
Anna University, Polytechnic & Schools
                          binils.com1 

 

Unit 1 

Introduction 

 

Introduction to DBMS 

 DBMS stands for Database Management System.  

 DBMS = Database + Management System.  

 Database is a collection of data and Management System is a set of programs 

to store and retrieve those data.  

 DBMS is a collection of inter-related data and set of programs to store & 

access those data in an easy and effective manner. 

DBMS:- 

 DBMS is a software that is used to manage the data. Some of the popular DBMS 

softwares are: MySQL, IBM Db2, Oracle, 

 DBMS provides an interface to the user so that the operations on database can 

be performed using the interface. 

 DBMS secure the data, that is the main advantage of DBMS over file system. 

 DBMS also secures the data from unauthorised access as well as corrupt data 

insertions. It allows multiple users to access data simultaneously while 

maintaining the data consistency and data integrity. 

DBMS allows following operations to the authorized users of the database: 
 

Data Definition: Creation of table, table schema creation, removal of table 

definition etc. comes under data definition. It is basically a layout of the table and 

their relation with the other tables in the database. This allows to properly structure 

the data in such a way so that the data that is related or dependent on other data in real 

world can be represented the same way in database. 

 

Data Modification: DBMS allows users to insert, update and delete the data 

from the tables. These tables contains rows and columns, where row represents a 

record of data while column represents attributes of the records. You can also bulk 

update the several records in DBMS with a single click. 
 

Data Retrieval: DBMS allows users to fetch data from the database. Searching 

and retrieval of data is fast in DBMS. The size of the database doesn’t impact this 

operation, on the other hand in file system, the size of the data can hugely impact the 

search operation efficiency. 
 

User administration: DBMS also allows user management such as organizing 

users in different groups with different access levels. Granting users access to certain 

tables in database, revoking access from certain users etc. This allows the admin of the 

database to efficiently manage the access to the database and prevent unauthorised 

access to the databases. 

 

 

 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com2 

 

 

Need of DBMS 
 

Database systems are basically developed for large amount of data. When 

dealing with huge amount of data, there are two things that require 

optimization: Storage of data and retrieval of data. 
 

Storage: According to the principles of database systems, the data is stored in 

such a way that it acquires lot less space as the redundant data (duplicate data) has 

been removed before storage. Let’s take a layman example to understand this: 

In a banking system, suppose a customer is having two accounts, one is saving 

account and another is salary account. Let’s say bank stores saving account data at one 

place (these places are called tables we will learn them later) and salary account data 

at another place, in that case if the customer information such as customer name, 

address etc. are stored at both places then this is just a wastage of storage 

(redundancy/ duplication of data), to organize the data in a better way the information 

should be stored at one place and both the accounts should be linked to that 

information somehow. The same thing we achieve in DBMS. 
 

Fast Retrieval of data: Along with storing the data in an optimized and 

systematic manner, it is also important that we retrieve the data quickly when needed. 

Database systems ensure that the data is retrieved as quickly as possible. 

 

Purpose of Database Systems 

 

The main purpose of database systems is to manage the data. Consider a 

university that keeps the data of students, teachers, courses, books etc. To manage this 

data we need to store this data somewhere where we can add new data, delete unused 

data, update outdated data, retrieve data, to perform these operations on data we need 

a Database management system that allows us to store the data in such a way so that 

all these operations can be performed on the data efficiently. 

 

DBMS applications 
 

Applications where we use Database Management Systems are: 

 Telecom: There is a database to keeps track of the information regarding calls 

made, network usage, customer details etc. Without the database systems it is 

hard to maintain that huge amount of data that keeps updating every 

millisecond. 

 Industry: Where it is a manufacturing unit, warehouse or distribution centre, 

each one needs a database to keep the records of ins and outs. For example 

distribution centre should keep a track of the product units that supplied into the 

centre as well as the products that got delivered out from the distribution centre 

on each day; this is where DBMS comes into picture. 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com3 

 

 Banking System: For storing customer info, tracking day to day credit and debit 

transactions, generating bank statements etc. All this work has been done with 

the help of Database management systems. Also, banking system needs security 

of data as the data is sensitive, this is efficiently taken care by the DBMS 

systems. 

 Sales: To store customer information, production information and invoice 

details. Using DBMS, you can track, manage and generate historical data to 

analyse the sales data. 

 Airlines: To travel though airlines, we make early reservations, this reservation 

information along with flight schedule is stored in database. This is where the 

real-time update of data is necessary as a flight seat reserved for one 

passenger should not be allocated to another passenger, this is easily handled 

by the DBMS systems as the data updates are in real time and fast. 

 Education sector: Database systems are frequently used in schools and colleges 

to store and retrieve the data regarding student details, staff details, course 

details, exam details, payroll data, attendance details, fees details etc. There is a 

large amount of inter-related data that needs to be stored and retrieved in an 

efficient manner. 

 Online shopping: You must be aware of the online shopping websites such as 

Amazon, Flipkart etc. These sites store the product information, your addresses 

and preferences, credit details and provide you the relevant list of products based 

on your query. All this involves a Database management system.  Along with 

managing the vast catalogue of items, there is a need to secure the user 

private information such as bank & card details. All this is taken care of by 

database management systems. 

 

Advantages and Disadvantages of DBMS: 
DBMS vs file System 

 

Drawbacks of File system 

 Data redundancy:  

o Data redundancy refers to the duplication of data,  

o Need more storage 

o Data redundancy often leads to higher storage costs  

o poor access time. 

 Data inconsistency:  

o Data redundancy leads to data inconsistency, lets take the same example 

that we have taken above, a student is enrolled for two courses and we 

have student address stored twice, now lets say student requests to 

change his address, if the address is changed at one place and not on all 

the records then this can lead to data inconsistency. 

 Data Isolation:  

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com4 

 

o Because data are scattered in various files, and files may be in different 

formats, writing new application programs to retrieve the appropriate 

data is difficult. 

 Dependency on application programs:  

o Changing files would lead to change in application programs. 

 Atomicity issues:  

o Atomicity of a transaction refers to “All or nothing”, which means either 

all the operations in a transaction executes or none. 

o It is difficult to achieve atomicity in file processing systems. 

 Data Security:  

o Data should be secured from unauthorised access,  

o for example a student in a college should not be able to see the payroll 

details of the teachers, such kind of security constraints are difficult to 

apply in file processing systems. 

 

Advantage of DBMS over file system 

There are several advantages of Database management system over file system. Few 

of them are as follows: 

 No redundant data:  

o Redundancy removed by data normalization. No data duplication saves 

storage and improves access time.  

 Data Consistency and Integrity:  

o As we discussed earlier the root cause of data inconsistency is data 

redundancy, since data normalization takes care of the data redundancy, 

data inconsistency also been taken care of as part of it 

 Data Security:  

o It is easier to apply access constraints in database systems so that only 

authorized user is able to access the data.  

o Each user has a different set of access thus data is secured from the 

issues such as identity theft, data leaks and misuse of data. 

 Privacy:  

o Limited access means privacy of data. DBMS can grant and revoke 

access to the database on user level that ensures who is accessing which 

data. It also helps user to manage the constraints on database, this 

ensures which type of data can be entered into the table.  

 Easy access to data –  

o Database systems manages data in such a way so that the data is easily 

accessible with fast response times. Even if the database size is huge, the 

DBMS can still provide faster access and updation of data. 

 Easy recovery:  

o Since database systems keeps the backup of data, it is easier to do a full 

recovery of data in case of a failure. This is very useful especially for 

almost all the organizations, as the data maintained over time should not 

be lost during a system crash or failure. 

 Flexible:  

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com5 

 

o Database systems are more flexible than file processing systems. DBMS 

systems are scalable,  

o The database size can be increased and decreased based on the amount 

of storage required.  

o It also allows addition of additional tables as well as removal of existing 

tables without disturbing the consistency of data. 

 

Disadvantages of DBMS 

 DBMS implementation cost is high compared to the file system 

 Complexity: Database systems are complex to understand 

 Performance: Database systems are generic, making them suitable for various 

applications. However this feature affect their performance for some 

applications 

 
View of Data  

View of data in DBMS 

 Abstraction is one of the main features of database systems.  

 Hiding irrelevant details from user and providing abstract view of data to users, 

helps in easy and efficient user-database interaction.  

 The top level of that architecture is “view level”.  

 The view level provides the “view of data” to the users and hides the irrelevant 

details such as data relationship, database schema, constraints, security etc 

from the user. 

To fully understand the view of data, you must have a basic knowledge of data 

abstraction and instance & schema.  

Data abstraction:Database systems are made-up of complex data structures. To ease 

the user interaction with database, the developers hide internal irrelevant details from 

users. This process of hiding irrelevant details from user is called data abstraction. 

1. Instance and schema:  

 Design of a database is called the schema.  

 Schema is of three types: Physical schema, logical schema and view 

schema.  

 The data stored in database at a particular moment of time is called 

instance of Database.  

 Database schema defines the variable declarations in tables that belong to 

a particular database; the value of these variables at a moment of time is 

called the instance of that database. 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com6 

 

Three levels of abstraction 

 
Physical level: This is the lowest level of data abstraction. It describes how data is 

actually stored in database. You can get the complex data structure details at this level. 

Logical level: This is the middle level of 3-level data abstraction architecture. It 

describes what data is stored in database. 

View level: Highest level of data abstraction. This level describes the user 

interaction with database system. 
 

Example: Let’s say we are storing customer information in a customer table. 

At physical level these records can be described as blocks of storage (bytes, gigabytes, 

terabytes etc.) in memory. These details are often hidden from the programmers. 

At the logical level these records can be described as fields and attributes along with 

their data types, their relationship among each other can be logically implemented. 

The programmers generally work at this level because they are aware of such things 

about database systems. 

At view level, user just interact with system with the help of GUI and enter the details 

at the screen, they are not aware of how the data is stored and what data is stored; such 

details are hidden from them. 

 

Instance and schema in DBMS 

DBMS Schema 

Definition of schema: Design of a database is called the schema. For example: 

An employee table in database exists with the following attributes: 
EMP_NAME  EMP_ID   EMP_ADDRESS  EMP_CONTACT 

------------------------------------ 

This is the schema of the employee table. Schema defines the attributes of tables in 

the database. Schema is of three types: Physical schema, logical schema and view 

schema. 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com7 

 

 Schema represents the logical view of the database. It helps you understand 

what data needs to go where. 

 Schema can be represented by a diagram as shown below. 

 Schema helps the database users to understand the relationship between 

data. This helps in efficiently performing operations on database such as insert, 

update, delete, search etc. 

In the following diagram, we have a schema that shows the relationship between three 

tables: Course, Student and Section. The diagram only shows the design of the 

database, it doesn’t show the data present in those tables. Schema is only a structural 

view(design) of a database as shown in the diagram below. 

 

 
The design of a database at physical level is called physical schema, how the data 

stored in blocks of storage is described at this level. 

Design of database at logical level is called logical schema, programmers and 

database administrators work at this level, at this level data can be described as certain 

types of data records gets stored in data structures, however the internal details such as 

implementation of data structure is hidden at this level (available at physical level). 

Design of database at view level is called view schema. This generally 

describes end user interaction with database systems. 

 
DBMS Instance 

Definition of instance: The data stored in database at a particular moment of 

time is called instance of database. Database schema defines the attributes in tables 

that belong to a particular database. The value of these attributes at a moment of time 

is called the instance of that database. 

For example, we have seen the schema of table “employee” above. Let’s see 

the table with the data now. At this moment the table contains two rows (records). 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com8 

 

This is the the current instance of the table “employee” because this is the data that is 

stored in this table at this particular moment of time. 
EMP_NAME   EMP_ID  EMP_ADDRESS  EMP_CONTACT 

----------------------------------- 

Chaitanya101Noida95******** 

Ajeet102Delhi99******** 

Let’s take another example: Let’s say we have a single table student in the database, 

today the table has 100 records, so today the instance of the database has 100 records. 

We are going to add another 100 records in this table by tomorrow so the instance of 

database tomorrow will have 200 records in table. In short, at a particular moment the 

data stored in database is called the instance, this changes over time as and when we 

add, delete or update data in the database. 

 
DBMS languages 

Database languages are used to read, update and store data in a database. There 

are several such languages that can be used for this purpose; one of them is SQL 

(Structured Query Language). 

 

Types of DBMS languages: 

 DDL Data Definition Language 

 DCL Data Control Language 

 DML Data Manipulation Language 

 TCL Transaction Control Language 

 

Data Definition Language (DDL) 

DDL is used for specifying the database schema. It is used for creating tables, 

schema, indexes, constraints etc. in database. Lets see the operations that we can 

perform on database using DDL: 

 To create the database instance – CREATE 

 To alter the structure of database – ALTER 

 To drop database instances – DROP 

 To delete tables in a database instance – TRUNCATE 

 To rename database instances – RENAME 

 To drop objects from database such as tables – DROP 

 To Comment – Comment 

 

All of these commands either defines or update the database schema that’s why they 

come under Data Definition language. 

 

Data Manipulation Language (DML) 

DML is used for accessing and manipulating data in a database. The following 

operations on database comes under DML: 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com9 

 

 To read records from table(s) – SELECT 

 To insert record(s) into the table(s) – INSERT 

 Update the data in table(s) – UPDATE 

 Delete all the records from the table – DELETE 

 

Data Control language (DCL) 

DCL is used for granting and revoking user access on a database – 

 To grant access to user – GRANT 

 To revoke access from user – REVOKE 
In practical data definition language, data manipulation language and data control languages 

are not separate language, rather they are the parts of a single database language such as SQL. 

 

Transaction Control Language(TCL) 

The changes in the database that we made using DML commands are either performed 

or rollbacked using TCL. 

 To persist the changes made by DML commands in database – COMMIT 

 To rollback the changes made to the database – ROLLBACK 

  

DBMS Architecture 
The architecture of DBMS depends on the computer system on which it runs. 

For example, in a client-server DBMS architecture, the database systems at server 

machine can run several requests made by client machine. We will understand this 

communication with the help of diagrams. 

 

Types of DBMS Architecture 

There are three types of DBMS architecture: 

1. Single tier architecture 

2. Two tier architecture 

3. Three tier architecture 

 

1. Single tier architecture 

In this type of architecture, the database is readily available on the client 

machine, any request made by client doesn’t require a network connection to perform 

the action on the database. 

For example, lets say you want to fetch the records of employee from the 

database and the database is available on your computer system, so the request to 

fetch employee details will be done by your computer and the records will be fetched 

from the database by your computer as well. This type of system is generally referred 

as local database system. 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com10 

 

2. Two tier architecture 

 
In two-tier architecture, the Database system is present at the server machine and the 

DBMS application is present at the client machine, these two machines are connected 

with each other through a reliable network as shown in the above diagram. 

Whenever client machine makes a request to access the database present at server 

using a query language like sql, the server perform the request on the database and 

returns the result back to the client. The application connection interface such as 

JDBC, ODBC are used for the interaction between server and client. 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com11 

 

3. Three tier architecture 

 
In three-tier architecture, another layer is present between the client machine and 

server machine. In this architecture, the client application doesn’t communicate 

directly with the database systems present at the server machine, rather the client 

application communicates with server application and the server application internally 

communicates with the database system present at the server. 

 

Data models in DBMS 

 

Types of Data Models 

There are several types of data models in DBMS. We will cover them in detail in 

separate articles(Links to those separate tutorials are already provided below). In this 

guide, we will just see a basic overview of types of models. 

Object based logical Models – Describe data at the conceptual and view levels. 

1. E-R Model 

2. Object oriented Model 

 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com12 

 

Record based logical Models – Like Object based model, they also describe data at 

the conceptual and view levels. These models specify logical structure of database 

with records, fields and attributes. 

1. Relational Model 

2. Hierarchical Model 

3. Network Model – Network Model is same as hierarchical model except that it 

has graph-like structure rather than a tree-based structure. Unlike hierarchical 

model, this model allows each record to have more than one parent record. 

 

Physical Data Models – These models describe data at the lowest level of abstraction. 

 

Entity Relationship Diagram – ER Diagram in DBMS 
An Entity–relationship model (ER model) describes the structure of a database 

with the help of a diagram, which is known as Entity Relationship Diagram (ER 

Diagram). An ER model is a design or blueprint of a database that can later be 

implemented as a database. The main components of E-R model are: entity set and 

relationship set. 

 

Entity Relationship Diagram (ER Diagram) 

An ER diagram shows the relationship among entity sets. An entity set is a 

group of similar entities and these entities can have attributes. In terms of DBMS, an 

entity is a table or attribute of a table in database, so by showing relationship among 

tables and their attributes, ER diagram shows the complete logical structure of a 

database. Lets have a look at a simple ER diagram to understand this concept. 

 
A simple ER Diagram: 

 
In the following diagram we have two entities Student and College and their 

relationship. The relationship between Student and College is many to one as a college 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com13 

 

can have many students however a student cannot study in multiple colleges at the 

same time. Student entity has attributes such as Stu_Id, Stu_Name&Stu_Addr and 

College entity has attributes such as Col_ID&Col_Name. 

Here are the geometric shapes and their meaning in an E-R Diagram. We will 

discuss these terms in detail in the next section(Components of a ER Diagram) of this 

guide so don’t worry too much about these terms now, just go through them once. 
 

Rectangle:Represents Entity sets. 

Ellipses: Attributes 

Diamonds: Relationship Set 

Lines: They link attributes to Entity Sets and Entity sets to Relationship Set 

Double Ellipses: Multivalued Attributes 

Dashed Ellipses: Derived Attributes 

Double Rectangles: Weak Entity Sets 

Double Lines: Total participation of an entity in a relationship set 

 
Components of a ER Diagram 

 
 

As shown in the above diagram, an ER diagram has three main components: 

1. Entity 

2. Attribute 

3. Relationship 

 
1. Entity 

An entity is an object or component of data. An entity is represented as rectangle in an 

ER diagram. 

 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com14 

 

For example: In the following ER diagram we have two entities Student and College 

and these two entities have many to one relationship as many students study in a 

single college. We will read more about relationships later, for now focus on entities. 

 

 
Weak Entity: 

 

An entity that cannot be uniquely identified by its own attributes and relies on the 

relationship with other entity is called weak entity. The weak entity is represented by a 

double rectangle. For example – a bank account cannot be uniquely identified without 

knowing the bank to which the account belongs, so bank account is a weak entity. 

 

2. Attribute 
An attribute describes the property of an entity. An attribute is represented as Oval in 

an ER diagram. There are four types of attributes: 

1. Key attribute 

2. Composite attribute 

3. Multivalued attribute 

4. Derived attribute 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com15 

 

1. Key attribute: 

 
A key attribute can uniquely identify an entity from an entity set. For example, student 

roll number can uniquely identify a student from a set of students. Key attribute is 

represented by oval same as other attributes however the text of key attribute is 

underlined. 

 

2. Composite attribute: 

 
An attribute that is a combination of other attributes is known as composite attribute. 

For example, In student entity, the student address is a composite attribute as an 

address is composed of other attributes such as pin code, state, country. 

 

3. Multivalued attribute: 

An attribute that can hold multiple values is known as multivalued attribute. It is 

represented with double ovals in an ER Diagram. For example – A person can have 

more than one phone numbers so the phone number attribute is multivalued. 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com16 

 

4. Derived attribute: 

A derived attribute is one whose value is dynamic and derived from another attribute. 

It is represented by dashed oval in an ER Diagram. For example – Person age is a 

derived attribute as it changes over time and can be derived from another attribute 

(Date of birth). 

 
E-R diagram with multivalued and derived attributes: 

 

3. Relationship 

A relationship is represented by diamond shape in ER diagram, it shows the 

relationship among entities. There are four types of relationships: 

 

1. One to One 

2. One to Many 

3. Many to One 

4. Many to Many 

 

1. One to One Relationship 

 
When a single instance of an entity is associated with a single instance of another 

entity then it is called one to one relationship. For example, a person has only one 

passport and a passport is given to one person. 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com17 

 

2. One to Many Relationship 

 
When a single instance of an entity is associated with more than one instances of 

another entity then it is called one to many relationship. For example – a customer can 

place many orders but a order cannot be placed by many customers. 

 

3. Many to One Relationship 

 
When more than one instances of an entity is associated with a single instance of 

another entity then it is called many to one relationship. For example – many students 

can study in a single college but a student cannot study in many colleges at the same 

time. 

 

4. Many to Many Relationship 
  

 
When more than one instances of an entity is associated with more than one instances 

of another entity then it is called many to many relationship. For example, a can be 

assigned to many projects and a project can be assigned to many students. 

 
Total Participation of an Entity set 

Total participation of an entity set represents that each entity in entity set must have at 

least one relationship in a relationship set. It is also called mandatory 

participation. For example: In the following diagram each college must have at-least 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com18 

 

one associated Student. Total participation is represented using a double line between 

the entity set and relationship set. 

 
Partial participation of an Entity Set 

Partial participation of an entity set represents that each entity in the entity set 

may or may not participate in the relationship instance in that relationship set. It is 

also called as optional participation 

Partial participation is represented using a single line between the entity set and 

relationship set. 

Example: Consider an example of an IT company. There are many employees 

working for the company. Let’s take the example of relationship 

between employee and role software engineer. Every software engineer is an employee 

but not every employee is software engineer as there are employees for other roles as 

well, such as housekeeping, managers, CEO etc. so we can say that participation of 

employee entity set to the software engineer relationship is partial. 

 

DBMS – ER Design Issues 

 
1. Choosing Entity Setvs Attributes 

Here we will discuss how choosing an entity set vs an attribute can change the whole 

ER design semantics. To understand this lets take an example, let’s say we have an 

entity set Student with attributes such as student-name and student-id. Now we can 

say that the student-id itself can be an entity with the attributes like student-class and 

student-section. 

Now if we compare the two cases we discussed above, in the first case we can say that 

the student can have only one student id, however in the second case when we chose 

student id as an entity it implied that a student can have more than one student id. 

 

2. Choosing Entity Set vs. Relationship Sets 

It is hard to decide that an object can be best represented by an entity set or 

relationship set. To comprehend and decide the perfect choice between these two 

(entity vs relationship), the user needs to understand whether the entity would need a 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com19 

 

new relationship if a requirement arise in future, if this is the case then it is better to 

choose entity set rather than relationship set. 

Let’s take an example to understand it better: A person takes a loan from a bank, here 

we have two entities person and bank and their relationship is loan. This is fine until 

there is a need to disburse a joint loan, in such case a new relationship needs to be 

created to define the relationship between the two individuals who have taken joint 

loan. In this scenario, it is better to choose loan as an entity set rather than a 

relationship set. 

 

3. Choosing Binary vs n-ary Relationship Sets 

In most cases, the relationships described in an ER diagrams are binary. The n-

ary relationships are those where entity sets are more than two, if the entity sets are 

only two, their relationship can be termed as binary relationship. 

The n-ary relationships can make ER design complex, however the good news is that 

we can convert and represent any n-ary relationship using multiple binary 

relationships. 

This may sound confusing so lets take an example to understand how we can convert 

an n-ary relationship to multiple binary relationships. Now lets say we have to 

describe a relationship between four family members: father, mother, son and 

daughter. This can easily be represented in forms of multiple binary relationships, 

father-mother relationship as “spouse”, son and daughter relationship as “siblings” 

and father and mother relationship with their child as “child”. 

 

4. Placing Relationship Attributes 

The cardinality ratio in DBMS can help us determine in which scenarios we need to 

place relationship attributes. It is recommended to represent the attributes of one to 

one or one to many relationship sets with any participating entity sets rather than a 

relationship set. 

For example, if an entity cannot be determined as a separate entity rather it is 

represented by the combination of participating entity sets. In such case it is better to 

associate these entities to many-to-many relationship sets. 

 

 

 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com20 

 

 

 
ER Diagram for Library  

 

 

 

 

 

 

 

 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com21 

 

Hospital Management System 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com22 

 

Unit II 

RELATIONAL MODEL 

Relational Model 

Relational Model (RM) represents the database as a collection of relations. A 

relation is nothing but a table of values. Every row in the table represents a collection of 

related data values. These rows in the table denote a real-world entity or relationship. 

The table name and column names are helpful to interpret the meaning of values in 

each row. The data are represented as a set of relations. In the relational model, data are 

stored as tables. However, the physical storage of the data is independent of the way the data 

are logically organized. 

Some popular Relational Database management systems are: 

 DB2 and Informix Dynamic Server – IBM 

 Oracle and RDB – Oracle 

 SQL Server and Access – Microsoft 

Relational Model  Concepts in DBMS 

1. Attribute: Each column in a Table. Attributes are the properties which define a 

relation. e.g., Student_Rollno, NAME,etc. 

2. Tables – In the Relational model the, relations are saved in the table format. It is 

stored along with its entities. A table has two properties rows and columns. Rows 

represent records and columns represent attributes. 

3. Tuple – It is nothing but a single row of a table, which contains a single record. 

4. Relation Schema: A relation schema represents the name of the relation with its 

attributes. 

5. Degree: The total number of attributes which in the relation is called the degree of the 

relation. 

6. Cardinality: Total number of rows present in the Table. 

7. Column: The column represents the set of values for a specific attribute. 

8. Relation instance – Relation instance is a finite set of tuples in the RDBMS system. 

Relation instances never have duplicate tuples. 

9. Relation key – Every row has one, two or multiple attributes, which is called relation 

key. 

10. Attribute domain – Every attribute has some pre-defined value and scope which is 

known as attribute domain 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com23 

 

 

Structure of Relational Database 

Relational Integrity Constraints 

Relational Integrity constraints in DBMS are referred to conditions which must be present for 

a valid relation. These Relational constraints in DBMS are derived from the rules in the mini-

world that the database represents. 

There are many types of Integrity Constraints in DBMS. Constraints on the Relational 

database management system is mostly divided into three main categories are: 

1. Domain Constraints 

2. Key Constraints 

3. Referential Integrity Constraints 

Domain Constraints 

Domain constraints can be violated if an attribute value is not appearing in the corresponding 

domain or it is not of the appropriate data type. 

Domain constraints specify that within each tuple, and the value of each attribute must be 

unique. This is specified as data types which include standard data types integers, real 

numbers, characters, Booleans, variable length strings, etc. 

Example: 

Create DOMAIN CustomerName 

CHECK (value not NULL) 

 

The example shown demonstrates creating a domain constraint such that CustomerName is 

not NULL 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com24 

 

Key Constraints 

An attribute that can uniquely identify a tuple in a relation is called the key of the table. The 

value of the attribute for different tuples in the relation has to be unique. 

Example: 

In the given table, CustomerID is a key attribute of Customer Table. It is most likely to have 

a single key for one customer, CustomerID =1 is only for the CustomerName =” Google”. 

CustomerID CustomerName Status 

1 Google Active 

2 Amazon Active 

3 Apple Inactive 

Referential Integrity Constraints 

Referential Integrity constraints in DBMS are based on the concept of Foreign Keys. A 

foreign key is an important attribute of a relation which should be referred to in other 

relationships. Referential integrity constraint state happens where relation refers to a key 

attribute of a different or same relation. However, that key element must exist in the table. 

Example: 

 

In the above example, we have 2 relations, Customer and Billing. 

Tuple for CustomerID =1 is referenced twice in the relation Billing. So we know 

CustomerName=Google has billing amount $300 

Best Practices for creating a Relational Model 

 Data need to be represented as a collection of relations 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com25 

 

 Each relation should be depicted clearly in the table 

 Rows should contain data about instances of an entity 

 Columns must contain data about attributes of the entity 

 Cells of the table should hold a single value 

 Each column should be given a unique name 

 No two rows can be identical 

 The values of an attribute should be from the same domain 

Advantages of Relational Database Model 

 Simplicity: A Relational data model in DBMS is simpler than the hierarchical and 

network model. 

 Structural Independence: The relational database is only concerned with data and 

not with a structure. This can improve the performance of the model. 

 Easy to use: The Relational model in DBMS is easy as tables consisting of rows and 

columns are quite natural and simple to understand 

 Query capability: It makes possible for a high-level query language like SQL to 

avoid complex database navigation. 

 Data independence: The Structure of Relational database can be changed without 

having to change any application. 

 Scalable: Regarding a number of records, or rows, and the number of fields, a 

database should be enlarged to enhance its usability. 

Disadvantages of Relational Model 

 Few relational databases have limits on field lengths which can’t be exceeded. 

 Relational databases can sometimes become complex as the amount of data grows, 

and the relations between pieces of data become more complicated. 

 Complex relational database systems may lead to isolated databases where the 

information cannot be shared from one system to another. 

Relational database systems are expected to be equipped with a query language that can assist 

its users to query the database instances. There are two kinds of query languages − relational 

algebra and relational calculus. 

Relational Algebra 

Relational algebra is a procedural query language, which takes instances of relations as input 

and yields instances of relations as output. It uses operators to perform queries. An operator 

can be either unary or binary. They accept relations as their input and yield relations as their 

output. Relational algebra is performed recursively on a relation and intermediate results are 

also considered relations. 

The fundamental operations of relational algebra are as follows − 

 Select 

 Project 

 Union 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com26 

 

 Set different 

 Cartesian product 

 Rename 

We will discuss all these operations in the following sections. 

Select Operation (σ) 

It selects tuples that satisfy the given predicate from a relation. 

Notation − σp(r) 

Where σ stands for selection predicate and r stands for relation. p is prepositional logic 

formula which may use connectors like and, or, and not. These terms may use relational 

operators like − =, ≠, ≥, < ,  >,  ≤. 

For example − 

σsubject = "database"(Books) 

Output − Selects tuples from books where subject is 'database'. 

σsubject = "database" and price = "450"(Books) 

Output − Selects tuples from books where subject is 'database' and 'price' is 450. 

σsubject = "database" and price = "450" or year > "2010"(Books) 

Output − Selects tuples from books where subject is 'database' and 'price' is 450 or those 

books published after 2010. 

Project Operation (∏) 

It projects column(s) that satisfy a given predicate. 

Notation − ∏A1, A2, An (r) 

Where A1, A2 , An are attribute names of relation r. 

Duplicate rows are automatically eliminated, as relation is a set. 

For example − 

∏subject, author (Books) 

Selects and projects columns named as subject and author from the relation Books. 

Union Operation (∪) 

It performs binary union between two given relations and is defined as − 

r ∪ s = { t | t ∈ r or t ∈ s} 

Notation − r U s 

Where r and s are either database relations or relation result set (temporary relation). 

For a union operation to be valid, the following conditions must hold − 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com27 

 

 r, and s must have the same number of attributes. 

 Attribute domains must be compatible. 

 Duplicate tuples are automatically eliminated. 

∏ author (Books) ∪ ∏ author (Articles) 

Output − Projects the names of the authors who have either written a book or an article or 

both. 

Set Difference (−) 

The result of set difference operation is tuples, which are present in one relation but are not in 

the second relation. 

Notation − r − s 

Finds all the tuples that are present in r but not in s. 

∏ author (Books) − ∏ author (Articles) 

Output − Provides the name of authors who have written books but not articles. 

Cartesian Product (Χ) 

Combines information of two different relations into one. 

Notation − r Χ s 

Where r and s are relations and their output will be defined as − 

r Χ s = { q t | q ∈ r and t ∈ s} 

σauthor = 'tutorialspoint'(Books Χ Articles) 

Output − Yields a relation, which shows all the books and articles written by tutorialspoint. 

Rename Operation (ρ) 

The results of relational algebra are also relations but without any name. The rename 

operation allows us to rename the output relation. 'rename' operation is denoted with small 

Greek letter rho ρ. 

Notation − ρ x (E) 

Where the result of expression E is saved with name of x. 

Additional operations are − 

 Set intersection 

 Assignment 

 Natural join 

Relational Calculus 

In contrast to Relational Algebra, Relational Calculus is a non-procedural query language, 

that is, it tells what to do but never explains how to do it. 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com28 

 

Relational calculus exists in two forms − 

Tuple Relational Calculus (TRC) 

Filtering variable ranges over tuples 

Notation − {T | Condition} 

Returns all tuples T that satisfies a condition. 

For example − 

{ T.name |  Author(T) AND T.article = 'database' } 

Output − Returns tuples with 'name' from Author who has written article on 'database'. 

TRC can be quantified. We can use Existential (∃) and Universal Quantifiers (∀). 

For example − 

{ R| ∃T   ∈ Authors(T.article='database' AND R.name=T.name)} 

Output − The above query will yield the same result as the previous one. 

Domain Relational Calculus (DRC) 

In DRC, the filtering variable uses the domain of attributes instead of entire tuple values (as 

done in TRC, mentioned above). 

Notation − 

{ a1, a2, a3, ..., an | P (a1, a2, a3, ... ,an)} 

Where a1, a2 are attributes and P stands for formulae built by inner attributes. 

For example − 

{< article, page, subject > |  ∈ TutorialsPoint ∧ subject = 'database'} 

Output − Yields Article, Page, and Subject from the relation TutorialsPoint, where subject is 

database. 

Just like TRC, DRC can also be written using existential and universal quantifiers. DRC also 

involves relational operators. 

The expression power of Tuple Relation Calculus and Domain Relation Calculus is 

equivalent to Relational Algebra. 

SQL NULL Values 
In SQL there may be some records in a table that do not have values or data for 

every field. This could be possible because at a time of data entry information is not 

available.  So SQL supports a special value known as NULL which is used to represent the 

values of attributes that may be unknown or not apply to a tuple. SQL places a NULL value 

in the field in the absence of a user-defined value. For example, the Apartment_number 

attribute of an address applies only to address that are in apartment buildings and not to 

other types of residences.  

Importance of NULL value: 

 It is important to understand that a NULL value is different from a zero value.  

 A NULL value is used to represent a missing value, but that it usually has one of three 

different interpretations:  

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com29 

 

 The value unknown (value exists but is not known) 

 Value not available (exists but is purposely withheld) 

 Attribute not applicable (undefined for this tuple) 

 It is often not possible to determine which of the meanings is intended. Hence, SQL 

does not distinguish between the different meanings of NULL. 

Principles of NULL values: 

 Setting a NULL value is appropriate when the actual value is unknown, or when a value 

would not be meaningful. 

 A NULL value is not equivalent to a value of ZERO if the data type is a number and is 

not equivalent to spaces if the data type is character. 

 A NULL value can be inserted into columns of any data type. 

 A NULL value will evaluate NULL in any expression. 

 Suppose if any column has a NULL value, then UNIQUE, FOREIGN key, CHECK 

constraints will ignore by SQL. 

In general, each NULL value is considered to be different from every other NULL in the 

database. When a NULL is involved in a comparison operation, the result is considered to 

be UNKNOWN. Hence, SQL uses a three-valued logic with values True, False, 

and Unknown. It is, therefore, necessary to define the results of three-valued logical 

expressions when the logical connectives AND, OR, and NOT are used.  

  

 

How to test for NULL Values? 

SQL allows queries that check whether an attribute value is NULL. Rather than using = or 

to compare an attribute value to NULL, SQL uses IS and IS NOT. This is because SQL 

considers each NULL value as being distinct from every other NULL value, so equality 

comparison is not appropriate.  

Now, consider the following Employee Table,  

  

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com30 

 

 

  

Suppose if we find the Fname, Lname of the Employee having no Super_ssn then the query 

will be: 

Query 

SELECT Fname, Lname FROM Employee WHERE Super_ssn IS NULL; 

Output:  

  

 

Now if we find the Count of the number of Employees having Super_ssn.  

Query: 
  

SELECT COUNT(*) AS Count FROM Employee WHERE Super_ssn IS NOT NULL; 

Output:  

 

Modification of Relational Database 

Four basic update operations performed on relational database model are 

Insert, update, delete and select. 

 Insert is used to insert data into the relation 

 Delete is used to delete tuples from the table. 

 Modify allows you to change the values of some attributes in existing tuples. 

 Select allows you to choose a specific range of data. 

 

Whenever one of these operations are applied, integrity constraints specified on the relational 

database schema must never be violated. 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com31 

 

Insert Operation 

The insert operation gives values of the attribute for a new tuple which should be inserted 

into a relation. 

 

Update Operation 

You can see that in the below-given relation table CustomerName= ‘Apple’ is updated from 

Inactive to Active. 

 

Delete Operation 

To specify deletion, a condition on the attributes of the relation selects the tuple to be deleted. 

 

In the above-given example, CustomerName= “Apple” is deleted from the table. 

The Delete operation could violate referential integrity if the tuple which is deleted is 

referenced by foreign keys from other tuples in the same database. 

Select Operation 

 

In the above-given example, CustomerName=”Amazon” is selected 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com32 

 

Structured Query Language (SQL) 
Structured Query Language is a standard Database language which is used to create, 

maintain and retrieve the relational database. Following are some interesting facts about 

SQL. 

 SQL is case insensitive. But it is a recommended practice to use keywords (like 

SELECT, UPDATE, CREATE, etc) in capital letters and use user defined things (liked 

table name, column name, etc) in small letters. 

 We can write comments in SQL using “–” (double hyphen) at the beginning of any line. 

 SQL is the programming language for relational databases (explained below) like 

MySQL, Oracle, Sybase, SQL Server, Postgre, etc. Other non-relational databases (also 

called NoSQL) databases like MongoDB, DynamoDB, etc do not use SQL 

 Although there is an ISO standard for SQL, most of the implementations slightly vary 

in syntax. So we may encounter queries that work in SQL Server but do not work in 

MySQL. 

. 

What is Relational Database? 
Relational database means the data is stored as well as retrieved in the form of relations 

(tables). Table 1 shows the relational database with only one relation 

called STUDENT which stores ROLL_NO, NAME, ADDRESS, PHONE and AGE of 

students. 

STUDENT 

ROLL_NO NAME ADDRESS PHONE AGE 

1 RAM DELHI 9455123451 18 

2 RAMESH GURGAON 9652431543 18 

3 SUJIT ROHTAK 9156253131 20 

4 SURESH DELHI 9156768971 18 

TABLE 1 

 

These are some important terminologies that are used in terms of relation. 

Attribute: Attributes are the properties that define a relation. e.g.; ROLL_NO, NAME etc. 

Tuple: Each row in the relation is known as tuple. The above relation contains 4 tuples, one 

of which is shown as: 

1 RAM DELHI 9455123451 18 

 

Degree: The number of attributes in the relation is known as degree of the relation. 

The STUDENT relation defined above has degree 5. 

Cardinality: The number of tuples in a relation is known as cardinality. 

The STUDENT relation defined above has cardinality 4. 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com33 

 

Column: Column represents the set of values for a particular attribute. The 

column ROLL_NO is extracted from relation STUDENT. 

ROLL_NO 

1 

2 

3 

4 

 

The queries to deal with relational database can be categories as: 

Data Definition Language: It is used to define the structure of the database. e.g; CREATE 

TABLE, ADD COLUMN, DROP COLUMN and so on. 

Data Manipulation Language: It is used to manipulate data in the relations. e.g.; INSERT, 

DELETE, UPDATE and so on. 

Data Query Language: It is used to extract the data from the relations. e.g.; SELECT 

So first we will consider the Data Query Language. A generic query to retrieve from a 

relational database is: 

1. SELECT [DISTINCT] Attribute_List FROM R1,R2….RM 

2. [WHERE condition] 

3. [GROUP BY (Attributes)[HAVING condition]] 

4. [ORDER BY(Attributes)[DESC]]; 

 

Part of the query represented by statement 1 is compulsory if you want to retrieve from a 

relational database. The statements written inside [] are optional. We will look at the 

possible query combination on relation shown in Table 1. 

Case 1: If we want to retrieve attributes ROLL_NO and NAME of all students, the query 

will be: 

 

SELECT ROLL_NO, NAME FROM STUDENT; 

 

ROLL_NO NAME 

1 RAM 

2 RAMESH 

3 SUJIT 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com34 

 

4 SURESH 

 

Case 2: If we want to retrieve ROLL_NO and NAME of the students 

whose ROLL_NO is greater than 2, the query will be: 

SELECT ROLL_NO, NAME FROM STUDENT WHERE ROLL_NO>2; 

 

ROLL_NO NAME 

3 SUJIT 

4 SURESH 

 

CASE 3: If we want to retrieve all attributes of students, we can write * in place of writing 

all attributes as: 

SELECT * FROM STUDENT WHERE ROLL_NO>2; 

 

ROLL_NO NAME ADDRESS PHONE AGE 

3 SUJIT ROHTAK 9156253131 20 

4 SURESH DELHI 9156768971 18 

 

CASE 4: If we want to represent the relation in ascending order by AGE, we can use 

ORDER BY clause as: 

SELECT * FROM STUDENT ORDER BY AGE; 

 

ROLL_NO NAME ADDRESS PHONE AGE 

1 RAM DELHI 9455123451 18 

2 RAMESH GURGAON 9652431543 18 

4 SURESH DELHI 9156768971 18 

3 SUJIT ROHTAK 9156253131 20 

 

Note: ORDER BY AGE is equivalent to ORDER BY AGE ASC. If we want to retrieve the 

results in descending order of AGE, we can use ORDER BY AGE DESC. 

 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com35 

 

CASE 5: If we want to retrieve distinct values of an attribute or group of attribute, 

DISTINCT is used as in: 

SELECT DISTINCT ADDRESS FROM STUDENT; 

 

ADDRESS 

DELHI 

GURGAON 

ROHTAK 

If DISTINCT is not used, DELHI will be repeated twice in result set. Before understanding 

GROUP BY and HAVING, we need to understand aggregations functions in SQL. 

AGGRATION FUNCTIONS: Aggregation functions are used to perform mathematical 

operations on data values of a relation. Some of the common aggregation functions used in 

SQL are: 

 COUNT: Count function is used to count the number of rows in a relation. e.g; 

SELECT COUNT (PHONE) FROM STUDENT; 

COUNT(PHONE) 

4 

 SUM: SUM function is used to add the values of an attribute in a relation. e.g; 

SELECT SUM (AGE) FROM STUDENT; 

SUM(AGE) 

74 

 

In the same way, MIN, MAX and AVG can be used.  As we have seen above, all 

aggregation functions return only 1 row. 

AVERAGE: It gives the average values of the tupples. It is also defined as sum divided by 

count values. 

Syntax:AVG(attributename) 

OR 

Syntax:SUM(attributename)/COUNT(attributename) 

The above mentioned syntax also retrieves the average value of tupples. 

MAXIMUM:It extracts the maximum value among the set of tupples. 

Syntax:MAX(attributename) 

MINIMUM:It extracts the minimum value amongst the set of all the tupples. 

Syntax:MIN(attributename) 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com36 

 

GROUP BY: Group by is used to group the tuples of a relation based on an attribute or 

group of attribute. It is always combined with aggregation function which is computed on 

group. e.g.; 

 

SELECT ADDRESS, SUM(AGE) FROM STUDENT 

GROUP BY (ADDRESS); 

 

In this query, SUM(AGE) will be computed but not for entire table but for each address. 

i.e.; sum of AGE for address DELHI(18+18=36) and similarly for other address as well. 

The output is: 

ADDRESS SUM(AGE) 

DELHI 36 

GURGAON 18 

ROHTAK 20 

 

If we try to execute the query given below, it will result in error because although we have 

computed SUM(AGE) for each address, there are more than 1 ROLL_NO for  each address 

we have grouped. So it can’t be displayed in result set. We need to use aggregate functions 

on columns after SELECT statement to make sense of the resulting set whenever we are 

using GROUP BY. 

SELECT ROLL_NO, ADDRESS, SUM(AGE) FROM STUDENT 

GROUP BY (ADDRESS);  

 

Advanced SQL 

Accessing SQL From a Programming Language  

■ API (application-program interface) for a program to interact with a database server  

■ Application makes calls to  

● Connect with the database server  

● Send SQL commands to the database server  

● Fetch tuples of result one-by-one into program variables  

■ Various tools:  

● ODBC (Open Database Connectivity) works with C, C++, C#, and Visual 

Basic. Other APIs such as ADO.NET sit on top of ODBC  

● JDBC (Java Database Connectivity) works with Java  

● Embedded SQL 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com37 

 

Integrity Constraints 

 The Set of rules which is used to maintain the quality of information are known 

as integrity constraints. 

 Integrity constraints make sure about data intersection, update and so on. 

 Integrity constraints can be understood as a guard against unintentional damage to 

the database. 

For any stored data if we want to preserve the consistency and correctness, a relational 

DBMS typically imposes one or more data integrity constraints. These constraints restrict the 

data values which can be inserted into the database or created by a database update. 

Data Integrity Constraints 

There are different types of data integrity constraints that are commonly found in relational 

databases, including the following − 

 Required data − Some columns in a database contain a valid data value in each row; 

they are not allowed to contain NULL values. In the sample database, every order has 

an associated customer who placed the order. The DBMS can be asked to prevent 

NULL values in this column. 

 Validity checking − Every column in a database has a domain, a set of data values 

which are legal for that column. The DBMS allowed preventing other data values in 

these columns. 

 Entity integrity − The primary key of a table contains a unique value in each row that 

is different from the values in all other rows. Duplicate values are illegal because they 

are not allowing the database to differentiate one entity from another. The DBMS can 

be asked to enforce this unique values constraint. 

 Referential integrity − A foreign key in a relational database links each row in the 

child table containing the foreign key to the row of the parent table containing the 

matching primary key value. The DBMS can be asked to enforce this foreign 

key/primary key constraint. 

 Other data relationships − The real-world situation which is modeled by a database 

often has additional constraints which govern the legal data values that may appear in 

the database. The DBMS is allowed to check modifications to the tables to make sure 

that their values are constrained in this way. 

 Business rules − Updates to a database that are constrained by business rules 

governing the real-world transactions which are represented by the updates. 

 Consistency − Many real-world transactions that cause multiple updates to a database. 

The DBMS is allowed to enforce this type of consistency rule or to support 

applications that implement such rules. 

 

Different types of Integrity Constraints 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com38 

 

 

Domain Constraint 

 The Definition of an applicable set of values is known as domain constraint. 

 Strings, character, time, integer, currency, date etc. Are examples of the data type of domain 

constraints. 

Example 

ID NAME SEMESTER AGE 

100 Jai 1st 27 

101 BKadam 4th 34 

102 Rajeev 3rd 31 

103 Asmita 6th 29 

104 Mahesh 2nd Twenty two 

‘Twenty two’ is not allowed for 104 id because the attribute AGE is an integer 

  

Entity Integer Constraint 

 Entity Integrity Constraints states that the primary value key cannot be null because the 

primary value key is used to find out individual rows in relation and if the value of the 

primary key is null then it is not easy to identify those rows. 

 There can be a null value in the table apart from the primary key field. 

Example 

Emp_ID Emp_Name Salary 

11 Manish 30000 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com39 

 

12 Vikram 20000 

13 Sudhir 10000 

 
Rajeev 40000 

Null is not allowed in Emp_ID as it is a Primary key and cannot have a NULL value. 

  

Referential Integrity Constraint 

1. Referential Integrity Constraint is specific between two tables. 

2. A foreign key in the 1st table refers to the primary key of the 2nd table, in this case 

each value of the foreign key in the 1st table has to be null or present in the 2nd table. 

 

Key Constraints 

 The Entity within its entity set is identified uniquely by the key which is the entity set. 

 There can be a number of keys in an entity set but only one will be the primary key out of all 

keys. In a relational table a primary key can have a unique as well as a null value. 

Example 

ID NAME SEMESTER AGE 

100 Naren 4 27 

101 Lalit 6 28 

102 Shivanshu 3 22 

103 Navdeep 5 29 

102 Karthik 7 25 

All row ID must be unique hence 102 is not allowed. 

 

Database authorization 
Authorization is the process where the database manager gets information about the 

authenticated user. Part of that information is determining which database operations the user 

can perform and which data objects a user can access. 

A privilege is a type of permission for an authorization name, or a permission to perform an 

action or a task. The privilege allows a user to create or access database resources. Privileges 

are stored in the database catalogs. Authorized users can pass on privileges on their own 

objects to other users by using the GRANT statement. Privileges can be granted to individual 

users, to groups, or to PUBLIC. PUBLIC is a special group that consists of all users, 

including future users. Users that are members of a group will indirectly take advantage of 

the privileges granted to the group, where groups are supported. 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com40 

 

A role is a database object that groups one or more privileges. Roles can be assigned to users 

or groups or other roles by using the GRANT statement. Users that are members of roles 

have the privileges that are defined for the role with which to access data. 

The forms of authorization, such as administrative authority, privileges, and Row and 

column access (RCAC) access, are discussed in Authorization of Big SQL objects. In 

addition, ownership of objects brings with it a degree of authorization on the objects 

created. 

 Administrative authority includes system-level authorization and database-level 

authorization: 

System-level authorization 

SYSADM (system administrator) authority 

The SYSADM (system administrator) authority provides control over all the resources 

created and maintained by the database manager. The system administrator possesses all the 

authorities of SYSCTRL, SYSMAINT, and SYSMON authority. The user who has 

SYSADM authority is responsible both for controlling the database manager, and for 

ensuring the safety and integrity of the data. 

SYSCTRL authority 

The SYSCTRL authority provides control over operations that affect system resources. For 

example, a user with SYSCTRL authority can create, update, start, stop, or drop a database. 

This user can also start or stop an instance, but cannot access table data. Users with 

SYSCTRL authority also have SYSMON authority. 

SYSMAINT authority 

The SYSMAINT authority provides the authority required to perform maintenance 

operations on all databases that are associated with an instance. A user with SYSMAINT 

authority can update the database configuration, backup a database or table space, restore 

an existing database, and monitor a database. Like SYSCTRL, SYSMAINT does not 

provide access to table data. Users with SYSMAINT authority also have SYSMON 

authority. 

SYSMON (system monitor) authority 

The SYSMON (system monitor) authority provides the authority required to use the 

database system monitor. 

Database-level authorization 

DBADM (database administrator) 

The DBADM authority level provides administrative authority over a single database. This 

database administrator possesses the privileges required to create objects and issue database 

commands. The DBADM authority can be granted only by a user with SECADM authority. 

The DBADM authority cannot be granted to PUBLIC. 

SECADM (security administrator) 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com41 

 

The SECADM authority level provides administrative authority for security over a single 

database. The security administrator authority possesses the ability to manage database 

security objects (database roles, audit policies, trusted contexts, security label components, 

and security labels) and grant and revoke all database privileges and authorities. A user 

with SECADM authority can transfer the ownership of objects that they do not own. They 

can also use the AUDIT statement to associate an audit policy with a particular database or 

database object at the server.The SECADM authority has no inherent privilege to access 

data stored in tables. It can only be granted by a user with SECADM authority. The 

SECADM authority cannot be granted to PUBLIC. 

SQLADM (SQL administrator) 

The SQLADM authority level provides administrative authority to monitor and tune SQL 

statements within a single database. It can be granted by a user with ACCESSCTRL or 

SECADM authority. 

WLMADM (workload management administrator) 

The WLMADM authority provides administrative authority to manage workload 

management objects, such as service classes, work action sets, work class sets, and 

workloads. It can be granted by a user with ACCESSCTRL or SECADM 

authority.EXPLAIN (explain authority)The EXPLAIN authority level provides 

administrative authority to explain query plans without gaining access to data. It can only 

be granted by a user with ACCESSCTRL or SECADM authority. 

EXPLAIN (explain authority) 

The EXPLAIN authority level provides administrative authority to explain query plans 

without gaining access to data. It can only be granted by a user with ACCESSCTRL or 

SECADM authority. 

ACCESSCTRL (access control authority) 

ACCESSCTRL authority can only be granted by a user with SECADM authority. The 

ACCESSCTRL authority cannot be granted to PUBLIC. The ACCESSCTRL authority 

level provides administrative authority to issue the following GRANT (and REVOKE) 

statements: 

o GRANT (Database Authorities) 

o GRANT (Global Variable Privileges) 

o GRANT (Index Privileges) 

o GRANT (Module Privileges) 

o GRANT (Package Privileges) 

o GRANT (Routine Privileges) 

o GRANT (Schema Privileges) 

o GRANT (Sequence Privileges) 

o GRANT (Server Privileges) 

o GRANT (Table, View, or Nickname Privileges) 

o GRANT (Table Space Privileges) 

o GRANT (Workload Privileges) 

o GRANT (XSR Object Privileges) 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com42 

 

For more information about granting and revoking privileges, see Granting and revoking 

access. 

 

DATA ACCESS (data access authority) 

DATAACCESS authority can be granted only by a user who holds SECADM authority. It 

cannot be granted to PUBLIC. The DATAACCESS authority level provides the following 

privileges and authorities: 

 LOAD authority 

 SELECT, INSERT, UPDATE, DELETE privilege on tables, views, nicknames, and 

materialized query tables 

 EXECUTE privilege on packages 

 EXECUTE privilege on modules 

 EXECUTE privilege on routines, except on the audit routines. 

 USAGE privilege on all sequences 

 

Database authorities (non-administrative) 

To perform activities such as creating a table or a routine, or for loading data into a table, 

specific database authorities are required. For example, the LOAD database authority is 

required for use of the load utility to load data into tables (a user must also have INSERT 

privilege on the table). 

 Privileges 

CONTROL privilege 

If you possess the CONTROL privilege on an object, you can access that database object, 

and grant and revoke privileges to or from other users on that object. The CONTROL 

privilege only applies to tables, views, nicknames, indexes, and packages.. 

If a different user requires the CONTROL privilege to that object, a user with SECADM or 

ACCESSCTRL authority can grant the CONTROL privilege to that object. The CONTROL 

privilege cannot be revoked from the object owner, however, the object owner can be 

changed by using the TRANSFER OWNERSHIP statement. 

Individual privileges 

Individual privileges can be granted to allow a user to carry out specific tasks on specific 

objects. Users with the administrative authorities ACCESSCTRL or SECADM, or with the 

CONTROL privilege, can grant and revoke privileges to and from users. 

Revoking privileges 

The REVOKE statement is used to revoke previously granted privileges. The revoking of a 

privilege from an authorization name revokes the privilege granted by all authorization 

names. 

 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com43 

 

Authorization ID privileges: SETSESSION USER 

Authorization ID privileges involve actions on authorization IDs. There is currently only 

one such privilege: the SETSESSIONUSER privilege. 

Schema privileges 

Schema privileges are in the object privilege category. 

Table and view privileges 

Table and view privileges involve actions on tables or views in a database. 

Package privileges 

A package is a database object that contains the information needed by the database 

manager to access data in the most efficient way for a particular application program. 

Package privileges enable a user to create and manipulate packages. 

Sequence privileges 

The creator of a sequence automatically receives the USAGE and ALTER privileges on the 

sequence. The USAGE privilege is needed to use NEXT VALUE and PREVIOUS VALUE 

expressions for the sequence. 

Routine privileges 

Execute privileges involve actions on all types of routines such as functions, procedures, 

and methods within a database. Once having EXECUTE privilege, a user can then invoke 

that routine, create a function that is sourced from that routine (applies to functions only), 

and reference the routine in any DDL statement such as CREATE VIEW or CREATE 

TRIGGER. 

Usage privilege on workloads 

To enable use of a workload, a user who holds ACCESSCTRL, SECADM, or WLMADM 

authority can grant USAGE privilege on that workload to a user, a group, or a role using 

the GRANT USAGE ON WORKLOAD statement. 

Introduction to embedded SQL 
 

Embedded SQL applications connect to databases and execute embedded SQL statements. 

The embedded SQL statements are contained in a package that must be bound to the target 

database server. 

You can develop embedded SQL applications for the Db2® database in the following host 

programming languages: C, C++, and COBOL. 

Building embedded SQL applications involves two prerequisite steps before application 

compilation and linking. 

 Preparing the source files containing embedded SQL statements using 

the Db2 precompiler. 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com44 

 

The PREP (PRECOMPILE) command is used to invoke the Db2 precompiler, which 

reads your source code, parses and converts the embedded SQL statements 

to Db2 run-time services API calls, and finally writes the output to a new modified 

source file. The precompiler produces access plans for the SQL statements, which are 

stored together as a package within the database. 

 Binding the statements in the application to the target database. 

Binding is done by default during precompilation (the PREP command). If binding is 

to be deferred (for example, running the BIND command later), then 

the BINDFILE option needs to be specified at PREP time in order for a bind file to be 

generated. 

Once you have precompiled and bound your embedded SQL application, it is ready to be 

compiled and linked using the host language-specific development tools. 

To aid in the development of embedded SQL applications, you can refer to the embedded 

SQL template in Cembedded SQL template in C. Examples of working embedded SQL 

sample applications can also be found in the %DB2PATH%\SQLLIB\samples directory. 

Note: %DB2PATH% refers to the Db2 installation directory 

Static and dynamic SQL 

SQL statements can be executed in one of two ways: statically or dynamically. 

Statically executed SQL statements 

For statically executed SQL statements, the syntax is fully known at precompile 

time. The structure of an SQL statement must be completely specified for a 

statement to be considered static. For example, the names for the columns and tables 

referenced in a statement must be fully known at precompile time. The only 

information that can be specified at run time are values for any host variables 

referenced by the statement. However, host variable information, such as data types, 

must still be precompiled. You precompile, bind, and compile statically executed 

SQL statements before you run your application. Static SQL is best used on 

databases whose statistics do not change a great deal. 

Dynamically executed SQL statements 

Dynamically executed SQL statements are built and executed by an application at 

run-time. An interactive application that prompts the end user for key parts of an 

SQL statement, such as the names of the tables and columns to be searched, is a 

good example of a situation suited for dynamic SQL. 

 Embedding SQL statements in a host language 
Structured Query Language (SQL) is a standardized language that you can use to 

manipulate database objects and the data that they contain. Despite differences 

between host languages, embedded SQL applications are made up of three main 

elements that are required to setup and issue an SQL statement. 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com45 

 

 Supported development software for embedded SQL applications 
Before you begin writing embedded SQL applications, you must determine if your 

development software is supported. The operating system that you are developing for 

determines which compilers, interpreters, and development software you must use. 

 Setting up the embedded SQL development environment 
Before you can start building embedded SQL applications, install the supported 

compiler for the host language you will be using to develop your applications and set 

up the embedded SQL environment. 

 Designing embedded SQL applications 
When designing embedded SQL applications you must use static or dynamic executed 

SQL statements. 

 Programming embedded SQL applications 

Programming embedded SQL applications involves the same steps required to 

assemble an application in your host programming language. 

 Building embedded SQL applications 
After you have created the source code for your embedded SQL application, you must 

follow additional steps to build the application. You should consider building 64-bit 

executable files when developing new embedded SQL database applications. Along 

with compiling and linking your program, you must precompile and bind it. 

 Deploying and running embedded SQL applications 

Embedded SQL applications are portable and can be placed in remote database 

components. You can compile the application in one location and run the package on 

a different component. 

 Compatibility features for migration 

The Db2 database manager provides features that facilitate the migration of embedded 

SQL C applications from other database systems. 

Dynamic SQL 

Dynamic SQL enables you to write programs that reference SQL statements whose full text is 

not known until runtime. Before discussing dynamic SQL in detail, a clear definition of static 

SQL may provide a good starting point for understanding dynamic SQL. Static SQL 

statements do not change from execution to execution. The full text of static SQL statements 

are known at compilation, which provides the following benefits: 

 Successful compilation verifies that the SQL statements reference valid database 

objects. 

 Successful compilation verifies that the necessary privileges are in place to access the 

database objects. 

 Performance of static SQL is generally better than dynamic SQL. 

Because of these advantages, you should use dynamic SQL only if you cannot use static SQL 

to accomplish your goals, or if using static SQL is cumbersome compared to dynamic SQL. 

However, static SQL has limitations that can be overcome with dynamic SQL. You may not 

always know the full text of the SQL statements that must be executed in a PL/SQL 

procedure. Your program may accept user input that defines the SQL statements to execute, 

or your program may need to complete some processing work to determine the correct course 

of action. In such cases, you should use dynamic SQL. 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com46 

 

For example, consider a reporting application that performs standard queries on tables in a 

data warehouse environment where the exact table name is unknown until runtime. To 

accommodate the large amount of data in the data warehouse efficiently, you create a new 

table every quarter to store the invoice information for the quarter. These tables all have 

exactly the same definition and are named according to the starting month and year of the 

quarter, for 

example INV_01_1997, INV_04_1997, INV_07_1997, INV_10_1997, INV_01_1998, etc. In 

such a case, you can use dynamic SQL in your reporting application to specify the table name 

at runtime. 

With static SQL, all of the data definition information, such as table definitions, referenced 

by the SQL statements in your program must be known at compilation. If the data definition 

changes, you must change and recompile the program. Dynamic SQL programs can handle 

changes in data definition information, because the SQL statements can change "on the fly" 

at runtime. Therefore, dynamic SQL is much more flexible than static SQL. Dynamic SQL 

enables you to write application code that is reusable because the code defines a process that 

is independent of the specific SQL statements used. 

In addition, dynamic SQL lets you execute SQL statements that are not supported in static 

SQL programs, such as data definition language (DDL) statements. Support for these 

statements allows you to accomplish more with your PL/SQL programs. 

Tuple Relational Calculus 

Tuple Relational Calculus is a non-procedural query language unlike relational algebra. 

Tuple Calculus provides only the description of the query but it does not provide the 

methods to solve it. Thus, it explains what to do but not how to do.  

In Tuple Calculus, a query is expressed as  

{t| P(t)} 

where t = resulting tuples,  

P(t) = known as Predicate and these are the conditions that are used to fetch t  

Thus, it generates set of all tuples t, such that Predicate P(t) is true for t.  

P(t) may have various conditions logically combined with OR (∨), AND (∧), NOT(¬).  

It also uses quantifiers:  

∃ t ∈ r (Q(t)) = ”there exists” a tuple in t in relation r such that predicate Q(t) is true.  

∀ t ∈ r (Q(t)) = Q(t) is true “for all” tuples in relation r.  

Example:  

Table-1: Customer  

Customer name Street City 

Saurabh A7 Patiala 

Mehak B6 Jalandhar 

Sumiti D9 Ludhiana 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com47 

 

Customer name Street City 

Ria A5 Patiala 

Table-2: Branch 

 

Branch name Branch city 

ABC Patiala 

DEF Ludhiana 

GHI Jalandhar 

Table-3: Account 

 

Account number Branch name Balance   

1111 ABC 50000   

1112 DEF 10000   

1113 GHI 9000   

1114 ABC 7000   

Table-4: Loan 

 

Loan number Branch name Amount 

L33 ABC 10000 

L35 DEF 15000 

L49 GHI 9000 

L98 DEF 65000 

Table-5: Borrower 

 

Customer name Loan number 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com48 

 

Customer name Loan number 

Saurabh L33 

Mehak L49 

Ria L98 

Table-6: Depositor 

 

Customer name Account number 

Saurabh 1111 

Mehak 1113 

Sumiti 1114 

Queries-1: Find the loan number, branch, amount of loans of greater than or equal to 10000 

amount.   

{t| t ∈ loan  ∧ t[amount]>=10000} 

Resulting relation:  

Loan number Branch name Amount 

L33 ABC 10000 

L35 DEF 15000 

L98 DEF 65000 

In the above query, t[amount] is known as tuple variable.  

Queries-2: Find the loan number for each loan of an amount greater or equal to 10000.   

{t| ∃ s ∈ loan(t[loan number] = s[loan number]   

                   ∧ s[amount]>=10000)} 

Resulting relation:  

Loan number 

L33 

L35 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com49 

 

Loan number 

L98 

Queries-3: Find the names of all customers who have a loan and an account at the bank.   

{t | ∃ s ∈ borrower( t[customer-name] = s[customer-name])    

     ∧  ∃ u ∈ depositor( t[customer-name] = u[customer-name])} 

Resulting relation:  

Customer name 

Saurabh 

Mehak 

Queries-4: Find the names of all customers having a loan at the “ABC” branch.   

{t | ∃ s ∈ borrower(t[customer-name] = s[customer-name]   

   ∧ ∃ u ∈  loan(u[branch-name] = “ABC” ∧ u[loan-number] = s[loan-number]))} 

Resulting relation:  

Customer name 

Saurabh 

Domain Relational Calculus 

Domain Relational Calculus is a non-procedural query language equivalent in power to 

Tuple Relational Calculus. Domain Relational Calculus provides only the description of the 

query but it does not provide the methods to solve it. In Domain Relational Calculus, a 

query is expressed as, 

{ < x1, x2, x3, ..., xn > | P (x1, x2, x3, ..., xn ) }  

where, < x1, x2, x3, …, xn > represents resulting domains variables and P (x1, x2, x3, …, xn ) 

represents the condition or formula equivalent to the Predicate calculus. 

 

 

Predicate Calculus Formula: 

1. Set of all comparison operators 

2. Set of connectives like and, or, not 

3. Set of quantifiers 

Example: 

Table-1: Customer 

Customer name Street City 

Debomit Kadamtala Alipurduar 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com50 

 

Customer name Street City 

Sayantan Udaypur Balurghat 

Soumya Nutanchati Bankura 

Ritu Juhu Mumbai 

 

Table-2: Loan 

Loan number Branch name Amount 

L01 Main 200 

L03 Main 150 

L10 Sub 90 

L08 Main 60 

 

Table-3: Borrower 

Customer name Loan number 

Ritu L01 

Debomit L08 

Soumya L03 

Query-1: Find the loan number, branch, amount of loans of greater than or equal to 100 

amount. 

{≺l, b, a≻ | ≺l, b, a≻ ∈ loan ∧ (a ≥ 100)} 

Resulting relation: 

Loan number Branch name Amount 

L01 Main 200 

L03 Main 150 

Query-2: Find the loan number for each loan of an amount greater or equal to 150. 

{≺l≻ | ∃ b, a (≺l, b, a≻ ∈ loan ∧ (a ≥ 150)} 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com51 

 

Resulting relation: 

Loan number 

L01 

L03 

Query-3: Find the names of all customers having a loan at the “Main” branch and find the 

loan amount . 

{≺c, a≻ | ∃ l (≺c, l≻ ∈ borrower ∧ ∃ b (≺l, b, a≻ ∈ loan ∧ (b = “Main”)))} 

Resulting relation: 

Customer Name Amount 

Ritu 200 

Debomit 60 

Soumya 150 

 
Query By Example (QBE) 
 

Normal queries we fire on the database they should be correct and in a well-defined 

structure which means they should follow a proper syntax if the syntax or query is wrong 

definitely we will get an error and due to that our application or calculation definitely going 

to stop. So to overcome this problem QBE was introduced. QBE stands for Query By 

Example and it was developed in 1970 by Moshe Zloof at IBM.  

It is a graphical query language where we get a user interface and then we fill some 

required fields to get our proper result.  

In SQL we will get an error if the query is not correct but in the case of QBE if the query is 

wrong either we get a wrong answer or the query will not be going to execute but we will 

never get any error.  

 

Note-:  

In QBE we don’t write complete queries like SQL or other database languages it comes 

with some blank so we need to just fill that blanks and we will get our required result.  

 

Example  

Consider the example where a table ‘SAC’ is present in the database with Name, 

Phone_Number, and Branch fields. And we want to get the name of the SAC-

Representative name who belongs to the MCA Branch. If we write this query in SQL we 

have to write it like 

SELECT NAME  

FROM SAC  

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com52 

 

WHERE BRANCH = 'MCA'" 

And definitely, we will get our correct result. But in the case of QBE, it may be done as like 

there is a field present and we just need to fill it with “MCA” and then click on the 

SEARCH button we will get our required result.  

Points about QBE:  

  

 Supported by most of the database programs. 

 It is a Graphical Query Language. 

 Created in parallel to SQL development. 

 
SQL Trigger 
Trigger: A trigger is a stored procedure in database which automatically invokes whenever 

a special event in the database occurs. For example, a trigger can be invoked when a row is 

inserted into a specified table or when certain table columns are being updated. 

 

Syntax: 

create trigger [trigger_name]  

[before | after]   

{insert | update | delete}   

on [table_name]   

[for each row]   

[trigger_body]  

 

Explanation of syntax: 
1. create trigger [trigger_name]: Creates or replaces an existing trigger with the 

trigger_name. 

2. [before | after]: This specifies when the trigger will be executed. 

3. {insert | update | delete}: This specifies the DML operation. 

4. on [table_name]: This specifies the name of the table associated with the trigger.  

5. [for each row]: This specifies a row-level trigger, i.e., the trigger will be executed for 

each row being affected. 

6. [trigger_body]: This provides the operation to be performed as trigger is fired 

 

BEFORE and AFTER of Trigger: 

 

BEFORE triggers run the trigger action before the triggering statement is run. 

AFTER triggers run the trigger action after the triggering statement is run. 

 

Example: 
Given Student Report Database, in which student marks assessment is recorded. In such 

schema, create a trigger so that the total and average of specified marks is automatically 

inserted whenever a record is insert. 

Here, as trigger will invoke before record is inserted so, BEFORE Tag can be used. 

 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com53 

 

Suppose the database Schema – 

mysql> desc Student;  

+-------+-------------+------+-----+---------+----------------+  

| Field | Type        | Null | Key | Default | Extra          |  

+-------+-------------+------+-----+---------+----------------+  

| tid   | int(4)      | NO   | PRI | NULL    | auto_increment |  

| name  | varchar(30) | YES  |     | NULL    |                |  

| subj1 | int(2)      | YES  |     | NULL    |                |  

| subj2 | int(2)      | YES  |     | NULL    |                |  

| subj3 | int(2)      | YES  |     | NULL    |                |  

| total | int(3)      | YES  |     | NULL    |                |  

| per   | int(3)      | YES  |     | NULL    |                | 

+-------+-------------+------+-----+---------+----------------+  

7 rows in set (0.00 sec) 

SQL Trigger to problem statement. 

create trigger stud_marks  

before INSERT  

on  

Student  

for each row  

set Student.total = Student.subj1 + Student.subj2 + Student.subj3, Student.per = 

Student.total * 60 / 100; 

Above SQL statement will create a trigger in the student database in which whenever 

subjects marks are entered, before inserting this data into the database, trigger will compute 

those two values and insert with the entered values. i.e., 

mysql> insert into Student values(0, "ABCDE", 20, 20, 20, 0, 0);  

Query OK, 1 row affected (0.09 sec)  

mysql> select * from Student;  

+-----+-------+-------+-------+-------+-------+------+  

| tid | name  | subj1 | subj2 | subj3 | total | per  |  

+-----+-------+-------+-------+-------+-------+------+  

| 100 | ABCDE |    20 |    20 |    20 |    60 |   36 |  

+-----+-------+-------+-------+-------+-------+------+  

1 row in set (0.00 sec)  

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com54 

 

Unit 3 

Database Design 

 
Functional dependencies in DBMS 
 

A functional dependency is a constraint that specifies the relationship between two 

sets of attributes where one set can accurately determine the value of other sets. It is 

denoted as X → Y, where X is a set of attributes that is capable of determining the value of 

Y. The attribute set on the left side of the arrow, X is called Determinant, while on the 

right side, Y is called the Dependent.  

Functional dependencies are used to mathematically express relations among 

database entities and are very important to understand advanced concepts in Relational 

Database System. 

Example: 

Roll_No Name Dept_Name Dept_Building 

42 abc CO A4 

43 pqr IT A3 

44 xyz CO A4 

45  xyz IT A3 

46 mno EC B2 

47 jkl ME B2 

 

From the above table we can conclude some valid functional dependencies: 

 roll_no → { name, dept_name, dept_building },→  Here, roll_no can determine 

values of fields name, dept_name and dept_building, hence a valid Functional 

dependency 

 roll_no → dept_name , Since, roll_no can determine whole set of {name, 

dept_name, dept_building}, it can determine its subset dept_name also. 

 dept_name → dept_building ,  Dept_name can identify the dept_building 

accurately, since departments with different dept_name will also have a different 

dept_building 

 More valid functional dependencies: roll_no → name, {roll_no, name} ⇢ 

{dept_name, dept_building}, etc. 

Here are some invalid functional dependencies: 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com55 

 

 name → dept_name   Students with the same name can have different dept_name, 

hence this is not a valid functional dependency. 

 dept_building → dept_name    There can be multiple departments in the same 

building, For example, in the above table departments ME and EC are in the same 

building B2, hence dept_building → dept_name is an invalid functional 

dependency. 

 More invalid functional dependencies: name → roll_no, {name, dept_name} → 

roll_no, dept_building → roll_no, etc. 

 

Armstrong’s axioms/properties of functional dependencies: 
1. Reflexivity: If Y is a subset of X, then X→Y holds by reflexivity rule 

For example, {roll_no, name} → name is valid. 

2. Augmentation: If X → Y is a valid dependency, then XZ → YZ is also valid by 

the augmentation rule. 

For example, If {roll_no, name} → dept_building is valid, hence {roll_no, name, 

dept_name} → {dept_building, dept_name} is also valid.→ 

3. Transitivity: If X → Y and Y → Z are both valid dependencies, then X→Z is 

also valid by the Transitivity rule. 

For example, roll_no → dept_name & dept_name → dept_building, then roll_no 

→ dept_building is also valid. 

 

Types of Functional dependencies in DBMS: 

1. Trivial functional dependency 

2. Non-Trivial functional dependency 

3. Multivalued functional dependency 

4. Transitive functional dependency 

 

 

1. Trivial Functional Dependency 

In Trivial Functional Dependency, a dependent is always a subset of the 

determinant. 

i.e. If X → Y and Y is the subset of X, then it is called trivial functional dependency 

 

For example, 

roll_no name age 

42 abc 17 

43 pqr 18 

44 xyz 18 

 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com56 

 

Here, {roll_no, name} → name is a trivial functional dependency, since the 

dependent name is a subset of determinant set {roll_no, name} 

Similarly, roll_no → roll_no is also an example of trivial functional dependency.  

 

 

2. Non-trivial Functional Dependency 

In Non-trivial functional dependency, the dependent is strictly not a subset of the 

determinant. 

i.e. If X → Y and Y is not a subset of X, then it is called Non-trivial functional 

dependency. 

For example, 

roll_no name age 

42 abc 17 

43 pqr 18 

44 xyz 18 

 

Here, roll_no → name is a non-trivial functional dependency, since the 

dependent name is not a subset of determinant roll_no 

Similarly, {roll_no, name} → age is also a non-trivial functional dependency, 

since age is not a subset of {roll_no, name}  

 

3. Multivalued Functional Dependency 

In Multivalued functional dependency, entities of the dependent set are not 

dependent on each other. 

i.e. If a → {b, c} and there exists no functional dependency between b and c, then it is 

called a multivalued functional dependency. 

For example, 

roll_no name age  

42 abc 17  

43 pqr 18 

44 xyz 18 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com57 

 

roll_no name age  

45 abc 19 

Here, roll_no → {name, age} is a multivalued functional dependency, since the 

dependents name & age are not dependent on each other(i.e. name → age or age → 

name doesn’t exist !) 

 

4. Transitive Functional Dependency 

In transitive functional dependency, dependent is indirectly dependent on determinant.  

i.e. If a → b & b → c, then according to axiom of transitivity, a → c. This is a transitive 

functional dependency   

For example, 

enrol_no name dept building_no 

42 abc CO 4 

43 pqr EC 2 

44 xyz IT 1 

45 abc EC 2 

 

Here, enrol_no → dept and dept → building_no,  

Hence, according to the axiom of transitivity, enrol_no → building_no is a valid 

functional dependency. This is an indirect functional dependency, hence called Transitive 

functional dependency. 

 

Non-less Decomposition in DBMS 
Lossless join decomposition is a decomposition of a relation R into relations R1, R2 

such that if we perform a natural join of relation R1 and R2, it will return the original 

relation R. This is effective in removing redundancy from databases while preserving the 

original data… 

In other words by lossless decomposition, it becomes feasible to reconstruct the 

relation R from decomposed tables R1 and R2  by using Joins. 

In Lossless Decomposition, we select the common attribute and the criteria for 

selecting a common attribute is that the common attribute must be a candidate key or super 

key in either relation R1, R2, or both. 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com58 

 

Decomposition of a relation R into R1 and R2 is a lossless-join decomposition if at 

least one of the following functional dependencies are in F+ (Closure of functional 

dependencies)  

R1 ∩ R2 → R1 

   OR 

R1 ∩ R2 → R2 

Functional dependencies 

Normal Forms in DBMS 
Normalization is the process of minimizing redundancy from a relation or set of 

relations. Redundancy in relation may cause insertion, deletion, and update anomalies. So, 

it helps to minimize the redundancy in relations. Normal forms are used to eliminate or 

reduce redundancy in database tables. 

1. First Normal Form – 

If a relation contain composite or multi-valued attribute, it violates first normal form or 

a relation is in first normal form if it does not contain any composite or multi-valued 

attribute. A relation is in first normal form if every attribute in that relation is singled 

valued attribute. 

 

 Example 1 – Relation STUDENT in table 1 is not in 1NF because of multi-valued 

attribute STUD_PHONE. Its decomposition into 1NF has been shown in table 2.  

 

 

 Example 2 – 

  

ID   Name   Courses 

------------------ 

1    A      c1, c2 

2    E      c3 

3    M      C2, c3 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com59 

 

In the above table Course is a multi-valued attribute so it is not in 1NF. 

Below Table is in 1NF as there is no multi-valued attribute 

ID   Name   Course 

------------------ 

1    A       c1 

1    A       c2 

2    E       c3 

3    M       c2 

3    M       c3 

  

2. Second Normal Form – 

To be in second normal form, a relation must be in first normal form and relation 

must not contain any partial dependency. A relation is in 2NF if it has No Partial 

Dependency, i.e., no non-prime attribute (attributes which are not part of any candidate 

key) is dependent on any proper subset of any candidate key of the table.  

Partial Dependency – If the proper subset of candidate key determines non-prime 

attribute, it is called partial dependency. 

 Example 1 – Consider table-3 as following below. 

STUD_NO            COURSE_NO        COURSE_FEE 

1                     C1                  1000 

2                     C2                  1500 

1                     C4                  2000 

4                     C3                  1000 

4                     C1                  1000 

2                     C5                  2000 

{Note that, there are many courses having the same course fee. } 

Here, 

COURSE_FEE cannot alone decide the value of COURSE_NO or STUD_NO; 

COURSE_FEE together with STUD_NO cannot decide the value of COURSE_NO; 

COURSE_FEE together with COURSE_NO cannot decide the value of STUD_NO; 

Hence, 

COURSE_FEE would be a non-prime attribute, as it does not belong to the one only 

candidate key {STUD_NO, COURSE_NO} ; 

But, COURSE_NO -> COURSE_FEE, i.e., COURSE_FEE is dependent on 

COURSE_NO, which is a proper subset of the candidate key. Non-prime attribute 

COURSE_FEE is dependent on a proper subset of the candidate key, which is a partial 

dependency and so this relation is not in 2NF. 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com60 

 

To convert the above relation to 2NF, 

we need to split the table into two tables such as : 

Table 1: STUD_NO, COURSE_NO 

Table 2: COURSE_NO, COURSE_FEE 

       Table 1                                    Table 2 
STUD_NO            COURSE_NO          COURSE_NO                COURSE_FEE      

1                 C1                  C1                        1000 

2                 C2                  C2                        1500 

1                 C4                  C3                        1000 

4                 C3                  C4                        2000 

4                 C1                  C5                        2000         

2 C5 

NOTE: 2NF tries to reduce the redundant data getting stored in memory. For instance, 

if there are 100 students taking C1 course, we don’t need to store its Fee as 1000 for all 

the 100 records, instead, once we can store it in the second table as the course fee for 

C1 is 1000. 

 Example 2 – Consider following functional dependencies in relation  R (A,  B , C,  D ) 

 AB -> C  [A and B together determine C] 

BC -> D  [B and C together determine D] 

In the above relation, AB is the only candidate key and there is no partial dependency, 

i.e., any proper subset of AB doesn’t determine any non-prime attribute. 

3. Third Normal Form – 

A relation is in third normal form, if there is no transitive dependency for non-prime 

attributes as well as it is in second normal form. 

A relation is in 3NF if at least one of the following condition holds in every non-trivial 

function dependency X –> Y 

1. X is a super key. 

2. Y is a prime attribute (each element of Y is part of some candidate key).  

 

 
 

Transitive dependency – If A->B and B->C are two FDs then A->C is called transitive 

dependency. 

 Example 1 – In relation STUDENT given in Table 4, 

FD set: {STUD_NO -> STUD_NAME, STUD_NO -> STUD_STATE, 

STUD_STATE -> STUD_COUNTRY, STUD_NO -> STUD_AGE} 

Candidate Key: {STUD_NO} 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com61 

 

For this relation in table 4, STUD_NO -> STUD_STATE and STUD_STATE -> 

STUD_COUNTRY are true. So STUD_COUNTRY is transitively dependent on 

STUD_NO. It violates the third normal form. To convert it in third normal form, 

we will decompose the relation STUDENT (STUD_NO, STUD_NAME, 

STUD_PHONE, STUD_STATE, STUD_COUNTRY_STUD_AGE) as: 

STUDENT (STUD_NO, STUD_NAME, STUD_PHONE, STUD_STATE, 

STUD_AGE) 

STATE_COUNTRY (STATE, COUNTRY) 

 Example 2 – Consider relation R(A, B, C, D, E) 

A -> BC, 

CD -> E, 

B -> D, 

E -> A 

All possible candidate keys in above relation are {A, E, CD, BC} All attributes 

are on right sides of all functional dependencies are prime. 

4. Boyce-Codd Normal Form (BCNF) – 

A relation R is in BCNF if R is in Third Normal Form and for every FD, LHS is 

super key. A relation is in BCNF iff in every non-trivial functional dependency X –

> Y, X is a super key. 

 Example 1 – Find the highest normal form of a relation R(A,B,C,D,E) with FD 

set as {BC->D, AC->BE, B->E} 

Step 1. As we can see, (AC)+ ={A,C,B,E,D} but none of its subset can 

determine all attribute of relation, So AC will be candidate key. A or C can’t be 

derived from any other attribute of the relation, so there will be only 1 candidate 

key {AC}. 

 

 Step 2. Prime attributes are those attributes that are part of candidate key {A, C} 

in this example and others will be non-prime {B, D, E} in this example. 

 

 Step 3. The relation R is in 1st normal form as a relational DBMS does not 

allow multi-valued or composite attribute. 

The relation is in 2nd normal form because BC->D is in 2nd normal form (BC 

is not a proper subset of candidate key AC) and AC->BE is in 2nd normal form 

(AC is candidate key) and B->E is in 2nd normal form (B is not a proper subset 

of candidate key AC). 

 

 The relation is not in 3rd normal form because in BC->D (neither BC is a super 

key nor D is a prime attribute) and in B->E (neither B is a super key nor E is a 

prime attribute) but to satisfy 3rd normal for, either LHS of an FD should be 

super key or RHS should be prime attribute. 

 

 So the highest normal form of relation will be 2nd Normal form. 

 Example 2 –For example consider relation R(A, B, C) 

A -> BC, 

B -> 

A and B both are super keys so above relation is in BCNF. 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com62 

 

 

Key Points – 

 BCNF is free from redundancy. 

 If a relation is in BCNF, then 3NF is also satisfied. 

 If all attributes of relation are prime attribute, then the relation is always in 3NF. 

 A relation in a Relational Database is always and at least in 1NF form. 

 Every Binary Relation ( a Relation with only 2 attributes ) is always in BCNF. 

 If a Relation has only singleton candidate keys( i.e. every candidate key consists of 

only 1 attribute), then the Relation is always in 2NF( because no Partial functional 

dependency possible). 

 Sometimes going for BCNF form may not preserve functional dependency. In that 

case go for BCNF only if the lost FD(s) is not required, else normalize till 3NF only. 

 There are many more Normal forms that exist after BCNF, like 4NF and more. But 

in real world database systems it’s generally not required to go beyond BCNF.  

  

Exercise 1: Find the highest normal form in R (A, B, C, D, E) under following functional 

dependencies. 

   

ABC --> D 

  CD --> AE  

Important Points for solving above type of question. 

 

1) It is always a good idea to start checking from BCNF, then 3 NF, and so on.  

 

2) If any functional dependency satisfied a normal form then there is no need to check for 

lower normal form. For example, ABC –> D is in BCNF (Note that ABC is a superkey), so 

no need to check this dependency for lower normal forms. 

Candidate keys in the given relation are {ABC, BCD} 

BCNF: ABC -> D is in BCNF. Let us check CD -> AE, CD is not a super 

key so this dependency is not in BCNF. So, R is not in BCNF. 

3NF: ABC -> D we don’t need to check for this dependency as it already 

satisfied BCNF. Let us consider CD -> AE. Since E is not a prime attribute, so the 

relation is not in 3NF. 

2NF: In 2NF, we need to check for partial dependency. CD is a proper 

subset of a candidate key and it determines E, which is non-prime attribute. So, 

given relation is also not in 2 NF. So, the highest normal form is 1 NF. 

 

Multivalued dependency (MVD) 

Multivalued dependency (MVD) is having the presence of one or more rows in a 

table. It implies the presence of one or more other rows in that same table. A multivalued 

dependency prevents fourth normal form. A multivalued dependency involves at least three 

attributes of a table. 

It is represented with a symbol "->->" in DBMS. 

X->Y relates one value of X to one value of Y. 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com63 

 

X->->Y (read as X multidetermines Y) relates one value of X to many values of Y. 

A Nontrivial MVD occurs when X->->Y and X->->z where Y and Z are not 

dependent are independent to each other. Non-trivial MVD produces redundancy. 

We use multivalued conditions in two different ways −  

 To test relations to decide if they are lawful under a given arrangement of practical 

and multivalued dependencies. 

 To determine limitations on the arrangement of lawful relations. We will concern 

ourselves just with relations that fulfill a given arrangement of practical and 

multivalued dependencies. 

 

MVD transitive rule 

If A ->B holds, and B ->C holds, then A ->B −>C holds. 

Example 

Given FD set is as follows − 

ISBN--> TITLE,PUBLISHER 

ISBN,NO -->AUTHOR 

PUBLISHER -->PU_URL 

We need to prove the rule. Consider A=ISBN,B=PUBLISHER,C=PU_URL. To find the 

Transitive rule is implied, find the cover of A+ and compute. 

 Now start with x={ISBN} 

 The FD ISBN--> TITLE, PUBLISHER has LHS which is completely contained in 

current attribute set x. 

 Extend x by FD RHS attribute set, giving x={ISBN,TITLE,PUBLISHER} 

 Now FD:PUBLISHER -->PU_URL is applicable 

 Add RHS attribute set of FD to current attribute SET x, giving 

x={ISBN,TITLE,PUBLISHER,PU_URL} 

Here we can conclude that ISBN-->PU_URL 

Multivalued Dependencies 

The 4th Normal Form can cause the Multivalued Dependencies. If a relation is in Boyce 

codee Normal form, it has to remove the multivalued Dependencies. 

Explanation − The multivalued dependencies is that, if there is a dependency or relation in a 

table, then one value has multiple dependencies occur. 

Let us consider an example as given below. Consider the following table − 

id department shift 

1 coding day 

2 Hr day 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com64 

 

id department shift 

3 Network night 

In the above table, id 2 has two departments Hr and Network. And shift timing day and 

night. 

When we select the details with the id 2, then it will result the table as follows − 

id department shift 

2 Hr day 

2 Network night 

2 Hr night 

2 Network day 

This means there exist multivalued dependencies. In this, the relation between department 

and shift is nothing. 

This can be rectified by removing the multivalued dependency as, making this data in to two 

tables as below − 

Table 1 

id department 

1 coding 

2 Hr 

2 network 

Table 2 

id shift 

1 day 

2 day 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com65 

 

id shift 

2 night 

The 4th normal form is applied to remove the multivalued dependencies in the data table. 

The fourth normal form thus defines the multivalued dependencies. 

 

If two or more independent relation are kept in a single relation or we can say multivalue 

dependency occurs when the presence of one or more rows in a table implies the presence 

of one or more other rows in that same table. Put another way, two attributes (or columns) 

in a table are independent of one another, but both depend on a third attribute.  

 

A multivalued dependency always requires at least three attributes because it consists of 

at least two attributes that are dependent on a third.  

 

For a dependency A -> B, if for a single value of A, multiple value of B exists, then the 

table may have multi-valued dependency. The table should have at least 3 attributes and B 

and C should be independent for A ->> B multivalued dependency. For example,  

  

Person Mobile Food_Likes 

Mahesh 9893/9424 Burger / pizza 

Ramesh 9191 Pizza 

Person->-> mobile, 

Person ->-> food_likes  

This is read as “person multidetermines mobile” and “person multidetermines food_likes.”   

Note that a functional dependency is a special case of multivalued dependency. In a 

functional dependency X -> Y, every x determines exactly one y, never more than one.  

  

Fourth normal form (4NF): 

 

Fourth normal form (4NF) is a level of database normalization where there are no non-

trivial multivalued dependencies other than a candidate key. It builds on the first three 

normal forms (1NF, 2NF and 3NF) and the Boyce-Codd Normal Form (BCNF). It states 

that, in addition to a database meeting the requirements of BCNF, it must not contain more 

than one multivalued dependency.  

Properties – A relation R is in 4NF if and only if the following conditions are satisfied:  

  

1. It should be in the Boyce-Codd Normal Form (BCNF). 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com66 

 

2. the table should not have any Multi-valued Dependency. 

 

A table with a multivalued dependency violates the normalization standard of Fourth 

Normal Form (4NK) because it creates unnecessary redundancies and can contribute to 

inconsistent data. To bring this up to 4NF, it is necessary to break this information into two 

tables.  

Example – Consider the database table of a class which has two relations R1 contains 

student ID(SID) and student name (SNAME) and R2 contains course id(CID) and course 

name (CNAME).  

Table – R1(SID, SNAME)  

SID SNAME 

S1 A 

S2 B 

Table – R2(CID, CNAME)  

  

CID CNAME 

C1 C 

C2 D 

When there cross product is done it resulted in multivalued dependencies:   

Table – R1 X R2  

SID SNAME CID CNAME 

S1 A C1 C 

S1 A C2 D 

S2 B C1 C 

S2 B C2 D 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com67 

 

Multivalued dependencies (MVD) are:  

  

 SID->->CID; SID->->CNAME; SNAME->->CNAME 

Joint dependency 
 

Join decomposition is a further generalization of Multivalued dependencies. If the join of 

R1 and R2 over C is equal to relation R then we can say that a join  

dependency (JD) exists, where R1 and R2 are the decomposition R1(A, B, C) and R2(C, D) 

of a given relations R (A, B, C, D). Alternatively, R1 and R2 are a lossless decomposition 

of R. A JD ⋈ {R1, R2, …, Rn} is said to hold over a relation R if R1, R2, ….., Rn is a 

lossless-join decomposition. The *(A, B, C, D), (C, D) will be a JD of R if the join of join’s 

attribute is equal to  

the relation R. Here, *(R1, R2, R3) is used to indicate that relation R1, R2, R3 and so on 

are a JD of R.  

Let R is a relation schema R1, R2, R3……..Rn be the decomposition of R. r( R ) is said to 

satisfy join dependency if and only if  

 

Example –  

Table – R1  

Company Product 

C1 pendrive 

C1 mic 

C2 speaker 

C2 speaker 

Company->->Product  

Table – R2  

Agent Company 

Aman C1 

Aman C2 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com68 

 

Agent Company 

Mohan C1 

Agent->->Company  

Table – R3  

Agent Product 

Aman pendrive 

Aman mic 

Aman speaker 

Mohan speaker 

Agent->->Product  

Table – R1⋈R2⋈R3  

Company Product Agent 

C1 pendrive Aman 

C1 mic Aman 

C2 speaker speaker 

C1 speaker Aman 

Agent->->Product  

Fifth Normal Form / Projected Normal Form (5NF): 
A relation R is in 5NF if and only if every join dependency in R is implied by the candidate 

keys of R. A relation decomposed into two relations must have loss-less join Property, 

which ensures that no spurious or extra tuples are generated, when relations are reunited 

through a natural join.  

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com69 

 

Properties – A relation R is in 5NF if and only if it satisfies following conditions:   

  

1. R should be already in 4NF.  

  

2. It cannot be further non loss decomposed (join dependency) 

 

Example – Consider the above schema, with a case as “if a company makes a product and 

an agent is an agent for that company, then he always sells that product for the company”. 

Under these circumstances, the ACP table is shown as:  

Table – ACP  

Agent Company Product 

A1 PQR Nut 

A1 PQR Bolt 

A1 XYZ Nut 

A1 XYZ Bolt 

A2 PQR Nut 

The relation ACP is again decompose into 3 relations. Now, the natural Join of all the three 

relations will be shown as:  

Table – R1  

Agent Company 

A1 PQR 

A1 XYZ 

A2 PQR 

Table – R2  

  

Agent Product 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com70 

 

Agent Product 

A1 Nut 

A1 Bolt 

A2 Nut 

Table – R3  

  

Company Product 

PQR Nut 

PQR Bolt 

XYZ Nut 

XYZ Bolt 

 

Result of Natural Join of R1 and R3 over ‘Company’ and then Natural Join of R13 and R2 

over ‘Agent’and ‘Product’ will be table ACP.  

Hence, in this example, all the redundancies are eliminated, and the decomposition of ACP 

is a lossless join decomposition. Therefore, the relation is in 5NF as it does not violate the 

property of lossless join. 

 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com71 

 

Unit 4 

TRANSACTIONS 

The transaction is a set of logically related operation. It contains a group of tasks. 

A transaction is an action or series of actions. It is performed by a single user to perform 

operations for accessing the contents of the database. 

Example: Suppose an employee of bank transfers Rs 800 from X's account to Y's account. 

This small transaction contains several low-level tasks: 

X's Account 

Open_Account(X)   

1. Old_Balance = X.balance   

2. New_Balance = Old_Balance - 800   

3. X.balance = New_Balance   

4. Close_Account(X)   

Y's Account 

1. Open_Account(Y)   

2. Old_Balance = Y.balance   

3. New_Balance = Old_Balance + 800   

4. Y.balance = New_Balance   

5. Close_Account(Y)   

Operations of Transaction: 

Read(X): Read operation is used to read the value of X from the database and stores it in a 

buffer in main memory. 

Write(X): Write operation is used to write the value back to the database from the buffer. 

Let's take an example to debit transaction from an account which consists of following 

operations: 

1.  R(X);   

2.  X = X - 500;   

3.  W(X);   

Let's assume the value of X before starting of the transaction is 4000. 

o The first operation reads X's value from database and stores it in a buffer. 

o The second operation will decrease the value of X by 500. So buffer will contain 

3500. 

o The third operation will write the buffer's value to the database. So X's final value will 

be 3500. 

But it may be possible that because of the failure of hardware, software or power, etc. that 

transaction may fail before finished all the operations in the set. 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com72 

 

For example: If in the above transaction, the debit transaction fails after executing operation 

2 then X's value will remain 4000 in the database which is not acceptable by the bank. 

To solve this problem, we have two important operations: 

Commit: It is used to save the work done permanently. 

Rollback: It is used to undo the work done. 

TRANSACTION RECOVERY 

UNDO and REDO: lists of transactions UNDO = all transactions running at the last 

checkpoint REDO = empty For each entry in the log, starting at the last checkpoint If a 

BEGIN TRANSACTION entry is found for T Add T to UNDO If a COMMIT entry is found 

for T Move T from UNDO to REDO 

 Types of Transaction Recovery 

 Recovery information is divided into two types: 

 •Undo (or Rollback) Operations 

 •Redo (or Cache Restore) Operations 

 Ingres performs both online and offline recovery, as described in Recovery 

Modes (see page Recovery Modes). 

 Undo Operation 

 Undo or transaction backout recovery is performed by the DBMS Server. For 

example, when a transaction is aborted, transaction log file information is used to roll 

back all related updates. The DBMS Server writes the Compensation Log Records 

(CLRs) to record a history of the actions taken during undo operations. 

 Redo Operation 

 A Redo recovery operation is database-oriented. Redo recovery is performed after a 

server or an installation fails. Its main purpose is to recover the contents of the DMF 

cached data pages that are lost when a fast-commit server fails. Redo recovery is 

performed by the recovery process. Redo recovery precedes undo recovery. 

 Redo Operation in a Cluster Environment 

 In an Ingres cluster environment where all nodes are active, the local recovery server 

performs transaction redo/undo for a failed DBMS server on its node, just like in the 

non-cluster case. The difference in a cluster installation is that if the recovery process 

(RCP) dies on one node, either because of an Ingres failure, or a general failure of the 

hardware, an RCP on another node will take responsibility for cleaning up 

transactions for the failed nodes. 

 

ACID PROPERTIES 

A transaction is a very small unit of a program and it may contain several lowlevel tasks. 

A transaction in a database system must maintain Atomicity, Consistency, Isolation, 

and Durability − commonly known as ACID properties − in order to ensure accuracy, 

completeness, and data integrity. 

 Atomicity − This property states that a transaction must be treated as an atomic unit, 

that is, either all of its operations are executed or none. There must be no state in a 

database where a transaction is left partially completed. States should be defined either 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com73 

 

before the execution of the transaction or after the execution/abortion/failure of the 

transaction. 

 Consistency − The database must remain in a consistent state after any transaction. 

No transaction should have any adverse effect on the data residing in the database. If 

the database was in a consistent state before the execution of a transaction, it must 

remain consistent after the execution of the transaction as well. 

 Durability − The database should be durable enough to hold all its latest updates even 

if the system fails or restarts. If a transaction updates a chunk of data in a database and 

commits, then the database will hold the modified data.  

 If a transaction commits but the system fails before the data could be written on to the 

disk, then that data will be updated once the system springs back into action. 

 Isolation − In a database system where more than one transaction are being executed 

simultaneously and in parallel, the property of isolation states that all the transactions 

will be carried out and executed as if it is the only transaction in the system. No 

transaction will affect the existence of any other transaction. 

 

SYSTEM RECOVERY 

 Any transaction that was running at the time of failure needs to be undone and 

restarted 

 Any transactions that committed since the last checkpoint need to be redone 

 Transactions of type T1 need no recovery • Transactions of type T3 or T5 need to be 

undone and restarted  

 Transactions of type T2 or T4 need to be redone. 

Media Failures  

  System failures are not too severe • Only information since the last checkpoint is 

affected • This can be recovered from the transaction log • Media failures (disk crashes etc) 

are more serious • The data stored to disk is damaged • The transaction log itself may be 

damaged 

Recovery from Media Failure  

• Restore the database from the last backup  

• Use the transaction log to redo any changes made since the last backup 

 • If the transaction log is damaged you can’t do step 2 

 • Store the log on a separate physical device to the database  

• The risk of losing both is then reduced. 

 

MEDIA RECOVERY 

If you restore the archived redo log files and data files, then you must perform media 

recovery before you can open the database. Any database transactions in the archived redo 

log files not reflected in the data files are applied to the data files, bringing them to a 

transaction-consistent state before the database is opened. 

Media recovery requires a control file, data files (typically restored from backup), and 

online and archived redo log files containing changes since the time the data files were 

backed up. Media recovery is most often used to recover from media failure, such as the loss 

of a file or disk, or a user error, such as the deletion of the contents of a table. 

Media recovery can be a complete recovery or a point-in-time recovery. Complete 

recovery can apply to individual datafiles, tablespaces, or the entire database. Point-in-time 

recovery applies to the whole database (and also sometimes to individual tablespaces, with 

automation help from Oracle Recover Manager (RMAN)). 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com74 

 

In a complete recovery, you restore backup data files and apply all changes from the 

archived and online redo log files to the data files. The database is returned to its state at the 

time of failure and can be opened with no loss of data. 

In a point-in-time recovery, you return a database to its contents at a user-selected 

time in the past. You restore a backup of data files created before the target time and a 

complete set of archived redo log files from backup creation through the target time. 

Recovery applies changes between the backup time and the target time to the data files. All 

changes after the target time are discarded. 

RMAN enables you to perform both a complete and a point-in-time recovery of your 

database. However, this documentation focuses on complete recovery. 

TWO-PHASE COMMIT (2PC) 

A two-phase commit is a standardized protocol that ensures that a database commit is 

implementing in the situation where a commit operation must be broken into two separate 

parts. 

In database management, saving data changes is known as a commit and undoing 

changes is known as a rollback. Both can be achieved easily using transaction logging when a 

single server is involved, but when the data is spread across geographically-diverse servers in 

distributed computing (i.e., each server being an independent entity with separate log 

records), the process can become more tricky. 

Two Phase commit protocol is a type of distributed commit protocol. There are two 

different types of databases. In a local database system, every transaction needs to be 

committed. Therefore, the transaction manager has the role to commit the decision by 

conveying it to the reporting manager. 

when it comes to a distributed system, the transaction manager should convey it from 

all the servers from various sites included in the distributed system to commit the decision. 

When each server completes the processing at each site. The transaction reaches a partially 

committed state. But it has to wait until all the transaction reaches that state. Once all the 

transactions from different servers reach the partially committed state, the transaction 

manager can commit the transaction. However, it is necessary that all the sites must commit 

the transaction. 

Role of two phase commit protocol in Database Management 

 Distributed Commit Protocols 

 One-phase commit protocol 

 Two Phase commit protocol 

 Three Phase commit protocol 

 Advantages of Two Phase commit protocol 

 Disadvantages of Two Phase commit protocol 

 

SAVE POINTS 

A save point is a way of implementing sub transactions (also known as nested 

transactions) within a relational database management system by indicating a point within a 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com75 

 

transaction that can be "rolled back to" without affecting any work done in the transaction 

before the savepoint was created. 

SAVEPOINT command 

SAVEPOINT command is used to temporarily save a transaction so that you can rollback to 

that point whenever required. 

Following is savepoint command's syntax, 

SAVEPOINT savepoint_name; 

Copy 

In short, using this command we can name the different states of our data in any table and 

then rollback to that state using the ROLLBACK command whenever required. 

savepoint 

Specify the name of the savepoint to be created. 

Savepoint names must be distinct within a given transaction. If you create a second savepoint 

with the same identifier as an earlier savepoint, then the earlier savepoint is erased. After a 

savepoint has been created, you can either continue processing, commit your work, roll back 

the entire transaction, or roll back to the savepoint. 

Example 

Creating Savepoints: Example To update the salary for Banda and Greene in the sample 

table hr.employees, check that the total department salary does not exceed 314,000, then 

reenter the salary for Greene: 

UPDATE employees  

    SET salary = 7000  

    WHERE last_name = 'Banda'; 

SAVEPOINT banda_sal; 

UPDATE employees  

    SET salary = 12000  

    WHERE last_name = 'Greene'; 

SAVEPOINT greene_sal; 

SELECT SUM(salary) FROM employees; 

ROLLBACK TO SAVEPOINT banda_sal; 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com76 

 

UPDATE employees  

    SET salary = 11000  

    WHERE last_name = 'Greene'; 

COMMIT;  

Recovery Facilities 

 

Checkpoint facility allows updates to the database for getting the latest patches to be made 

permanent and keep secure from vulnerability. Recovery manager allows the database system 

for restoring the database to a reliable and steady-state after any failure occurs. 

SQL BASIC FACILITIES 

 In addition to the advanced facilities noted above, SQL is rich in the type of ease of 

use capabilities that are necessary to support relational databases from the simple to the 

complex. Table Facility First and foremost, SQL provides a table facility that enables a 

prompted, intuitive interface for the following functions: 9 Defining databases 9 Populating 

databases with rows 9 Manipulating databases.  

Table Editor SQL also provides a table editor that makes it easy for you to perform 

the following functions against rows in table data that is structured in row and column 

format:. 9 Access 9 Insert 9 Update 9 Delete Query Facility: With the Query facility, SQL 

permits you to interactively define queries and have results displayed in a variety of report 

formats including the following: 9 Tabular 9 Matrix 9 Free format For those readers who 

have a System i5 background, you will notice that SQL brings with it its own naming scheme 

that is significantly different from corresponding native objects. See table 4-1 for specifics 

CONCURRENCY 
Database concurrency is the ability of a database to allow multiple users to affect 

multiple transactions. This is one of the main properties that separates a database from other 

forms of data storage, like spreadsheets. 

The ability to offer concurrency is unique to databases. Spreadsheets or other flat file 

means of storage are often compared to databases, but they differ in this one important 

regard. 

Spreadsheets cannot offer several users the ability to view and work on the different 

data in the same file, because once the first user opens the file it is locked to other users. 

Other users can read the file, but may not edit data. 

NEED FOR CONCURRENCY  

Database concurrency is the ability of a database to allow multiple users to affect 

multiple transactions. This is one of the main properties that separates a database from other 

forms of data storage, like spreadsheets. 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com77 

 

The ability to offer concurrency is unique to databases. Spreadsheets or other flat file 

means of storage are often compared to databases, but they differ in this one important 

regard. 

Spreadsheets cannot offer several users the ability to view and work on the different 

data in the same file, because once the first user opens the file it is locked to other users. 

Other users can read the file, but may not edit data. 

LOCKING PROTOCOLS 

Lock Based Protocol in DBMS 

The database management system (DBMS) stores data that can connect with one another as 

well as can be altered at any point. There are instances where more than one user may attempt 

to access the same data item simultaneously, resulting in concurrency. 

As a result, there is a requirement to handle concurrency in order to handle the concurrent 

processing of transactions across many databases in the picture. Lock based protocol in dbms 

are an example of such an approach. 

Introduction to Lock Based Protocol 

We can define a lock based protocol in dbms as a mechanism that is responsible to 

prevent a transaction from reading or writing data until the necessary lock is obtained. The 

concurrency problem can be solved by securing or locking a transaction to a specific user. 

The lock is a variable that specifies which activities are allowed on a certain data item. 

Types of Locks in DBMS 

In DBMS Lock based Protocols, there are two modes for locking and unlocking data 

items Shared Lock (lock-S) and Exclusive Lock (lock-X). Let's go through the two types of 

locks in detail: 

Shared Lock 

 Shared Locks, which are often denoted as lock-S(), are defined as locks that provide 

Read-Only access to the information associated with them. Whenever a shared lock is 

used on a database, it can be read by several users, but these users who are reading the 

information or the data items will not have the permission to edit it or make any 

changes to the data items. 

 To put it another way, we can say that shared locks don't provide the access to write. 

Because numerous users can read the data items simultaneously, multiple shared locks 

can be installed on them at the same time, but the data item must not have any other 

locks connected with it. 

 A shared lock, also known as a read lock, is solely used to read data objects. Read 

integrity is supported via shared locks. 

 Shared locks can also be used to prevent records from being updated. 

 S-lock is requested via the Lock-S instruction. 

Exclusive Lock 

 Exclusive Lock allows the data item to be read as well as written. This is a one-time 

use mode that can't be utilized on the exact data item twice. To obtain X-lock, the user 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com78 

 

needs to make use of the lock-x instruction. After finishing the 'write' step, 

transactions can unlock the data item. 

 By imposing an X lock on a transaction that needs to update a person's account 

balance, for example, you can allow it to proceed. As a result of the exclusive lock, 

the second transaction is unable to read or write. 

 The other name for an exclusive lock is write lock. 

 At any given time, the exclusive locks can only be owned by one transaction. 

Example of exclusive locks: Consider the instance where the value of a data item X is equal 

to 50 and a transaction requires a deduction of 20 from the data item X. By putting a Y lock 

on this particular transaction, we can make it possible. As a result, the exclusive lock prevents 

any other transaction from reading or writing. 

Types of Lock-Based Protocols 

There are basically four lock based protocols in dbms namely Simplistic Lock 

Protocol, Pre-claiming Lock Protocol, Two-phase Locking Protocol, and Strict Two-Phase 

Locking Protocol. Let's go through each of these lock-based protocols in detail. 

Simplistic Lock Protocol 

The simplistic method is defined as the most fundamental method of securing data 

during a transaction. Simple lock-based protocols allow all transactions to lock the data 

before inserting, deleting, or updating it. After the transaction is completed, the data item will 

be unlocked. 

Pre-Claiming Lock Protocol 

Pre-claiming Lock Protocols are known to assess transactions to determine which data 

elements require locks. Prior to actually starting the transaction, it asks the Database 

management system for all of the locks on all of the data items. The pre-claiming protocol 

permits the transaction to commence if all of the locks are obtained. Whenever the 

transaction is finished, the lock is released. This protocol permits the transaction to roll back 

if all of the locks are not granted, and then waits until all of the locks are granted. 

TWO-PHASE LOCKING PROTOCOL 

If Locking as well as the Unlocking can be performed in 2 phases, a transaction is 

considered to follow the Two-Phase Locking protocol. The two phases are known as the 

growing and shrinking phase. 

1. Growing Phase: In this phase, we can acquire new locks on data items but none of 

these locks can be released. 

2. Shrinking Phase: In this phase, the existing locks can be released but no new locks 

can be obtained. 

Two-phase locking helps to reduce the amount of concurrency in a schedule but just like 

the two sides of a coin two-phase locking has a few cons too. The protocol raises transaction 

processing costs and may have unintended consequences. The likelihood of establishing 

deadlocks is one bad result. 

Strict Two-Phase Locking Protocol 

In DBMS, Cascaded rollbacks are avoided with the concept of a Strict Two-Phase 

Locking Protocol. This protocol necessitates not only two-phase locking but also the 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com79 

 

retention of all exclusive locks until the transaction commits or aborts. The two-phase is with 

deadlock. 

It is responsible for assuring that if 1 transaction modifies data, there can be no other 

transaction that will be able to read it until the first transaction commits. The majority of 

database systems use a strict two-phase locking protocol. 

Deadlock 
When a transaction must wait an unlimited period for a lock, it is referred to as starvation. 

The following are the causes of starvation : 

1. When the locked item waiting scheme is not correctly controlled. 

2. When a resource leak occurs. 

3. The same transaction is repeatedly chosen as a victim. 

Let's know how starvation can be prevented. Random process selection for resource or 

processor allocation should be avoided since it encourages hunger. The resource allocation 

priority scheme should contain ideas like aging, in which a process' priority rises as it waits 

longer. This prevents starvation. 

Deadlock- In a circular chain, a deadlock situation occurs when two or more processes 

are expecting each other to release a resource, or when more than 2 processes are waiting for 

the resource. 

Two-Phase Locking – 

A transaction is said to follow the Two-Phase Locking protocol if Locking and 

Unlocking can be done in two phases.  

1. Growing Phase: New locks on data items may be acquired but none can be released. 

2. Shrinking Phase: Existing locks may be released but no new locks can be acquired. 

Note – If lock conversion is allowed, then upgrading of lock( from S(a) to X(a) ) is allowed 

in the Growing Phase, and downgrading of lock (from X(a) to S(a)) must be done in 

shrinking phase.  

Let’s see a transaction implementing 2-PL.  

   T1 T2 

1 lock-S(A)   

2   lock-S(A) 

3 lock-X(B)   

4 ……. …… 

5 Unlock(A)   

6   Lock-X(C) 

7 Unlock(B)   

8   Unlock(A) 

9   Unlock(C) 

10 ……. …… 

 

This is just a skeleton transaction that shows how unlocking and locking work with 2-PL. 

Note for:  

 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com80 

 

 

 

Transaction T1: 

 The growing Phase is from steps 1-3. 

 The shrinking Phase is from steps 5-7. 

 Lock Point at 3 

Transaction T2: 

 The growing Phase is from steps 2-6. 

 The shrinking Phase is from steps 8-9. 

 Lock Point at 6 

 

DEADLOCK  
 

In a database, a deadlock is an unwanted situation in which two or more transactions 

are waiting indefinitely for one another to give up locks. Deadlock is said to be one of the 

most feared complications in DBMS as it brings the whole system to a Halt.  

Example – let us understand the concept of Deadlock with an example :  

Suppose, Transaction T1 holds a lock on some rows in the Students table and needs to 

update some rows in the Grades table. Simultaneously, Transaction T2 holds locks on 

those very rows (Which T1 needs to update) in the Grades table but needs to update the 

rows in the Student table held by Transaction T1.  

Now, the main problem arises. Transaction T1 will wait for transaction T2 to give up the 

lock, and similarly, transaction T2 will wait for transaction T1 to give up the lock. As a 

consequence, All activity comes to a halt and remains at a standstill forever unless the 

DBMS detects the deadlock and aborts one of the transactions.  

 

Deadlock Avoidance –  

 

When a database is stuck in a deadlock, It is always better to avoid the deadlock rather than 

restarting or aborting the database. The deadlock avoidance method is suitable for smaller 

databases whereas the deadlock prevention method is suitable for larger databases.  

One method of avoiding deadlock is using application-consistent logic. In the above-given 

example, Transactions that access Students and  Grades should always access the tables in 

the same order. In this way, in the scenario described above, Transaction T1 simply waits 

for transaction T2 to release the lock on  Grades before it begins. When transaction T2 

releases the lock, Transaction T1 can proceed freely.  

Another method for avoiding deadlock is to apply both row-level locking mechanism and 

READ COMMITTED isolation level. However, It does not guarantee to remove deadlocks 

completely.  

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com81 

 

Deadlock Detection –  

 

When a transaction waits indefinitely to obtain a lock, The database management system 

should detect whether the transaction is involved in a deadlock or not.  

Wait-for-graph is one of the methods for detecting the deadlock situation. This method is 

suitable for smaller databases. In this method, a graph is drawn based on the transaction and 

their lock on the resource. If the graph created has a closed-loop or a cycle, then there is a 

deadlock.  

For the above-mentioned scenario, the Wait-For graph is drawn below 

 

Deadlock prevention –  

 

For a large database, the deadlock prevention method is suitable. A deadlock can be 

prevented if the resources are allocated in such a way that deadlock never occurs. The 

DBMS analyzes the operations whether they can create a deadlock situation or not, If they 

do, that transaction is never allowed to be executed.  

Deadlock prevention mechanism proposes two schemes :  

 Wait-Die Scheme –  

In this scheme, If a transaction requests a resource that is locked by another transaction, 

then the DBMS simply checks the timestamp of both transactions and allows the older 

transaction to wait until the resource is available for execution.  

Suppose, there are two transactions T1 and T2, and Let the timestamp of any transaction 

T be TS (T). Now, If there is a lock on T2 by some other transaction and T1 is 

requesting for resources held by T2, then DBMS performs the following actions:  

Checks if TS (T1) < TS (T2) – if T1 is the older transaction and T2 has held some 

resource, then it allows T1 to wait until resource is available for execution. That means 

if a younger transaction has locked some resource and an older transaction is waiting 

for it, then an older transaction is allowed to wait for it till it is available. If T1 is an 

older transaction and has held some resource with it and if T2 is waiting for it, then T2 

is killed and restarted later with random delay but with the same timestamp. i.e. if the 

older transaction has held some resource and the younger transaction waits for the 

resource, then the younger transaction is killed and restarted with a very minute delay 

with the same timestamp.  

This scheme allows the older transaction to wait but kills the younger one.  

  

 Wound Wait Scheme –  

In this scheme, if an older transaction requests for a resource held by a younger 

transaction, then an older transaction forces a younger transaction to kill the transaction 

and release the resource. The younger transaction is restarted with a minute delay but 

with the same timestamp. If the younger transaction is requesting a resource that is held 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com82 

 

by an older one, then the younger transaction is asked to wait till the older one releases 

it.  

  

SERIALIZABILITY 
A schedule is serialized if it is equivalent to a serial schedule. A concurrent schedule must 

ensure it is the same as if executed serially means one after another. It refers to the sequence 

of actions such as read, write, abort, commit are performed in a serial manner. 

Example 

Let’s take two transactions T1 and T2, 

If both transactions are performed without interfering each other then it is called as serial 

schedule, it can be represented as follows − 

T1 T2 

READ1(A)  

WRITE1(A)  

READ1(B)  

C1  

 READ2(B) 

 WRITE2(B) 

 READ2(B) 

 C2 

Non serial schedule − When a transaction is overlapped between the transaction T1 and T2. 

Example 

Consider the following example − 

T1 T2 

READ1(A)  

WRITE1(A)  

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com83 

 

T1 T2 

 READ2(B) 

 WRITE2(B) 

READ1(B)  

WRITE1(B)  

READ1(B)  

 

Types of serializability 

There are two types of serializability − 

View serializability 

A schedule is view-serializability if it is viewed equivalent to a serial schedule. 

The rules it follows are as follows − 

 T1 is reading the initial value of A, then T2 also reads the initial value of A. 

 T1 is the reading value written by T2, then T2 also reads the value written by T1. 

 T1 is writing the final value, and then T2 also has the write operation as the final 

value. 

 

Conflict serializability 

It orders any conflicting operations in the same way as some serial execution. A pair of 

operations is said to conflict if they operate on the same data item and one of them is a write 

operation. 

That means 

 Readi(x) readj(x) - non conflict  read-read operation 

 Readi(x) writej(x) - conflict       read-write operation. 

 Writei(x) readj(x) - conflict       write-read operation. 

 Writei(x) writej(x) - conflict      write-write operation. 

RECOVERY ISOLATION LEVELS 

 

In case of transaction the term ACID has been used significantly to state some of 

important properties that a transaction must follow. We all know ACID stands for Atomicity, 

Consistency, Isolation and Durability and these properties collectively called as ACID 

Properties. 

 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com84 

 

 

Properties of transaction 

Database system ensures ACID property − 

 Atomicity − Either all or none of the transaction operation is done. 

 Consistency − A transaction transfer from one consistent (correct) state to another 

consistent state. 

 Isolation − A transaction is isolated from other transactions. i.e. A transaction is not 

affected by another transaction. Although multiple transactions execute concurrently it 

must appear as if the transaction are running serially (one after the other). 

 Durability − The results of transactions are permanent i.e. the result will never be lost 

with subsequent failure, durability refers to long lasting i.e. permanency. 

 

Isolation 

It determines the visibility of transactions of other systems. A lower level allows every user 

to access the same data. Therefore, it involves high risk of data privacy and security of the 

system. However, a higher isolation level reduces the type of concurrency over the data but 

requires more resources and is slower than lower isolation levels. 

The isolation protocols help safeguards the data from unwanted transactions. They maintain 

the integrity of every data by defining how and when the changes made by one operation are 

visible to others. 

Levels of isolation 

There are four levels of isolations which are explained below − 

 Read Uncommitted − It is the lowest level of isolation. At this level; the dirty reads 

are allowed, which means one can read the uncommitted changes made by another. 

 Read committed − It allows no dirty reads, and clearly states that any uncommitted 

data is committed now it is read. 

 Repeatable Read − This is the most restricted level of isolation. The transaction holds 

read locks on all the rows it references and write locks over all the rows it 

updates/inserts/deletes. So, there is no chance of non-repeatable reads. 

 Serializable − The highest level of civilization. It determines that all concurrent 

transactions be executed serially. 

Example 

Consider an example of isolation. 

What is the isolation level of transaction E? 

session begins 

SET GLOBAL TRANSACTION 

ISOLATION LEVEL SERIALIZABLE; 

session ends 

session begins 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com85 

 

SET SESSION TRANSACTION 

ISOLATION LEVEL REPEATABLE READ; 

transaction A 

transaction B 

SET TRANSACTION 

ISOLATION LEVEL READ UNCOMMITTED; 

transaction C 

SET TRANSACTION 

ISOLATION LEVEL READ COMMITTED; 

transaction D 

transaction E 

session ends 

Check which option − 

A- Serializable 

B- Repeatable read 

C- Read uncommitted 

Solution 

Repeatable Read is the right answer. 

Reason & Explanation 

 Step 1 − In the above program, the first session starts and ends without doing any 

transaction. 

 Step 2 − The second session begins at session-level with isolation level "Repeatable 

Read". Transaction A& B gets executed with these settings. 

 Step 3 − Once again a new transaction begins with isolation level "Read 

uncommitted". This setting is used only for "Transaction C" since "Set transaction" 

alone is mentioned. If the "SET transaction" is used without global or session 

keywords, then these particular settings will work only for a single transaction. 

 Step 4 − Once again "Set Transaction" with isolation level Read committed works 

only for Transaction D. (Refer step 3 for reason) 

 Step 5 − "Transaction E" gets continued at the "Repeatable Read" since the 

transaction started at step 2 has not ended still. Transaction isolation level set at Step 3 

and Step 4 vanishes once a single transaction is executed. So, automatically 

"Transaction E" will refer to the prior transaction settings. 

 

Concurrency Control in SQL Server 

A “Transaction” in SQL Server  

The standard definition of a transaction states that “every query that runs in a SQL Server is 

in a transaction,” that means any query you run on a SQL Server is considered as being in a 

transaction. It could either be a simple SELECT query or any UPDATE or ALTER query.  

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com86 

 

 If you run a query without mentioning the BEGIN TRAN keyword then it would be 

considered an implicit transition. 

 If you run a query that starts with BEGIN TRAN and ends with COMMIT or 

ROLLBACK, then it would be considered an explicit transaction. 

Transaction Properties 

A database management system (DBMS) is considered a relational database management 

system (RDBMS) if it follows the transactional properties, ACID. 

 A: Atomicity 

 C: Consistency 

 I: Isolation 

 D: Durability 

The SQL Server takes care of the Atomicity, Consistency, and Durability of the system, and 

the user has to care about the Isolation property of the transaction. The meaning of each of 

these properties is described below, as it applies to a transaction. 

Atomicity 

Transaction work should be atomic, which means all the work is one unit. If the user 

performs a transition, either the transaction should complete and perform all the asked 

operations, or it should fail and don’t do anything. Atomicity deals with the transaction 

process and an RDBMS transaction does not leave the work incomplete. 

Consistency 

After the transaction is completed, the database should not be left in an inconsistent state, 

which means the data on which transaction is applied must be logically correct, according to 

the rules of the system. 

Isolation 

If two transactions are applied on a similar database, then both the transaction should be 

isolated from each other, and the user must see the result. It can also be defined as a 

transaction that should see the data only after or before the concurrent transaction process is 

completed, which means if a one transaction process is in between, the other transaction 

process should wait until the first transaction is completed. 

For instance, if A performs a transaction process on data d1, and before the transaction 

process gets completed, B also performs another transaction process on the same 

data d1. Here, the isolation property will isolate the transaction process of A and B, and the 

transaction process of B will only start after the transaction process of A gets completed. 

Durability 

Even if the system fails, the transaction should be persistent, which means, if the system fails 

during a transaction process, the transaction should be dropped, too, without affecting the 

data. 

SQL FACILITIES FOR CONCURRENCY 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com87 

 

Concurrency is a situation that arises in a database due to the transaction process. 

Concurrency occurs when two or more than two users are trying to access the same data or 

information. DBMS concurrency is considered a problem because accessing data 

simultaneously by two different users can lead to inconsistent results or invalid behaviour. 

Concurrency Problem Types 

The concurrency problem mostly arises when both the users try to write the same data, or 

when one is writing and the other is reading. Apart from this logic, there are some common 

types of concurrency problems: 

 Dirty Reads 

 Lost Updates 

 Non-repeatable Reads 

 Phantom Reads 

Dirty Read 

This problem occurs when another process reads the changed, but uncommitted data. For 

instance, if one process has changed data but not committed it yet, another process is able to 

read the same data. This leads to the inconsistent state for the reader.  

Lost Updates 

This problem occurs when two processes try to manipulate the same data simultaneously. 

This problem can lead to data loss, or the second process might overwrite the first processs 

change. 

Non-repeatable Reads 

This problem occurs when one process is reading the data, and another process is writing the 

data. In non-repeatable reads, the first process reading the value might get two different 

values, as the changed data is read a second time because the second process changes the 

data. 

Phantom Reads 

If two same queries executed by two users show different output, then it would be a Phantom 

Read problem. For instance, If user A select a query to read some data, at the same time the 

user B insert some new data but the user A only get able to read the old data at the first 

attempt, but when user A re-query the same statement then he/she gets a different set of data. 

Solve Concurrency Problems 

SQL Server provides 5 different levels of transaction isolation to overcome these 

Concurrency problems. These 5 isolation levels work on two major concurrency models: 

1. Pessimistic model - In the pessimistic model of managing concurrent data access, the 

readers can block writers, and the writers can block readers. 

2. Optimistic model - In the optimistic model of managing concurrent data access, the 

readers cannot block writers, and the writers cannot block readers, but the writer can 

block another writer. 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com88 

 

Note that readers are users are performing the SELECT operations. Writers are users are 

performing INSERT, ALTER, UPDATE, S.E.T. operations. 

Isolation Level 

When we connect to a SQL server database,  the application can submit queries to the 

database with one of five different isolation levels. These levels are: 

 Read Uncommitted 

 Read Committed 

 Repeatable Read 

 Serializable 

 Snapshot 

Out of these five isolation levels, Read Uncommitted, Read Committed, Repeatable Read, 

and Serializable come under the pessimistic concurrency model. Snapshot comes under the 

optimistic concurrency model. These levels are ordered in terms of the separation of work by 

two different processes, from minimal separation to maximal. 

Let's look at each of these isolation levels and how they affect concurrency of operations. 

Read Uncommitted 

This is the first level of isolation, and it comes under the pessimistic model of concurrency. In 

Read Uncommitted, one transaction is allowed to read the data that is about to be changed by 

the commit of another process. Read Uncommitted allows the dirty read problem. 

Read Committed 

This is the second level of isolation and also falls under the pessimistic model of 

concurrency. In the Read Committed isolation level, we are only allowed to read data that is 

committed, which means this level eliminates the dirty read problem. In this level, if you are 

reading data then the concurrent transactions that can delete or write data, some work is 

blocked until other work is complete. 

Repeatable Read 

The Repeatable Read isolation level is similar to the Read Committed level and eliminates 

the Non-Repeatable Read problem. In this level, the transaction has to wait till another 

transaction's update or read query is complete. But if there is an insert transaction, it does not 

wait for anyone. This can lead to the Phantom Read problem. 

Serializable 

This is the highest level of isolation in the pessimistic model. By implementing this level of 

isolation, we can prevent the Phantom Read problem. In this level of isolation, we can ask 

any transaction to wait until the current transaction completes. 

Snapshot 

Snapshot follows the optimistic model of concurrency, and this level of isolation takes a 

snapshot of the current data and uses it as a copy for the different transactions. Here each 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com



Anna University, Polytechnic & Schools
                          binils.com89 

 

transaction has its copy of data, so if a user tries to perform a transaction like an update or 

insert, it asks him to re-verify all the operation before the process gets started executing. 

 

binils.com

Anna University | Polytechnic | Schools
                          www.binils.com


