating system performs the following functions:
	Computer System Architecture
	Operating System – Structure Operating System Structure
	Operating-system Operations

	binils.com
	Personal-Computer Systems(PCs)
	Special purpose systems
	b) Multimedia Systems
	c) Hand held Systems
	Operating System Services
	System Calls
	Example of Standard API
	Standard C Library Example
	Types of System Calls
	Process control
	File management
	Device management
	Information maintenance
	Communications

	binils.com
	binils.com
	System Programs
	UNIX
	Micro kernel System Structure
	Modules

	binils.com
	binils.com
	Operating-System Debugging
	Process
	Differences between Process and Program
	Diagram of process state
	Process Control Block:
	Process Control Block
	Threads:
	Thread States:
	Eg: Word processor.
	Differences between Process and Thread
	Disadvantages
	Disadvantages

	binils.com
	binils.com
	binils.com
	UNIT-II
	PROCESS SCHEDULING:
	Types of schedulers
	2. Short term scheduler:

	SCHEDULING CRITERIA:
	TAT = Waiting time in ready queue + executing time + waiting time in waiting queue for I/O.

	CPU SCHEDULINGALGORITHMS:
	Average turn around time:
	Ave
	Advantages: Easy to Implement, Simple.
	Advantages : Least average waiting time Least average turn around time Least average response time
	Disadvantages:

	4)ROUND ROBIN SCHEDULING ALGORITHM :
	AVERAGE WAITING TIME :
	AVERAGE TURN AROUND TIME :

	binils.com
	AVERAGE WAITING TIME :
	AVERAGE TURN AROUND TIME :
	Disadvantage: Starvation
	Multiple – processor scheduling:
	1) Approaches to multiple-processor scheduling a)Asymmetric multiprocessing
	b)Symmetric multiprocessing:
	2) Processor Affinity
	a) Soft affinity:
	b) Hard affinity:
	3) Load balancing:
	Push migration:
	Pull migration:
	Real time scheduling:
	Earliest Deadline First (EDF) Scheduler Algorithm
	Inter Process communication:
	The critical section problem
	A solution to the critical section problem must satisfy the following 3 requirements: 1.mutual exclusion:
	2. Progress:
	3. Bounded wait:
	Critical section:
	Peterson’s solution:
	Disable interrupts Critical section Enable interrupts

	do { acquire lock critical section release lock remainder section
	• Definition:
	Algorithm for TestAndSet
	Swap instruction can also be used for mutual exclusion Definition
	Algorithm
	lock=false key=true
	lock=true key=false
	lock=true key=true
	Semaphores
	2) signaloperation:
	Problems:
	2) Starvation
	3) Priority inversion
	Classic problems of synchronization
	The structure of the producer process
	The structure of the consumer process
	2) The readers-writers problem
	First readers-writers problem
	Second readers-writes problem:
	The structure of a writer process
	The structure of a reader process
	3) Dining Philosophers problem
	What if all the 5 philosophers decide to eat at the same time ?

	The structure of Philosopher i:
	Several remedies:

	MONITORS
	Structure:
	Schematic view of a Monitor
	wait(condition variable) signal(condition variable)

	if(count==MAX) wait(full) ; insert_item(item); count=count+1; if(count==1) signal(empty);
	procedure remove()
	if(count==0) wait(empty); remove_item(item); count=count-1; if(count==MAX-1) signal(full);
	procedure producer()
	producerconsumer.insert(item);
	procedure consumer()
	producerconsumer.remove();
	Eat noodles ()
	Resuming processes within a monitor
	if(inuse) //is resource inuse
	wait(available); wait until available issignaled
	inuse=true; //indicate resource is now inuse
	monitor entry void return resource()
	inuse=false; //indicate resource is not in use signal(available); //signal a waiting process to proceed

	binils.com
	UNIT-III
	Logical And Physical Addresses
	Memory-Management Unit (MMU)
	Base and Limit Registers

	binils.com
	Binding of Instructions and Data to Memory

	binils.com
	Dynamic Loading
	Dynamic Linking
	Swapping
	Schematic View of Swapping
	Hardware Support for Relocation and Limit Registers

	binils.com
	Internal fragmentation
	External fragmentation

	binils.com
	Paging Hardware
	Free Frames
	Implementation of Page Table
	Paging Hardware With TLB

	Shared Pages Shared code
	Private code and data

	Structure of the Page Table
	Hierarchical Page Tables

	Two-Level Paging Example
	Three-level Paging Scheme
	Hashed Page Table
	Inverted Page Table

	binils.com
	Segmentation
	Segmentation Architecture

	binils.com
	Segmentation with paging
	Virtual Memory
	Benefits of having Virtual Memory :
	Demand Paging

	What is dirty bit?
	Advantages of Demand Paging:
	Disadvantages of Demand Paging:
	Page Replacement

	Page Replacement Algorithm
	Least Recently Used (LRU) algorithm
	Second chance page replacement algorithm
	UNIT-IV
	File Concept:

	binils.com
	FILE ATTRIBUTES :
	FILE OPERATIONS
	FILE STRUCTURE
	INTERNAL FILE STRUCTURE
	FILE ACCESS METHODS
	1. Sequential file access:
	3. Indexed Sequential File access

	DIRECTORY STRUCTURE
	OPERATION ON THE DIRECTORIES :
	1. Single level directory:

	binils.com
	2. Two level directory:
	3. Tree structured directory:
	4. Acyclic graphdirectory
	5. General graph directory:
	File system structure:
	File System Implementation:

	binils.com
	binils.com
	Allocation Methods – Contiguous

	binils.com
	File-Allocation Table
	Free-Space Management
	Advantages –

	binils.com
	Linked Free Space List on Disk
	Grouping
	Counting
	Directory Implementation
	Characteristics

