POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more... Available @ www.binils.com

	Reg. No. :								
	Question Paper Code: 50494								
	question l'aper coue. 50434								
	B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2023.								
	Fifth Semester								
	Electronics and communication Engineering EC 8501 — DIGITAL COMMUNICATION								
	(Regulations 2017)								
	Time: Three hours Maximum: 100 marks								
	Answer ALL questions.								
	PART A — $(10 \times 2 = 20 \text{ marks})$								
	1. State the source coding theorem with necessary equation.								
	2. How do you define the information contained in a symbol S_k that occurs with probability P_k ?								
	3. What is slope overload distortion?								
	4. What is the expression for the zero-frequency value of power spectral density of a stationary process?								
	5. Define inter symbol interference.								
	6. Find the impulse response of a filter that is matched to a pulse signal g(t) of duration T.								
	7. What is Gray coding? Show the QPSK constellation with Gray coded bit mapping.								
	8. Write the bit error rate expression of coherent BPSK.								
	9. State the channel coding theorem.								
	10. What is a linear block code?								

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more...

Available @ www.binils.com

;				
			PART B — $(5 \times 13 = 65 \text{ marks})$	
11.	(a)	(i)	Find the entropy of a binary memoryless source as a function of I (probability of occurrence of symbol-0). Find the entropy for (1) $p_0=0$, (2) $p_0=1$. Derive the value of p_0 for which the entropy maximized. With these values, plot the entropy.	or .s
		(ii)	What is a source encoder? State source-coding theorem.	5)
	(b)		P.E. ALTWOR, DI. GREE EXAM: ATTOMS, APRIL MAY 25	
	(-)		x_1 x_1 x_2 x_3 x_4 x_5 x_6 $P(x_5)$ 0.30 0.25 0.20 0.12 0.08 0.05	
		(i)	Find the Huffman encoding of the source given in Table 1. (8	3)
		(ii)	Find the entropy, average code length, and the code efficiency of th code from Huffman encoding.	
12.	(a)	For	the delta modulation (DM):	
		(i)	Illustrate the DM process with staircase approximation waveform $m_q(t)$.	
		(ii)	Explain the transmitter and receiver of delta modulator with bloc diagrams.	
		(iii)	Illustrate granular noise in delta modulation.	2)
			ti . I lockers a as buner Or assessmental edi entre boy ob well	
	(b)	Drav	w and explain the line coding waveform and its power spectrum for:	
		(i)	Unipolar nonreturn-to-zero (NRZ) signaling	3)
		(ii)	Polar nonreturn-to-zero (NRZ) signaling (2	2)
		(iii)	Unipolar return-to-zero (RZ) signaling	3)
		(iv)	Bipolar return-to-zero (BRZ) signaling (2	2)
		(v)	Manchester code signaling (S	3)
13.	(a)	(i)	What is the Nyquist criterion for distortion less baseban transmission?	
		(ii)	Show an ideal pulse shape that satisfies Nyquist criterion.	5)
			Or	
	(b)	SNR	twe the impulse response of receiver filter that maximizes the received. Assume the received pulse signal g(t) is corrupted by additive whit ssian noise w (t) at the receiver.	е
			5049	4

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA & SCHOOL

Notes Syllabus Question Papers Results and Many more...

Available @ www.binils.com

14.	(a)	Drav	w and explain the following:	
		(i)	Differential phase shift keying transmitter.	(7)
		(ii)	Differential phase shift keying receiver.	(6)
			Or	
	(b)	(i)	Draw and explain the generation of coherent QPSK signal.	(7)
		(ii)	Illustrate and describe the detection of coherent QPSK signal	. (6)
15.	(a)	(i)	With block diagrams and equations, explain the use of generatrix and parity check matrix in systematic codes.	nerator (8)
		(ii)	How do you generate syndrome for the systematic codes? Wr properties of syndrome.	ite the (5)
			Or	
	(b)	(i)	What are cyclic codes?	(2)
		(ii)	State the two properties of cyclic codes.	(3)
		(iii)	Prove the cyclic property of cyclic codes.	(8)
			PART C — (1 × 15 = 15 marks)	
16.	(a)	Cons	nsition	
		(i)	Find the mutual information $I(X;Y)$ in terms of $H(Y)$ and p .	(8)
		(ii)	Calculate I(X;Y) for α = 0.5 and p = 0.1	(4)
		(iii)	Repeat (ii) for α = 0.5 and p = 0.5 and comment on the result.	(3)
			Or	
	(b)		te $\frac{1}{2}$ convolutional encoder with constraint length of 3 userator sequences: $g_1 = (111)$ and $g_2 = (101)$.	es the
		(i)	Sketch encoder diagram.	(3)
		(ii)	Draw the state diagram for the encoder.	(4)
		(iii)	Determine the d _{free} distance of the encoder.	(8)
			0.000 <u></u>	•
			3	50494