POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more... Available @

www.binils.com

		Reg. No. :			
	Quest	tion Paper	Code : 11	226	
	M.E./M.Tech.	DEGREE EXAM	INATIONS, AP	RIL/MAY 2023.	
		Elec	tive		
		Embedded Syste	em Technologies		
	PS 4092 – REN	EWABLE ENER			
		non to: M.E. Powe			
		(Regulation		Deare mad explain	
Time : Th	ree hours			Maximum: 100 r	narks
		Answer ALI			
		PART A — (10			
	Application of the second	and why it is im			67 - 1
	ine photovoltaic	integrating rene	wable energy wi	th grid.	
		nce between PV n	nodule and PV a	rray	
		ded for wind ener			
		ciency limit in wi			
7. List	the demerits of	tracking the PV	panel using MP	Р.	
8. Exp	lain the principl	le behind MPPT t	racking in wind	energy system.	
9. List	any two energy	storage system.			
10. Mer	ntion the need fo	or hybrid system.			
		PART B — (5 × 1	3 = 65 marks)		
11. (a)	Explain in det	tail the impacts of	f renewable ener	gy penetration to gr	d.
			r		
(b)	Explain the s renewable ene		nverters [boost	& Buck & buck boo	st] in

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more...

16.

(a)

www.binils.com

Available @

Draw the equivalent circuit of PV cell and explain its characteristics with required sketch. Or Explain in detail the impact of insolation, temperature and shading effect (b) on performance of PV system. Explain the operation and control of PMSG used in wind energy system 13. (a) with required sketch. Or Describe with the help of neat diagram the working of self excited (b) induction generator in wind energy system. Draw and explain the flow chart of any one MPPT used in solar PV 14. (a) System. Or Illustrate the need for MPPT in wind energy system and explain any one MPPT in wind energy system. Explain the features of hybrid energy storage system. (a) Explain in detail the coordinated operation of wind PV hybrid system with suitable block diagram.

Battery sizing, Days of autonomy of your own]. Draw the final sketch.

Or

Design a standalone PV system for your home. [Select load, PV sizing,

PART C — $(1 \times 15 = 15 \text{ marks})$

(b) Justify the requirements of selecting a boost, buck, buck boost converters in renewable energy system with suitable application scenario.

11226