SEMESTER V

S.	COURSE	COURSE TITLE	CATE	PE PEF	RIO R We	DS EEK	TOTAL CONTACT	CREDITS
NO.	CODE		GORT	L	Т	Ρ	PERIODS	
THEO	RY							
1.	MR3492	Embedded Systems and Programming	PCC	2	0	2	4	3
2.	RA3501	Robot Path Planning and Programming	PCC	3	0	0	3	3
3.		Professional Elective I	PEC	-	-	-	-	3
4.		Professional Elective II	PEC	-	-	-	-	3
5.		Professional Elective III	PEC	-	-	-	-	3
6.		Professional Elective IV	PEC	-	-	-	-	3
7.		Mandatory Course-I ^{&}	MC	3	0	0	3	0
PRAC	TICALS						•	
8.	MR3561	Industrial Automation Laboratory	PCC	0	0	4	2	2
			TOTAL	8	0	6	12	20

[&] Mandatory Course-I is a Non-credit Course (Student shall select one course from the list given under MC-I)

S. NO.	COURSE CODE	COURSE TITLE	CATE GORY	PER P WI	IOE ER EEK T	DS C P	TOTAL CONTACT PERIODS	CREDITS
THEO	RY			ス				
1.	RA3601	Robot Dynamics and Control	PCC	3	0	0	3	3
2.		Open Elective – I*	OEC	3	0	0	3	3
3.		Professional Elective V	PEC		4		-	3
4.		Professional Elective VI	PEC		-	-	-	3
5.		Professional Elective VII	PEC	INWI	EP	25	-	3
6.		Professional Elective VIII	PEC	N.III	- 1- 1-	A.F	-	3
7.		Mandatory Course-II ^{&}	MC	3	0	0	3	0
8.		NCC Credit Course Level 3 [#]		3	0	0	3	3#
PRAC	TICALS							
9.	RA3611	Robot Kinematics and Dynamics Laboratory	PCC	0	0	4	4	2
9.	RA3612	Mini Project	EEC	0	0	2	2	1
			TOTAL	12	0	6	18	21

SEMESTER VI

10.

*Open Elective – I shall be chosen from the emerging technologies.

[&] Mandatory Course-II is a Non-credit Course (Student shall select one course from the list given under MC- II)

[#] NCC Credit Course level 3 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

Attested

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

OATE

Г 01

VERTICAL 4: INTELLIGENCE SYSTEMS

NO.	CODE	COURSE TITLE	GORY	PE	ER W	EEK	CONTACT	CREDITS
				L	Т	Ρ	PERIODS	
1.	CRA340	Applied Signal Processing	PEC	3	0	0	3	3
2.	CRA341	Applied Image Processing	PEC	3	0	0	3	3
3.	CRA342	Machine Learning for Intelligent Systems	PEC	3	0	0	3	3
4.	CMR340	Condition Monitoring and Fault Diagnostics	PEC	3	0	0	3	3
5.	CMR341	Systems Modelling and Simulation Methods	PEC	3	0	0	3	3
6.	CMR342	Optimization Techniques	PEC	3	0	0	3	3
7.	CMR343	Immersive Technologies and Haptics	PEC	3	0	0	3	3
8.	CMR344	Computer Vision and Deep Learning	PEC	3	0	0	3	3

VERTICAL 5: AUTOMATION

SL.		COURSE TITLE	CATE	PE	RIO	DS FK		CREDITS
	0002			L.	T	P	PERIODS	
1.	CMR345	Object Oriented Programming in C++	PEC	3	0	0	3	3
2.	EE3591	Power Electronics	PEC	ŝ	0	0	3	3
3.	CMR358	Computer Architecture and Organisation	PEC	3	0	0	3	3
4.	CMR359	Virtual Instrumentation	PEC	3	0	0	3	3
5.	CMR346	Industrial Network Protocols	PEC	3	0	0	3	3
6.	CMR347	Motion Control System	PEC	3	0	0	3	3
7.	CMR348	Total integrated Automation	PEC	3	0	0	3	3
8.	CMR349	Digital Twin and Industry 5.0	PEC	3	0	0	3	3

VERTICAL 6: AVIONICS AND DRONE TECHNOLOGY

SL.	COURSE		CATE	PE	RIO	DS	TOTAL	
NO.	CODE	COURSE TITLE	GORY	PEF	R WE	ΕK	CONTACT	CREDITS
				L	Т	Ρ	PERIODS	
1.	CAE347	Avionics	PEC	3	0	0	3	3
2.	CAE348	Control Engineering	PEC	3	0	0	3	3
3.	CAE349	Guidance and Control	PEC	3	0	0	3	3
4.	CAE350	Navigation and Communication System	PEC	3	0	0	3	3
5.	CAE351	Design of UAV systems	PEC	3	0	0	3	3
6.	CAE352	Aerodynamics of Drones	PEC	3	0	0	3	3

Attested

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

SI	COURSE		CATE	P	FRIO	DS I	ΤΟΤΔΙ	
NO.	CODE	COURSE TITLE	GORY	PE	R WE	EK	CONTACT	CREDITS
				L	Т	Ρ	PERIODS	
1.	CMR351	Linear Integrated Circuits	PEC	3	0	0	3	3
2.	CMR352	Single Board Computers	PEC	3	0	0	3	3
3.	CMR353	Reliability and Maintenance Engineering	PEC	3	0	0	3	3
4.	CMR354	Integrated Product Development	PEC	3	0	0	3	3
5.	CMR355	Medical Mechatronics	PEC	3	0	0	3	3
6.	CMR356	Micro Electro Mechanical Systems	PEC	3	0	0	3	3
7.	CME396	Process Planning and Cost Estimation	PEC	3	0	0	3	3
8.	CMR357	VLSI and FPGA	PEC	3	0	0	3	3

VERTICAL 7: DIVERSIFIED COURSES GROUP 1

OPEN ELECTIVES

(Students shall choose the open elective courses, such that the course contents are not similar to any other course contents/title under other course categories).

OPEN ELECTIVE I AND II (EMERGING TECHNOLOGIES)

To be offered other than Faculty of Information and Communication Engineering

SL.	COURSE CODE	COURSE TITLE	CATE	PER PER		DS EK	TOTAL CONTACT	CREDITS
NO.			GONT	L	T	Ρ	PERIODS	
1.	OCS351	Artificial Intelligence and Machine Learning Fundamentals	OEC	2	0	2	4	3
2.	OCS352	IoT Concepts and Applications	OEC	2	0	2	4	3
3.	OCS353	Data Science Fundamentals	OEC	2	0	2	4	3
4.	CCS333	Augmented Reality /Virtual Reality	OEC	2	0	2	4	3

Attested

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

ROBOT DYNAMICS AND CONTROL

COURSE OBJECTIVES

RA3601

- To learn and understand generalized co-ordinates, Jacobian matrix Mass Distribution and 1. other fundamental equations.
- 2. To understand Lagrangean and Hamiltonian mechanics
- 3. To understand nonlinearities in control system
- 4. To Understand various force control strategies
- to understand various concepts in linearizing a no linear signal 5.

UNIT - I **ROBOT FORCE MODELS**

Generalized co-ordinates - Generalized Forces - Equation of Motions – Static Forces in Manipulators - Jacobian matrix - Jacobians in The Force Domain - Cartesian Transformation of Velocities and Static Forces - Acceleration of A Rigid Body - Mass Distribution - Nonrigid Body Effects - Newton's Equation - Euler's Equation – Langrage Equation

UNIT - II **ROBOT DYNAMICS**

General Expressions for Kinetic and Potential Energy - Kinetic Energy for an n-Link Robot - Potential Energy for an n-Link Robot - Equations of Motion -Lagrangian Multiplier - Langrage's Equation -Hamilton Equation - Hamilton vector Field- Euler - Langrage Equation – State Vector and Equation Formulation

ROBOT CONTROL SYSTEM UNIT - III

The manipulator control problem, Linear second-order model of manipulator. Functions of controller and power amplifier. Joint actuators- stepper motor, servo motor. Control Schemes: PID control scheme - Position and force control schemes. Robotic sensors and its classification, Internal sensors - Position, velocity, acceleration and force information, External Sensors - Contact sensors-Limit switches, piezoelectric, pressure pads, Non-contact sensors - Range sensors, Vision sensor- robotic vision system, Description of components of vision system.

CONTROL OF MANIPULATORS UNIT - IV

Linear Time Varying and Linearization - Input and Output Stability - Background: The Frobenius Theorem - Single-Input Systems. Introduction to nonlinear system - time varying systems - multiinput, multi-output control systems - the control problem for manipulators - practical considerations - current industrial-robot control systems - Lyapunov stability analysis - Cartesian - based control systems - adaptive control - Limit Cycle - Describing Function

FORCE CONTROL UNIT - V

Constrained Dynamics - Static Force/Torque Relationships - Constraint Surfaces - Natural and Artificial Constraints - Network Models and Impedance - Impedance Operators - Classification of Impedance Operators - Force Control Strategies - Impedance Control - Hybrid Impedance Control.

COURSE OUTCOME

CO1. Describe generalized co-ordinates, Jacobian matrix Mass Distribution and equation of motion. CO2. Develop the static force model and inverse dynamic model of multi-degree of freedom (DOF) manipulator. Evaluate dynamics of robot using Lagrangian and Hamiltonian mechanics.

CO3. Describe the control architecture of robot manipulator.

CO4. Evaluate linear and nonlinearities in dynamics of robot.

CO5. Develop the control strategies for robot system

binils.com Anna University, Polytechnic & Schools

9

q

TOTAL: 45 PERIODS

ttested

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

LT P C 3003

9

9

9

COs/POs							POs	5					PS	Os	
&PSOs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	3		2						1	3	2	3
CO2	3	2	1	3		2						1	3	2	3
CO3	3	2	1	3		2						1	3	2	3
CO4	3	2	1	3		2						1	3	2	3
CO5	3	2	1	3		2						1	3	2	3
CO/PO &	3	2	1	3		2						1	3	2	3
PSO Average															
			1 – \$	Sligh	t, 2 -	- Moo	derat	e, 3·	– Su	bstant	ial				

Mapping of COs with POs and PSOs

TEXT BOOKS:

- 1. Mark W. Spong, Seth Hutchinson, M. Vidyasagar.
- 2. John J. Craig, "Introduction to Robotics Mechanics and control", 3rd edition, Prentice hall, 2005.

REFERENCES:

- 1. Groover, M.P., Weis, M., Nagel, R.N. and Odrey, N.G., "Industrial Robotics Technology,
- Programming and Applications", McGraw-Hill, Int., 1986. 2. K.S.Fu, Gonzalez, R.C. and Lee, C.S.G., "Robotics Control, Sensing, Vision and Intelligence", McGraw Hill, 1987.
- 3. Saeed B. Niku, "Introduction to Robotics: Analysis, Control, Applications", 2nd edition, John Wiley & sons, Inc., 2011
- 4. Klafter, R.D., Chmielewski, T.A. and Negin, M., "Robotics Engineering An Integrated Approach", Prentice-Hall of India Pvt. Ltd., 1984.

Attested

binils.com Anna University, Polytechnic & Schools

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

	NCC Credit Course Level 3*	
NX3651	(ARMY WING) NCC Credit Course - III	LT P C
		3 0 0 3
DEDSONA		0
	Group Discussion: Team Work	9
	Career Counselling SSB Procedure & Interview Skills	2
PD 5	Public Speaking	0 4
BORDER &	COASTAL AREAS	4
BCA 2	Security Setup and Border/Coastal management in the area	
BCA 3	Security Challenges & Role of cadets in Border management	2
ARMED FC	DRCES	3
AF 2	Modes of Entry to Army, CAPF, Police	3
COMMUNI	CATION	3
C 1	Introduction to Communication & Latest Trends	3
INFANTRY		3
INF 1	Organisation of Infantry Battalion & its weapons	3
		23
	Biographies of Renowned Generals	23 A
MH 2	War Heroes - PVC Awardees	4
MH 3	Study of Battles - Indo Pak War 1965, 1971 & Kargil	9
MH 4	War Movies	6
	TOTAL: 45	PERIODS
	NCC Credit Course Level 3*	
NX3652	(NAVAL WING) NCC Credit Course - III	LTPC
		3003
PERSONA	LITY DEVELOPMENT	9
PD 3	Group Discussion: Team Work	2
PD 4	Career Counselling, SSB Procedure & Interview Skills	3
PD 5	Public Speaking	4
BORDER &		4
BCA 2	Security Setup and Border/Coastal management in the area	2
BCA 3	Security Challenges & Role of cadets in Border management	2
		F
	Modes of Entry - IN ICG. Merchant Naw	U 3
	Naval Expeditions & Campaigns	3
		5
NAVAL CO	MMUNICATION	2
NC 1	Introduction to Naval Communications	1
NC Z	Semaphore	I
NAVIGATIO	ON	2
N 1	Navigation of Ship - Basic Requirements	1
N 2	Chart Work	1
SEAMANS	HIP	15
MH 1	Introduction to Anchor Work	2
MH 2	Rigging Capsule	6
MH 3	Boatwork - Parts of Boat	2
MH 4	Boat Pulling Instructions	2
		3
		4
	Fire Fighting	Attested 2
FFDC 2	Damage Control	2
	binile com	d a
		1/1

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

Anna University, Polytechnic & Schools

SHIP MODE SM	LLING Ship Modelling Capsule	3 3 TOTAL : 45 PERIODS
	NCC Credit Course Level 3*	
NX3653	(AIR FORCE WING) NCC Credit Course Level - III	L T P C 3 0 0 3
PERSONAL	ITY DEVELOPMENT	9
PD 3	Group Discussion: Team Work	2
PD 4	Career Counselling, SSB Procedure & Interview Skills	3
PD 5	Public Speaking	4
BORDER &	COASTAL AREAS	4
BCA 2	Security Setup and Border/Coastal management in the area	2
BCA 3	Security Challenges & Role of cadets in Border management	2
AIRMANSHI	P	1
A 1	Airmanship	1
BASIC FLIG	HT INSTRUMENTS	3
FI 1	Basic Flight Instruments	3
AERO MOD	ELLING	3
AM 1	Aero Modelling Capsule	3
GENERAL S	ERVICE KNOWLEDGE	2
GSK 4	Latest Trends & Acquisitions	2
AIR CAMPA	IGNS	6
AC 1	Air Campaigns	6
PRINCIPLES	SOF FLIGHT	6
PF 1	Principles of Flight	3
PF 2	Forces acting on Aircraft	3
NAVIGATIO	N	5
NM 1	Navigation	2
NM 2	Introduction to Met and Atmosphere	3
AERO ENGI	NES	6
E 1	Introduction and types of Aero Engine	3
E 2	Aircraft Controls	3

TOTAL : 45 PERIODS

Attested

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

RA3611 ROBOT KINEMATICS AND DYNAMICS LABORATORY Т Ρ L

2 0 4

0

С

COURSE OBJECTIVES

- 1. To model and simulate a robot and verify its kinematics
- 2. To model and simulate a robot and generate a trajectory plan.
- 3. To model and simulate a robot and verify its dynamics

LIST OF EXPERIMENTS

- 1. Verification of Forward Kinematics for 2R, 2P and RP Robot.
- 2. Verification of D-H transformation for 6DOF Serial manipulator
- 3. Verification of Inverse Kinematics for 2R, 2P and RP Robot.
- 4. Verification of Forward Kinematics for 3R spatial Robot.
- 5. Kinematic Analysis of 2R planar robot for varying trajectories using Robo analyzer
- 6. Workspace Analysis of 2R planar robot manipulator for a specified trajectory
- 7. Kinematic Analysis of 6 DOF robot for varying trajectories using Robo analyzer
- 8. Inverse Dynamic Analysis of 6 DOF robot robot for varying trajectories using Roboanalyzer
- 9. Forward and Inverse Dynamics of 2R planar robot using Roboanalyzer
- 10. Creation of Robot in ROS using Gazebo/V-REP
- 11. Motion Simulation of Robot in ROS using Gazebo/V-REP/Moveit/Industrial.
- 12. Simulation of Trajectory Analysis of 2R and 3R manipulators using MATLAB-SIMULINK

TOTAL: 30 PERIODS

COURSE OUTCOMES:

CO1: Analyze the kinematics and dynamics for various robots

- CO2: Simulate and evaluate the kinematics and dynamics for various robots
- CO3: Create a robot and program a trajectory plan for the robot.

		app	ing	OT	JUS	wit		JS a	na P	3 US				
COs/POs POs												PSOs		
1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
3	2	1	1	1		1	j	1		-	1	2	2	3
3	2	1	1					1		10	1	2	2	3
3	2	1	1							4	1	2	2	3
3	2	1	1	1.0		1	AL	10.1	LATE	L P N	1	2	2	3
	K	16		1.61	НK	00	61		101	LED	GE .			
	1 3 3 3	1 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	Mapp 1 2 3 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1	I 2 3 4 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1 3 2 1 1	1 2 3 4 5 3 2 1 1 3 3 2 1 1 3 3 2 1 1 3 3 2 1 1 3 3 2 1 1 3	1 2 3 4 5 6 3 2 1 1 -	I 2 3 4 5 6 7 3 2 1 1 -	I 2 3 4 5 6 7 8 3 2 1 1 -	I 2 3 4 5 6 7 8 9 3 2 1 1 -	I 2 3 4 5 6 7 8 9 10 3 2 1 1 -	I 2 3 4 5 6 7 8 9 10 11 3 2 1 1 -	Napping of COS with POS and PSOS POs 1 2 3 4 5 6 7 8 9 10 11 12 3 2 1 1 - - - 1 1 3 2 1 1 - - - 1 1 3 2 1 1 - - - 1 1 3 2 1 1 - - - 1 1 3 2 1 1 - - - 1 1 3 2 1 1 - - - 1 1 3 2 1 1 - - - 1 1 3 2 1 1 - - - 1 1 4 4 5 6 6 6 6 6 1 1	Napping of Cos with Pos and Psos POs POs P1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3 2 1 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 3 2 1 1 2 3 3 2 1 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 2 3 2 1 2 3 2 1 2 3 2 1 2 3 3 3 3 4 4 4 4 4 <td>Napping of Cos with Pos and PSOS POs PSOs 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 2 1 1 - - - - 1 2 2 3 2 1 1 - - - - 1 2 2 3 2 1 1 - - - - 1 2 2 3 2 1 1 - - - - 1 2 2 3 2 1 1 - - - - 1 2 2 3 2 1 1 - - - - 1 2 2 3 2 1 1 - - - - 1 2 2 3 2 1 1 - - - - 1 2 2</td>	Napping of Cos with Pos and PSOS POs PSOs 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 2 1 1 - - - - 1 2 2 3 2 1 1 - - - - 1 2 2 3 2 1 1 - - - - 1 2 2 3 2 1 1 - - - - 1 2 2 3 2 1 1 - - - - 1 2 2 3 2 1 1 - - - - 1 2 2 3 2 1 1 - - - - 1 2 2 3 2 1 1 - - - - 1 2 2

1 – Slight, 2 – Moderate, 3 – Substantial

Ittested

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025