SEMESTER VII / VIII*

S. NO.	COURSE	COURSE TITLE	CATE GORY		RIOE WE		TOTAL CONTACT	CREDITS
110.	OODL		JOINT	L	Т	Р	PERIODS	
THEC	DRY							
1.	RA3701	Robotic Vision and Intelligence	PCC	3	0	0	3	3
2.	RA3702	Mobile Robotics	PCC	3	0	0	3	3
3.	GE3791	Human Values and Ethics	HSMC	2	0	0	2	2
4.		Elective – Management #	HSMC	3	0	0	3	3
5.		Open Elective – II**	OEC	3	0	0	3	3
6.		Open Elective – III***	OEC	3	0	0	3	3
7.		Open Elective – IV***	OEC	3	0	0	3	3
PRAC	CTICALS							
8.	RA3711	Robotic Vision and Intelligence Laboratory	PCC	0	0	4	4	2
			TOTAL	20	0	4	24	22

^{*}If students undergo internship in Semester VII, then the courses offered during semester VIII will be offered during semester VIII

^{*}Elective – management shall be chosen from the Elective – Management Courses

		SEMES	STER VIII/	VII*				
S. NO.	COURSE CODE	COURSE TITLE	CATE GORY		RIO R WI T		TOTAL CONTACT PERIODS	CREDITS
PRAC	CTICALS			10	1			
1.	RA3811	Project Work/ Internship	EEC	0	0	20	20	10
			TOTAL	0	0	20	20	10

^{*}If students undergo internship in Semester VII, then the courses offered during semester VIII will be offered during semester VIII

TOTAL CREDITS: 165

Attested

binils.com Anna University, Polytechnic & Schools

^{**}Open Elective - II shall be chosen from the emerging technologies

^{***}Open Elective III and IV (Shall be chosen from the list of open electives offered by other Programmes)

VERTICAL 7: DIVERSIFIED COURSES GROUP 1

SL.	COURSE		CATE		ERIO		TOTAL	
NO.	CODE	COURSE TITLE	GORY	PE	R WE	EK	CONTACT	CREDITS
				L	Т	Р	PERIODS	
1.	CMR351	Linear Integrated Circuits	PEC	3	0	0	3	3
2.	CMR352	Single Board Computers	PEC	3	0	0	3	3
3.	CMR353	Reliability and Maintenance Engineering	PEC	3	0	0	3	3
4.	CMR354	Integrated Product Development	PEC	3	0	0	3	3
5.	CMR355	Medical Mechatronics	PEC	3	0	0	3	3
6.	CMR356	Micro Electro Mechanical Systems	PEC	3	0	0	3	3
7.	CME396	Process Planning and Cost Estimation	PEC	3	0	0	3	3
8.	CMR357	VLSI and FPGA	PEC	3	0	0	3	3

OPEN ELECTIVES

(Students shall choose the open elective courses, such that the course contents are not similar to any other course contents/title under other course categories).

OPEN ELECTIVE I AND II (EMERGING TECHNOLOGIES)

To be offered other than Faculty of Information and Communication Engineering

SL. NO.	COURSE CODE	COURSE TITLE	CATE	PER	WE.		TOTAL CONTACT	CREDITS
			OOK	L	T	Р	PERIODS	
1.	OCS351	Artificial Intelligence and Machine Learning Fundamentals	OEC	2	0	2	4	3
2.	OCS352	IoT Concepts and Applications	OEC	2	0	2	4	3
3.	OCS353	Data Science Fundamentals	OEC	2	0	2	4	3
4.	CCS333	Augmented Reality /Virtual Reality	OEC	2	0	2	4	3

Attested

OPEN ELECTIVES - III

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY		ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
NO.				L	T	Р	PERIODS	
1.	OHS351	English for Competitive Examinations	OEC	3	0	0	3	3
2.	OMG352	NGOs and Sustainable Development	OEC	3	0	0	3	3
3.	OMG353	Democracy and Good Governance	OEC	3	0	0	3	3
4.	OCE353	Lean Concepts, Tools And Practices	OEC	3	0	0	3	3
5.	CME365	Renewable Energy Technologies	OEC	3	0	0	3	3
6.	OME354	Applied Design Thinking	OEC	3	0	0	3	3
7.	MF3003	Reverse Engineering	OEC	3	0	0	3	3
8.	OPR351	Sustainable Manufacturing	OEC	3	0	0	3	3
9.	AU3791	Electric and Hybrid Vehicles	OEC	3	0	0	3	3
10.	OAS352	Space Engineering	OEC	3	0	0	3	3
11.	OIM351	Industrial Management	OEC	3	0	0	3	3
12.	OIE354	Quality Engineering	OEC	3	0	0	3	3
13.	OSF351	Fire Safety Engineering	OEC	3	0	0	3	3
14.	OML351	Introduction to Non- Destructive Testing	OEC	3	0	0	3	3
15.	OMR351	Mechatronics	OEC	3	0	0	3	3
16.	OAE352	Fundamentals of Aeronautical Engineering	OEC	3	0	0	3	3
17.	OGI351	Remote Sensing Concepts	OEC	3	0	0	3	3
18.	OAI351	Urban Agriculture	OEC	3	0	0	3	3
19.	OEN351	Drinking Water Supply and Treatment	OEC	3	0	0	3	3
20.	OEE352	Electric Vehicle technology	OEC	3	0	0	3	3
21.	OEI353	Introduction to PLC Programming	OEC	3	0	DGE	3	3
22.	OCH351	Nano Technology	OEC	3	0	0	3	3
23.	OCH352	Functional Materials	OEC	3	0	0	3	3
24.	OFD352	Traditional Indian Foods	OEC	3	0	0	3	3
25.	OFD353	Introduction to food processing	OEC	3	0	0	3	3
26.	OPY352	IPR for Pharma Industry	OEC	3	0	0	3	3
27.	OTT351	Basics of Textile Finishing	OEC	3	0	0	3	3
28.	OTT352	Industrial Engineering for Garment Industry	OEC	3	0	0	3	3
29.	OTT353	Basics of Textile Manufacture	OEC	3	0	0	3	3
30.	OPE351	Introduction to Petroleum Refining and Petrochemicals	OEC	3	0	0	3	3
31.	OPE334	Energy Conservation and Management	OEC	3	0	0	3	3
32.	OPT351	Basics of Plastics Processing	OEC	3	0	0	3 Д	teste3
33.	OEC351	Signals and Systems	OEC	3	0	0	3	3

binils.com Anna University, Polytechnic & Schools

34.	OEC352	Fundamentals of Electronic Devices and Circuits	OEC	3	0	0	3	3
35.	CBM348	Foundation Skills in Integrated product Development	OEC	3	0	0	3	3
36.	CBM333	Assistive Technology	OEC	3	0	0	3	3
37.	OMA352	Operations Research	OEC	3	0	0	3	3
38.	OMA353	Algebra and Number Theory	OEC	3	0	0	3	3
39.	OMA354	Linear Algebra	OEC	3	0	0	3	3
40.	OBT352	Basics of Microbial Technology	OEC	3	0	0	3	3
41.	OBT353	Basics of Biomolecules	OEC	3	0	0	3	3
42.	OBT354	Fundamentals of Cell and Molecular Biology	OEC	3	0	0	3	3

OPEN ELECTIVES - IV

SL.	COURSE		CATE		RIO		TOTAL	
NO.	CODE	COURSE TITLE	GORY	PE		EEK	CONTACT PERIODS	CREDITS
1.	OHS352	Project Report Writing	OEC	3	T	P 0	3	3
2.	OMA355	Advanced Numerical	OEC	3	0	0	3	3
۷.	OIVIASSS	Methods	OEC		Ü	U	3	3
3.	OMA356	Random Processes	OEC	3	0	0	3	3
4.	OMA357	Queuing and Reliability Modelling	OEC	3	0	0	3	3
5.	OMG354	Production and Operations Management for Entrepreneurs	OEC	3	0	0	3	3
6.	OCE354	Basics of Integrated Water Resources Management	OEC	3	0	0	3	3
7.	OMG355	Multivariate Data Analysis	OEC	3	0	0	3	3
8.	OME352	Additive Manufacturing	OEC	3	0	0	3	3
9.	CME343	New Product Development	OEC	3	0	0	3	3
10.	OME355	Industrial Design & Rapid Prototyping Techniques	OEC	3	0	0	3	3
11.	MF3010	Micro and Precision Engineering	OEC	3	0	0	3	3
12.	OMF354	Cost Management of Engineering Projects	OEC	3	0	0	3	3
13.	AU3002	Batteries and Management system	OEC	3	0	0	3	3
14.	AU3008	Sensors and Actuators	OEC	3	0	0	3	3
15.	OAS353	Space Vehicles	OEC	3	0	0	3	3
16.	OIM352	Management Science	OEC	3	0	0	3	3
17.	OIM353	Production Planning and Control	OEC	3	0	0	3	3
18.	OIE353	Operations Management	OEC	3	0	0	3	3
19.	OSF352	Industrial Hygiene	OEC	3	0	0	3	3
20.	OSF353	Chemical Process Safety	OEC	3	0	0	3	3
21.	OML352	Electrical, Electronic and Magnetic Materials	OEC	3	0	0	3	3
22.	OML353	Nanomaterials and Applications	OEC	3	0	0	3 A	estes
23.	OMR352	Hydraulics and Pneumatics	OEC	3	0	0	3	3

24.	OMR353	Sensors	OEC	3	0	0	3	3
25.	MV3501	Marine Propulsion	OEC	3	0	0	3	3
26.	OMV351	Marine Merchant Vessels	OEC	3	0	0	3	3
27.	OMV352	Elements of Marine Engineering	OEC	3	0	0	3	3
28.	OGI352	Geographical Information System	OEC	3	0	0	3	3
29.	OAI352	Agriculture Entrepreneurship Development	OEC	3	0	0	3	3
30.	OEN352	Biodiversity Conservation	OEC	3	0	0	3	3
31.	OEE353	Introduction to control systems	OEC	3	0	0	3	3
32.	OEI354	Introduction to Industrial Automation Systems	OEC	3	0	0	3	3
33.	OCH353	Energy Technology	OEC	3	0	0	3	3
34.	OCH354	Surface Science	OEC	3	0	0	3	3
35.	OFD354	Fundamentals of Food Engineering	OEC	3	0	0	3	3
36.	OFD355	Food safety and Quality Regulations	OEC	3	0	0	3	3
37.	OPY353	Nutraceuticals	OEC	3	0	0	3	3
38.	OTT354	Basics of Dyeing and Printing	OEC	თ	0	0	3	3
39.	FT3201	Fibre Science	OEC	3	0	0	3	3
40.	OTT355	Garment Manufacturing Technology	OEC	3	0	0	3	3
41.	OPE353	Industrial Safety	OEC	3	0	0	3	3
42.	OPE354	Unit Operations in Petro Chemical Industries	OEC	3	0	0	3	3
43.	OPT352	Plastic Materials for Engineers	OEC	3	0	0	3	3
44.	OPT353	Properties and Testing of Plastics	OEC	3	0	0	3	3
45.	OEC353	VLSI Design	OEC	3	0	0	3	3
46.	CBM370	Wearable devices	OEC	3	0	0	3	3
47.	CBM356	Medical Informatics	OEC	3	0	0	3	3
48.	OBT355	Biotechnology for Waste Management	OEC	3	0	0	3	3
49.	OBT356	Lifestyle Diseases	OEC	3	0	0	3	3
50.	OBT357	Biotechnology in Health Care	OEC	3	0	0	3	3

Attested

L T P C 3 0 0 3

COURSE OBJECTIVES:

- 1. To understand the basics concepts of optics and vision systems.
- 2. To learn and understand the fundamentals of image processing
- 3. To impart knowledge on object recognition and feature extraction.
- 4. To understand algorithms in image processing.
- 5. To demonstrate the various applications of machine vision system.

UNIT I IMAGE ACQUISITION

g

The Nature of Vision- Robot vision – Need, Applications - image acquisition – Physics of Light – Interactions of light – Refraction at a spherical surface – Thin Lens Equation - Illumination techniques - linear scan sensor, planar sensor, camera transfer characteristic, Raster scan, Image capture time, volume sensors, Image representation, picture coding techniques.

UNIT II IMAGE PROCESSING FUNDAMENTALS

9

Introduction to Digital Image Processing - Image sampling and quantization - Image enhancement: Gray Value Transformations, Radiometric Calibration, Image Smoothing–Geometric transformation– Image segmentation– Object Recognition and Image Understanding - Feature extraction: Region Features, Gray Value Features, Contour Features–Morphology–Edge extraction– Fitting and Template matching.

UNIT III OBJECT RECOGNITION AND FEATURE EXTRACTION

9

Image segmentation- Edge Linking-Boundary detection-Region growing-Region splitting and merging- Boundary Descriptors-Freeman chain code-Regional Descriptors- recognition-structural methods- Recognition procedure, **mahalanobic** procedure

UNIT IV COLLISON FRONTS ALGORITHM

9

Introduction, skeleton of objects. Gradients, propagation, Definitions, propagation algorithm, Thinning Algorithm, Skeleton lengths of Top most objects.

UNIT V ROBOT VISION APPLICATION

9

Case study-Automated Navigation guidance by vision system – vision based de palletizing- line tracking-. Automatic part Recognition. Image processing techniques implementation through Image Processing software

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon Completion of the course, the students will be able to

- CO 1: Know the various types of sensors, lightings, hardware and concept of machine vision.
- CO 2: Acquire the image by the appropriate use of sensors, lightings and hardware.
- CO 3: Apply the various techniques of image processing in real time applications.
- CO 4: Select the suitable sensors, lightings and hardware.
- CO 5: Apply the vision techniques in Robot vision system.

Attested

binils.com
Anna University, Polytechnic & Schools

Mapping of COs with POs and PSOs

COs/POs		POs											PSOs				
&PSOs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	3	2	1	3		2						2	3	2	3		
CO2	3	2	1	3		2						2	3	2	3		
CO3	3	2	1	3		2						2	3	2	3		
CO4	3	2	1	3		2						2	3	2	3		
CO5	3	2	1	3		2						2	3	2	3		
CO/PO &	3	2	1	3		2						2	3	2	3		
PSO Average																	
1 – Slight, 2 – Moderate, 3 – Substantial																	

TEXT BOOKS:

- 1. Rafael C. Gonzales, Richard. E. Woods, "Digital Image Processing Publishers", Fourth Edition
- 2. EmanueleTrucco, Alessandro Verri, "Introductory Techniques For 3D Computer Vision", First Edition

REFERENCES

- 1. Yi Ma, Jana Kosecka, Stefano Soatto, Shankar Sastry, "An Invitation to 3-D Vision From Images to Models", First Edition, 2004
- 2. Fu .K.S, Gonzalez .R.S, Lee .C.S.G, "Robotics Control Sensing, Vision and Intelligence", Tata McGraw-Hill Education, 2008.
- 3. RafelC.Gonzalez, Richard E.Woods, StevenL. Eddins, "Digital Image Processing using MATLAB", 2nd edition, Tata McGraw Hill, 2010.

PROGRESS THROUGH KNOWLEDGE

Attested

COURSE OBJECTIVES

- 1. To introduce mobile robotic technology and its types in detail.
- 2. To learn the kinematics of wheeled and legged robot.
- 3. To familiarize the intelligence into the mobile robots using various sensors.
- 4. To acquaint the localization strategies and mapping technique for mobile robot.
- 5. To aware the collaborative mobile robotics in task planning, navigation and intelligence.

UNIT – I INTRODUCTION TO MOBILE ROBOTICS

6

Introduction – Locomotion of the Robots – Key Issues on Locomotion – Legged Mobile Roots – Configurations and Stability – Wheeled Mobile Robots – Design Space and Mobility Issues – Unmanned Aerial and Underwater Vehicles – Teleportation and Control.

UNIT - II KINEMATICS

9

Kinematic Models – Representation of Robot – Forward Kinematics – Wheel and Robot Constraints – Degree of Mobility and Steerability – Manoeuvrability – Workspace – Degrees of Freedom – Path and Trajectory Considerations – Motion Controls - Holonomic Robots – Open Loop and Feedback Motion Control – Humanoid Robot - Kinematics Overview.

UNIT - III PERCEPTION

9

Sensor for Mobile Robots – Classification and Performance Characterization – Wheel/Motor Sensors – Heading Sensors - Ground-Based Beacons - Active Ranging - Motion/Speed Sensors – Vision Based Sensors – Uncertainty - Statistical Representation - Error Propagation - Feature Extraction Based on Range Data (Laser, Ultrasonic, Vision-Based Ranging) - Visual Appearance based Feature Extraction.

UNIT – IV LOCALIZATION

12

The Challenge of Localization - Sensor Noise and Aliasing - Effector Noise - Localization Based Navigation Versus Programmed Solutions - Belief Representation - Single - Hypothesis Belief And Multiple-Hypothesis Belief - Map Representation - Continuous Representations - Decomposition Strategies - Current Challenges In Map Representation - Probabilistic Map-Based Localization - Markov Localization - Kalman Filter Localization - Landmark-Based Navigation - Globally Unique Localization - Positioning Beacon Systems - Route-Based Localization - Autonomous Map Building - Stochastic Map Technique - Other Mapping Techniques. Simultaneous Localization and Mapping (SLAM).

UNIT – V PLANNING, NAVIGATION AND COLLABORATIVE ROBOTS

9

Introduction - Competences for Navigation: Planning and Reacting - Path Planning - Obstacle Avoidance - Navigation Architectures - Modularity for Code Reuse and Sharing - Control Localization - Techniques for Decomposition - Case Studies - Collaborative Robots - Swarm Robots.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

CO1: Evaluate the appropriate mobile robots for the desired application.

CO2: Analyze the sensors for the intelligence of mobile robotics

CO3: Evaluate the kinematics for given wheeled and legged robot.

CO4: Create the localization strategies and mapping technique for mobile robot.

CO5: Create the collaborative mobile robotics for planning, navigation and intelligence fordesired applications.

Attested

binils.com
Anna University, Polytechnic & Schools

Mapping of COs with POs and PSOs

COs/POs		POs											PSOs		
&PSOs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	3		2						2	3	2	3
CO2	3	2	1	3		2						2	3	2	3
CO3	3	2	1	3		2						2	3	2	3
CO4	3	2	1	3		2						2	3	2	3
CO5	3	2	1	3		2						2	3	2	3
CO/PO &	3	2	1	3		2						2	3	2	3
PSO Average															

1 – Slight, 2 – Moderate, 3 – Substantial

TEXT BOOK

1. Roland Siegwart and IllahR.Nourbakish, "Introduction to Autonomous Mobile Robots" MIT Press, Cambridge, 2004.

REFERENCES:

- Dragomir N. Nenchev, Atsushi Konno, TeppeiTsujita, "Humanoid Robots: Modelling and Control", Butterworth-Heinemann, 2018
- 2. MohantaJagadish Chandra, "Introduction to Mobile Robots Navigation", LAP Lambert Academic Publishing, 2015.
- 3. Peter Corke, "Robotics, Vision and Control", Springer, 2017.
- 4. Ulrich Nehmzow, "Mobile Robotics: A Practical Introduction", Springer, 2003.
- 5. Xiao Qi Chen, Y.Q. Chen and J.G. Chase, "Mobile Robots State of the Art in Land, Sea, Air, and Collaborative Missions", Intec Press, 2009.
- 6. Alonzo Kelly, Mobile Robotics: Mathematics, Models, and Methods, Cambridge University Press, 2013, ISBN: 978-1107031159.

Attested

binils.com Anna University, Polytechnic & Schools

COURSE DESCRIPTION

This course aims to provide a broad understanding about the modern values and ethical principles that have evolved and are enshrined in the Constitution of India with regard to the democratic, secular and scientific aspects. The course is designed for undergraduate students so that they could study, understand and apply these values in their day to day life.

COURSE OBJECTIVES:

- To create awareness about values and ethics enshrined in the Constitution of India
- > To sensitize students about the democratic values to be upheld in the modern society.
- > To inculcate respect for all people irrespective of their religion or other affiliations.
- To instill the scientific temper in the students' minds and develop their critical thinking.
- ➤ To promote sense of responsibility and understanding of the duties of citizen.

UNIT I DEMOCRATIC VALUES

6

Understanding Democratic values: Equality, Liberty, Fraternity, Freedom, Justice, Pluralism, Tolerance, Respect for All, Freedom of Expression, Citizen Participation in Governance – World Democracies: French Revolution, American Independence, Indian Freedom Movement.

Reading Text: Excerpts from John Stuart Mills' On Liberty

UNIT II SECULAR VALUES

6

Understanding Secular values – Interpretation of secularism in Indian context - Disassociation of state from religion – Acceptance of all faiths – Encouraging non-discriminatory practices.

Reading Text: Excerpt from Secularism in India: Concept and Practice by Ram Puniyani

UNIT III SCIENTIFIC VALUES

6

Scientific thinking and method: Inductive and Deductive thinking, Proposing and testing Hypothesis, Validating facts using evidence based approach – Skepticism and Empiricism – Rationalism and Scientific Temper.

Reading Text: Excerpt from The Scientific Temper by Antony Michaelis R

UNIT IV SOCIAL ETHICS

6

Application of ethical reasoning to social problems – Gender bias and issues – Gender violence – Social discrimination – Constitutional protection and policies – Inclusive practices.

Reading Text: Excerpt from 21 Lessons for the 21st Century by Yuval Noah Harari

UNIT V SCIENTIFIC ETHICS

6

Transparency and Fairness in scientific pursuits – Scientific inventions for the betterment of society - Unfair application of scientific inventions – Role and Responsibility of Scientist in the modern society.

Reading Text: Excerpt from *American Prometheus: The Triumph and Tragedy of J.Robert Oppenheimer* by Kai Bird and Martin J. Sherwin.

TOTAL: 30 PERIODS

COURSE OUTCOMES

Students will be able to

CO1: Identify the importance of democratic, secular and scientific values in harmonious functioning of social life

CO2: Practice democratic and scientific values in both their personal and professional life.

CO3: Find rational solutions to social problems.

CO4: Behave in an ethical manner in society

CO5: Practice critical thinking and the pursuit of truth.

binils.com
Anna University, Polytechnic & Schools

REFERENCES:

- 1. The Nonreligious: Understanding Secular People and Societies, Luke W. Galen Oxford University Press, 2016.
- 2. Secularism: A Dictionary of Atheism, Bullivant, Stephen; Lee, Lois, Oxford University Press, 2016.
- 3. The Oxford Handbook of Secularism, John R. Shook, Oxford University Press, 2017.
- 4. The Civic Culture: Political Attitudes and Democracy in Five Nations by Gabriel A. Almond and Sidney Verba, Princeton University Press,
- 5. Research Methodology for Natural Sciences by Soumitro Banerjee, IISc Press, January 2022

RA3711 ROBOTIC VISION AND INTELLIGENCE L T P C LABORATORY 0 0 4 2

COURSE OBJECTIVES

- 1. To understand various lighting techniques, design and image acquisition of machine vision system.
- 2. To practice Feature Extraction, Image pre-processing and pattern recognition.
- 3. To apply machine learning technique to classification and object detection.

LIST OF EXPERIMENTS

- 1. Study on different kinds of vision sensors and lighting techniques for machine vision
- 2. Study on Design of Machine Vision System.
- 3. Experimentation on image acquisition towards the computation platform.
- 4. Pre-processing techniques in image processing
- 5. Edge detection and region of interest extraction.
- 6. Experimentation with image processing algorithm for feature extraction.
- 7. Experimentation with pattern recognition.
- 8. Vision based image classification using Machine Learning Techniques.
- Vision based Object detection using Machine Learning Techniques.
- 10. Experimentation for Stereo vision.
- 11. Robot assisted image acquisition.
- 12. Vision based defect identification

TOTAL:	30	PERIC	DS
--------	----	--------------	----

		_	Ма	ppin	g of	COs	with	າ PO	s an	d PSC)s				
COs/POs&P		POs													
SOs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	3		2						2	3	2	3
CO2	3	2	1	3		2						2	3	2	3
CO3	3	2	1	3		2						2	3	2	3
CO/PO &	3	2	1	3		2						2	3	2	3
PSO Average															
	1 - Slight, 2 - Moderate, 3 - Substantial														

COURSE OUTCOMES:

Upon completing this course Students able to

- 1. Select appropriate lighting techniques and image acquisition device for robot vision system.
- 2. Apply Feature Extraction, Image pre-processing and pattern recognition algorithm in real time robot.
- 3. Create a machine learning technique to classification and object detection.

DIRECTOR
Centre for Academic Courses
Anna University, Chennai-600 025

binils.com Anna University, Polytechnic & Schools