SEMESTER V

S.	COURSE	COURSE TITLE	CATE	PE PEF	rioi R We	DS EK	TOTAL CONTACT	CREDITS
NO.	CODE		GORY	L	Т	Ρ	PERIODS	
THEC	DRY							
1.	CE3501	Design of Reinforced Concrete Structural Elements	PCC	3	0	0	3	3
2.	CE3502	Structural Analysis I	PCC	3	0	0	3	3
3.	CE3503	Foundation Engineering	PCC	3	0	0	3	3
4.		Professional Elective I	PEC	3	0	0	3	3
5.		Professional Elective II	PEC	3	0	0	3	3
6.		Professional Elective III	PEC	3	0	0	3	3
7.		Mandatory Course-I ^{&}	MC	3	0	0	3	0
PRAG	CTICALS							
8.	CE3511	Highway Engineering Laboratory	PCC	0	0	4	4	2
9.	CE3512	Survey Camp (2 weeks)	EEC	0	0	0	0	1
	25	21						

[&] Mandatory Course-I is a Non-credit Course (Student shall select one course from the list given under MC-I)

S. NO.	COURSE CODE	COURSE TITLE	CATE GORY	PERIODS PER WEEK			TOTAL CONTACT PERIODS	CREDITS
THEOF	RY							
1.	CE3601	Design of Steel Structural Elements	PCC	3	0	0	3	3
2.	CE3602	Structural Analysis II	PCC	3	0	0	3	3
3.	AG3601	Engineering Geology	PCC	3	0	0	3	3
4.		Professional Elective IV	PEC	3	0	0	3	3
5.		Professional Elective V	PEC	3	0	0	3	3
6.		Professional Elective VI	PEC	3	0	0	3	3
7.		Open Elective – I*	OEC	3	0	0	3	3
8.		Mandatory Course-II ^{&}	MC	3	0	0	3	0
9.		NCC Credit Course Level 3 [#]		3	0	0	3	3 #
PRAC	TICALS							
10.	CE3611	Building Drawing and Detailing Laboratory	PCC	0	0	4	4	2
			TOTAL	24	0	4	28	23

SEMESTER VI

*Open Elective – I shall be chosen from the emerging technologies

[&] Mandatory Course-II is a Non-credit Course (Student shall select one course from the list given under MC-II)

[#] NCC Credit Course level 3 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER VII/VIII*

S.	COURSE	COURSE TITLE	CATE	PERIODS PER WEEK		DS EK	TOTAL CONTACT	CREDITS	
NO.	CODL		GORT	L	Т	Ρ	PERIODS		
THEO									
1.	CE3701	Estimation, Costing and Valuation Engineering	PCC	3	0	0	3	3	
2.	AI3404	Hydrology and Water Resources Engineering	PCC	3	0	0	3	3	
3.	GE3791	Human Values and Ethics	HSMC	2	0	0	2	2	
4.	GE3752	Total Quality Management	HSMC	3	0	0	3	3	
5.		Open Elective – II**	OEC	3	0	0	3	3	
6.		Open Elective – III***	OEC	3	0	0	3	3	
7.		Open Elective – IV***	OEC	3	0	0	3	3	
			TOTAL	19	0	2	21	20	

*If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII

**Open Elective – II shall be chosen from the emerging technologies

***Open Elective III and IV (Shall be chosen from the list of open electives offered by other Programmes

SEMESTER VIII/VII*

S. NO.	COURSE CODE	COURSE TITLE	CATE GORY	PERIODS PER WEEK		RIODS TOTAL R WEEK CONTACT T P PERIODS		CREDITS
PRAC	TICALS							
1.	CE3811	Project Work/Internship	EEC	0	0	20	20	10
			TOTAL	0	0	20	20	10

*If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII

TOTAL CREDITS: 166

PROGRESS THROUGH KNOWLEDGE

MANDATORY COURSES I

S.	COURSE	COURSE TITLE	CATE	PE PE	eric R W	DDS EEK	TOTAL CONTACT	CREDITS
NO.	CODE		GORT	L	L T P		PERIODS	
1.	MX3081	Introduction to Women	MC	3	0	0	3	0
		and Gender Studies						
2.	MX3082	Elements of Literature	MC	3	0	0	3	0
3.	MX3083	Film Appreciation	MC	3	0	0	3	0
4.	MX3084	Disaster Risk Reduction	MC	3	0	0	3	0
		and Management						

PROFESSIONAL ELECTIVE COURSES : VERTICALS

VERTICAL I (Structures)	VERTICAL II (Construction techniques and Practices)	VERTICAL III (Geotechnical)	VERTICAL IV (Geo- Informatics)	VERTICAL V (Transportation infrastructure)	VERTICAL VI (Environment)	VERTICAL VII (Water Resources)	VERTICAL VIII (Ocean Engineering)	VERTICAL IX (Diversified Course)
Concrete Structures	Formwork Engineering	Geo- Environmental Engineering	Total Station and GPS Surveying	Airports and Harbours	Climate Change Adaptation and Mitigation	Irrigation Engineering and Drawing	Ocean Wave Dynamics	Steel Concrete Composite Structures
Steel Structures	Construction Equipment and Machinery	Ground Improvement Techniques	Remote Sensing Concepts	Traffic Engineering and Management	Air and Noise Pollution Control Engineering	Groundwater Engineering	Marine Geotechnical Engineering	Finance For Engineers
Prefabricated Structures	Sustainable Construction and Lean Construction	Soil Dynamics and Machine Foundations	Satellite Image Processing	Urban Planning and Development	Environmental Impact Assessment	Water Resources Systems Engineering	Coastal Engineering	Earth and Rockfill Dams
Prestressed Concrete Structures	Digitalized Construction Lab	Rock Mechanics	Cartography and GIS	Smart cities	Industrial Wastewater Management	Watershed Conservation and Management	Off shore Structures	Computational Fluid Dynamics
Rehabilitation/ Heritage Restoration	Construction Management and Safety	Earth and Earth Retaining Structures	Photogrammetry	Intelligent Transportation Systems	Solid and Hazardous Waste Management	Integrated Water Resources Management	Port and Harbour Engineering	Rainwater Harvesting
Dynamics and Earthquake Resistant Structures	Advanced Construction Techniques	Pile Foundation	Airborne and Terrestrial laser mapping	Pavement Engineering	Environmental Policy and Legislations	Urban Water Infrastructure	Coastal Hazards and Mitigation	Transport and Environment
Introduction to Finite Element Method	Energy Efficient Buildings	Tunneling Engineering	Hydrographic Surveying	Transportation planning Process	Environment, Health and Safety	Water Quality and Management	Coastal Zone Management and Remote Sensing	Environmental quality Monitoring

Registration of Professional Elective Courses from Verticals:

Professional Elective Courses will be registered in Semesters V and VI. These courses are listed in groups called verticals that represent a particular area of specialisation / diversified group. Students are permitted to choose all the Professional Electives from a particular vertical or from different verticals. Further, only one Professional Elective course shall be chosen in a semester horizontally (row-wise). However, two courses are permitted from the same row, provided one course is enrolled in Semester V and another in semester VI. The registration of courses for B.E./B.Tech (Honours) or Minor degree shall be done from Semester V to VIII. The procedure for registration of courses explained above shall be followed for the courses of B.E/B.Tech (Honours) or Minor degree also. For more details on B.E./B.Tech (Honours) or Minor degree also. For more details on B.E./B.Tech (Honours) or Minor degree also.

PROFESSIONAL ELECTIVE COURSES : VERTICALS

VERTICAL I: STRUCTURES

S.	COURSE CODE	COURSE TITLE	CATE	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
NO.			GORT	L	Т	Ρ	PERIODS	
1.	CE3001	Concrete Structures	PEC	3	0	0	3	3
2.	CE3002	Steel Structures	PEC	3	0	0	3	3
3.	CE3003	Prefabricated Structures	PEC	3	0	0	3	3
4.	CE3004	Prestressed Concrete	PEC	3	0	0	3	3
		Structures						
5.	CE3005	Rehabilitation/Heritage	PEC	3	0	0	3	3
		Restoration						
6.	CE3006	Dynamics and	PEC	3	0	0	3	3
		Earthquake Resistant	and the second second					
		Structures	6 A A A					
7.	CE3007	Introduction to Finite	PEC	3	0	0	3	3
		Element Method		1				

VERTICAL II: CONSTRUCTION TECHNIQUES AND PRACTICES

S.	COURSE CODE	COURSE TITLE	CATE	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
NO.		12/	GORT	L	Т	Ρ	PERIODS	
1.	CE3008	Formwork Engineering	PEC	3	0	0	3	3
2.	CE3009	Construction Equipment	PEC	3	0	0	3	3
3.	CE3010	Sustainable Construction And Lean Construction	PEC	3	0	0	3	3
4.	CE3011	Digitalized Construction	PEC	0	0	6	6	3
5.	CE3012	Construction Management and Safety	PEC	2	0	2	4	3
6.	CE3013	Advanced Construction Techniques	PEC	3	0	0	3	3
7.	CE3014	Energy Efficient Buildings	PEC	3	0	0	3	3

VERTICAL III: GEOTECHNICAL

S.	COURSE CODE	COURSE TITLE	CATE	PERIODS		DS EK	TOTAL CONTACT	CREDITS
NO.			GORT	L	Т	Ρ	PERIODS	
1.	CE3015	Geoenvironmental Engineering	PEC	3	0	0	3	3
2.	CE3016	Ground Improvement Techniques	PEC	3	0	0	3	3
3.	CE3017	Soil Dynamics and Machine Foundations	PEC	3	0	0	3	3
4.	CE3018	Rock Mechanics	PEC	3	0	0	3	3
5.	CE3019	Earth and Earth Retaining Structures	PEC	3	0	0	3	3
6.	CE3020	Pile Foundation	PEC	3	0	0	3	3
7.	CE3021	Tunneling Engineering	PEC	3	0	0	3	3

DESIGN OF REINFORCED CONCRETE STRUCTURAL ELEMENTS CE3501 LT PC

COURSE OBJECTIVE:

To introduce the different design philosophy for reinforced concrete and discuss the limit state method of design of RC rectangular beams and to learn the concept in the design of RC flanged beams and design for shear and torsion and design of RC slabs and staircase, short RC columns, RC footing for walls, pad, sloped and combined rectangular footings.

UNIT I METHODS OF DESIGN OF CONCRETE STRUCTURES

Concept of Elastic method, ultimate load method and limit state method – Working stress method as detailed in IS code - Design of Singly Reinforced beam by working stress method - Limit State philosophy as detailed in IS code - Advantages of Limit State Method over other methods - Analysis and design of singly and doubly reinforced rectangular beams by limit State Method.

LIMIT STATE METHOD - FLANGED BEAM, SHEAR & TORSION UNIT II

Analysis and design of flanged beams – Use of design aids for Flexure - Behaviour of RC members in bond and Anchorage - Design requirements as per current code - Behaviour of RC beams in shear and torsion - Design of RC members for combined bending, shear and torsion - serviceability.

UNIT III LIMIT STATE DESIGN OF SLABS AND STAIRCASE

Analysis and design of cantilever, one way, two way and continuous slabs subjected to uniformly distributed load for various boundary conditions- Types of Staircases - Design of dog-legged Staircase –Introduction to Flat Slab.

UNIT IV LIMIT STATE DESIGN OF COLUMNS

Types of columns – Design of short Rectangular and circular columns for axial, uniaxial and biaxial bending.

LIMIT STATE DESIGN OF FOOTING UNIT V

Design of wall footing - Design of axially and eccentrically loaded rectangular pad and sloped footings - Design of combined rectangular footing for two columns only.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of the course the student will be able to

- CO1 Know the various design concepts and design RC rectangular beams by working stress and limit state methods
- CO2 Understand the design of flanged beams, design for shear and torsion, and anchorage and development length.
- **CO3** Design a RC slabs and staircase and draw the reinforcement detailing.
- **CO4** Design short columns for axial, uni-axial and bi-axial eccentric loadings
- **C05** Design wall footings, isolated footings and combined rectangular footing.

TEXT BOOKS:

- Gambhir.M.L., "Fundamentals of Reinforced Concrete Design", Prentice Hall of India Private Limited, New Delhi, 2006.
- 2. Krishnaraju.N " Design of Reinforced Concrete Structurres ", CBS Publishers & Distributors Pvt. Ltd., New Delhi.

REFERENCES:

- 1. Sinha, S.N., "Reinforced Concrete Design", Tata McGraw Hill Publishing Company Ltd., New Delhi, 2017
- 2. Unnikrishna Pillai, S., Devdas Menon, "Reinforced Concrete Design", Tata McGraw Hill Publishing Company Ltd., 2021
- 3. Punmia.B.C., Ashok Kumar Jain, Arun Kumar Jain, "Limit State Design of Reinforced Concrete", Laxmi Publication Pvt. Ltd., New Delhi, 2016
- 4. Shah V L Karve S R., "Limit State Theory and Design of Reinforced Concrete", Structures Publilcations, Pune, 2013

binils.com Anna University, Polytechnic & Schools

3003

9

9

9

9

9

COs- PO's & PSO's MAPPING

PO/PS	0		Cour	se Out	come		Overall
		CO1	CO2	CO3	CO4	CO5	Correlation
							of CO s to
							POs
	PROGRAM OUT	ГСОМЕ	ES(PO)				
PO1	Knowledge of Engineering Sciences	3	3	3	3	3	3
PO2	Problem analysis	3	3	3	3	3	3
PO3	Design / development of solutions	3	3	3	3	3	3
PO4	Investigation	3	3	3	3	3	3
PO5	Modern Tool Usage	1	1	1	1	1	1
PO6	Engineer and Society	3	3	3	3	3	3
PO7	Environment and Sustainability	1	1	1	1	1	1
PO8	Ethics	1	1	1	1	1	1
PO9	Individual and Team work	3	3	3	3	3	3
PO10	Communication	2	2	2	2	2	2
PO11	Project Management and Finance	1	1	1	1	1	1
PO12	Life Long Learning	2	2	2	2	2	2
	PROGRAM SPECIFIC	OUTC	OMES	(PSO)			
PSO1	Knowledge of Civil Engineering discipline	3	3	3	3	3	3
PSO2	Critical analysis of Civil Engineering	2	2	2	2	2	2
	problems and innovation	3	3	3	3	3	3
PSO3	Conceptualization and evaluation of			1			
	engineering solutions to Civil	3	3	3	3	3	3
	Engineering Issues						

CE3502

COURSE OBJECTIVE:

To introduce the students to the basic theory and concepts of classical methods of structural analysis

ANALYSIS

UNITI ANALYSIS OF TRUSSES

Determinate and indeterminate trusses - analysis of determinate trusses - method of joints - method of sections - Deflections of pin-jointed plane frames - lack of fit - change in temperature method of tension coefficient - Application to space trusses.

SLOPE DEFLECTION METHOD **UNIT II**

Slope deflection equations - Equilibrium conditions - Analysis of continuous beams and rigid frames - Rigid frames with inclined members - Support settlements - symmetric frames with symmetric and skew-symmetric loadings.

UNIT III MOMENT DISTRIBUTION METHOD

Stiffness - distribution and carry over factors -- Analysis of continuous Beams- Plane rigid frames with and without sway - Support settlement - symmetric frames with symmetric and skew-symmetric loadings.

UNIT IV FLEXIBLITY METHOD

Primary structures - Compatibility conditions - Formation flexibility matrices - Analysis of indeterminate pin- jointed plane frames, continuous beams and rigid jointed plane frames by direct flexibility approach.

binils.com Anna University, Polytechnic & Schools

9

9

9

9

LTPC 3 0 0 3

UNIT V STIFFNESS METHOD

Restrained structure –Formation of stiffness matrices - equilibrium condition - Analysis of Continuous Beams, Pin-jointed plane frames and rigid frames by direct stiffness method.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Students will be able to

- **CO1** Analyze the pin-jointed plane and space frames.
- CO2 Analyse the continuous beams and rigid frames by slope defection method.
- **CO3** Understand the concept of moment distribution and analysis of continuous beams and rigid frames with and without sway.
- **CO4** Analyse the indeterminate pin jointed plane frames continuous beams and rigid frames using matrix flexibility method.
- **CO5** Understand the concept of matrix stiffness method and analysis of continuous beams, pin jointed trusses and rigid plane frames.

TEXTBOOKS:

- 1. Bhavikatti, S.S,Structural Analysis,Vol.1,& 2, Vikas Publishing House Pvt.Ltd.New Delhi-4, 2014.
- 2. Punmia.B.C, Ashok Kumar Jain & Arun Kumar Jain, Theory of structures, Laxmi Publications, New Delhi, 2004.

REFERENCES:

COS- PO'S & PSO'S MAPPING

- 1. William Weaver, Jr and James M.Gere, Matrix analysis of framed structures, CBS Publishers & Distributors, Second Edition, Delhi, 2004
- 2. Reddy .C.S, "Basic Structural Analysis", Tata McGraw Hill Publishing Company, 2005.
- 3. Negi L.S. and Jangid R.S., Structural Analysis, Tata McGraw Hill Publishing. Co. Ltd. 2004
- 4. Bhavikatti, S.S, Matrix Method of Structural Analysis, I. K. International Publishing House Pvt.Ltd.,New Delhi-4, 2014.

PO/PS	0		Cour	se Out	come		Overall
		CO1	CO2	CO3	CO4	C O5	Correlation of
		-					CO s to POs
	PROGRAM O	UTCOI	MES(P	0)			
PO1	Knowledge of Engineering Sciences	3	3	3	3	3	3
PO2	Problem analysis	3	3	3	3	3	3
PO3	Design / development of solutions	3	3	3	3	3	3
PO4	Investigation	3	3	3	3	3	3
PO5	Modern Tool Usage	1.	1	1	$\sim r_{12}$	1	1
PO6	Engineer and Society	3	3	3	3	3	3
PO7	Environment and Sustainability	1	1	1	1	1	1
PO8	Ethics	1	1	1	1	1	1
PO9	Individual and Team work	3	3	3	3	3	3
PO10	Communication	2	2	2	2	2	2
PO11	Project Management and Finance	1	1	1	1	1	1
PO12	Life Long Learning	2	1	1	1	1	1
	PROGRAM SPECIF		ГСОМЕ	ES(PSC))		
PSO1	Knowledge of Civil Engineering	3	2	S	3	3	3
	discipline	5	5	5	5	5	5
PSO2	Critical analysis of Civil Engineering	3	3	3	З	З	З
	problems and innovation	5	5	5	5	5	5
PSO3	Conceptualization and evaluation of						
	engineering solutions to Civil	3	3	3	3	3	3
	Engineering Issues						

COURSE OBJECTIVE:

 To impart knowledge to plan and execute a detail site investigation programme, to select geotechnical design parameters and type of foundations. Also to familiarize the students for the geotechnical design of different type of foundations and retaining walls.

UNIT I SITE INVESTIGATION AND SELECTION OF FOUNDATION

Scope and objectives – Methods of exploration – Auguring and boring – Wash boring and rotary drilling – Depth and spacing of bore holes – Soil samples – Representative and undisturbed – Sampling methods – Split spoon sampler, Thin wall sampler, Stationary piston sampler – Penetration tests (SPT and SCPT) – Data interpretation - Strength parameters and Evaluation of Liquefaction potential - Selection of foundation based on soil condition- Bore log report.

UNIT II BEARING CAPACITY OF SHALLOW FOUNDATION

Introduction – Location and depth of foundation – Codal provisions – Bearing capacity of shallow foundation on homogeneous deposits – Terzaghi's formula and BIS formula – Factors affecting bearing capacity – Bearing capacity from in-situ tests (SPT, SCPT and plate load) – Allowable bearing pressure – Seismic considerations in bearing capacity evaluation. Determination of Settlement of foundations on granular and clay deposits – Total and differential settlement – Allowable settlements – Codal provision – Methods of minimizing total and differential settlements.

UNIT III FOOTINGS AND RAFTS

Types of Isolated footing, Combined footing, Mat foundation – Contact pressure and settlement distribution – Proportioning of foundations for conventional rigid behaviour – Minimum depth for rigid behaviour – Applications – Floating foundation – Special foundations – Seismic force consideration – Codal provision

UNIT IV PILE FOUNDATION

Types of piles and their functions – Factors influencing the selection of pile – Carrying capacity of single pile in granular and cohesive soil – Static formula – Dynamic formulae (Engineering news and Hileys) – Capacity from insitu tests (SPT, SCPT) – Negative skin friction – Uplift capacity- Group capacity by different methods (Field's rule, Converse – Labarra formula and block failure criterion) – Settlement of pile groups – Interpretation of pile load test (routine test only), Under reamed piles – Capacity under compression and uplift – Codal provision.

UNIT V RETAINING WALLS

Plastic equilibrium in soils – Active and passive states – Rankine's theory – Cohesionless and cohesive soil – Coulomb's wedge theory – Condition for critical failure plane – Earth pressure on retaining walls of simple configurations – Culmann Graphical method – Pressure on the wall due to line load – Stability analysis of retaining walls – Codal provision.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

- On completion of the course, the student is expected to be able to
- **CO1** Graduate will demonstrate an ability to plan and execute a detailed site investigation to select geotechnical design parameters and type of foundation
- **CO2** Graduate will demonstrate an ability to design shallow foundations, its component or process as per the needs and specifications.
- **CO3** Graduate will demonstrate an ability to design combined footings and raft foundations, its component or process as per the needs and specifications.
- **CO4** Graduate will demonstrate an ability to design deep foundations, its component or process as per the needs and specifications.
- **CO5** Graduate will demonstrate an ability to design retaining walls, its component or process as per the needs and specifications.

binils.com Anna University, Polytechnic & Schools

9 rv

9

9

9

9

TEXTBOOKS:

- 1. Murthy, V.N.S., "Soil Mechanics and Foundation Engineering", CBS Publishers and Distributers Ltd., New Delhi, 2015.
- 2. Gopal Ranjan and Rao A.S.R. "Basic and Applied soil mechanics", New Age International (P) Ltd, New Delhi,2006.

REFERENCES:

- 1. Das, B.M. "Principles of Foundation Engineering" (Eigth edition), Thompson Asia Pvt. Ltd., Singapore, 2017.
- 2. Kaniraj, S.R. "Design aids in Soil Mechanics and Foundation Engineering", Tata McGraw Hill publishing company Ltd., New Delhi, 2017.
- 3. Varghese, P.C., "Foundation Engineering", Prentice Hall of India Private Limited, New Delhi, 2012.
- 4. Punmia, B.C., "Soil Mechanics and Foundations", Laxmi Publications Pvt.Ltd., New Delhi, 2017.

	PO/PSO	(C.)	Cour	se Out	come		Overall
		CO1	CO2	CO3	CO4	CO5	Correlation of
				·)			CO s to POs
	PROGRAM	I OUTC	OMES	(PO)			
PO1	Knowledge of Engineering	2	2	2	3	3	2
	Sciences			7.6			
PO2	Problem analysis	3	3	3	3	3	3
PO3	Design / development of solutions	3	3	3	3	3	3
PO4	Investigation	3	3	3	3	3	3
PO5	Modern Tool Usage	1	1	1	1	1	1
PO6	Engineer and Society	2	2	2	1	2	2
PO7	Environment and Sustainability	1	2				1
PO8	Ethics	1	1	1	1	1	1
PO9	Individual and Team work	1	1	1	1	1	1
PO10	Communication	1	1	1	1	1	1
PO11	Project Management and Finance	313	1	2	2	2	2
PO12	Life Long Learning	3	3	3	3	3	3
	PROGRAM SPEC	CIFIC C	UTCO	MES(PS	SO)		
PSO1	Knowledge of Civil Engineering	3	2	2	2	2	2
	discipline						
PSO2	Critical analysis of Civil	2	3	3	3	3	3
	Engineering problems and	(CU (iH Kr	IOW	ED C		
	innovation						
PSO3	Conceptualization and evaluation	3	2	2	3	3	3
	of Engineering solutions to Civil						
	engineering issues						

COs- PO's & PSO's MAPPING

CE3511 HIGHWAY ENGINEERING LABORATORY

LT P C 0 0 4 2

COURSE OBJECTIVE:

 To learn the principles and procedures of testing of materials used in the construction of highways.

EXCERCISES:

I TEST ON AGGREGATES

- 1. Specific gravity determination of the coarse aggregate sample
- 2. Determination of abrasion value of the coarse aggregate sample.
- 3. Determination of water absorption capacity of the coarse aggregate sample.

II TEST ON BITUMEN

- 4. Specific gravity determination of the bitumen/asphalt sample.
- 5. Determination of consistency of the bituminous material.
- 6. Viscosity determination of bituminous binder.
- 7. Determination of softening point of the asphalt/bitumen sample
- 8. Determination of ductility value of the bitumen sample
- 9. Estimation of loss of bitumen on heating
- 10. Determination of optimum binder content by Marshall method

III BITUMINOUS MIXES

- 11. Determination of stripping value of the bituminous mix Demonstration
- 12. Determination of bitumen content in the bituminous mix by cold solvent extraction method

TOTAL: 60 PERIODS

COURSE OUTCOMES

CO1 Characterize Pavement Aggregate through relevant test.

CO2 Ascertain the Quality of Bitumen.

CO3 Determine the Optimum Binder Content Using Marshall Method.

CO4 Evaluate the Consistency and Properties of Bitumen.

CO5 Determine the Bitumen Content in the Bituminous Mixes

REFERENCES

- 1. Highway Materials and Pavement Testing, Nem Chandand Bros., Roorkee, Revised Fifth Edition, 2009
- 2. N.L.Arora, A Textbook of Transportation Engineering, New India Publication, 1997
- 3. http://vlabs.iitb.ac.in/vlabsdev/labs/nitk_labs/Transportation_Engineering_Lab/index.html
- 4. Laboratory Manual in Highway engineering published, Duggal, Ajay K 2017

PROGRAMOUTCOMES(PO)PO/PSO		Course Outcome					Over all				
		C01	CO2	CO3	C O 4	CO5	Correlation of COs to POs				
PROGRAM OUTCOMES(PO)											
PO1	Knowledge of Engineering Sciences	3	3	3	3	3	3				
PO2	Problem analysis	1	1	1	1	1	1				
PO3	Design / development of solutions	3	3	3	3	3	3				
PO4	Investigation	2	2	2	2	2	2				
PO5	Modern Tool Usage	1	1	1	1	1	1				
PO6	Engineer and Society	1	1	1	1	1	1				
PO7	Environment and sustainability	1	1	1	1	1	1				
PO8	Ethics	1	1	1	1	1	1				
PO9	Individual and Team work	3	3	3	3	3	3				
PO10	Communication	3	3	3	3	3	3				
PO11	Project Management and Finance	1	1	1	1	1	1				
PO12	Life Long Learning	3	3	3	3	3	3				
PROGRAM SPECIFIC OUTCOMES (PSO)											
PSO1	Knowledge of Civil Engineering discipline	3	3	3	3	3	3				
PSO2	Critical analysis of Civil Engineering problems and innovation	3	3	3	3	3	3				
PSO3	Conceptualization and evaluation of engineering solutions to Civil Engineering Issues	2	2	2	2	2	2				

COs- PO's & PSO's MAPPING

CE3512

SURVEY CAMP (2 weeks)

COURSE OBJECTIVES:

• The objective of the survey camp is to enable the students to get practical training in the field work. Groups of not more than six members in a group will carry out each exercise in survey camp. At the end of the camp, each student shall have mapped and contoured the area. The camp record shall include all original field observations, calculations and plots.

Two weeks Survey Camp will be conducted during summer vacation in the following activities:

- 1. Traverse using Theodolite / Total station
- 2. Contouring
 - (i). Radial tachometric contouring Radial Line at Every 45 Degree and Length not less than 60 Meter on each Radial Line
 - (ii). Block Level/ By squares of size at least 100 Meter x 100 Meter atleast 20 Meter interval
 - (iii).L.S & C.S Road and canal alignment for a Length of not less than 1 Kilo Meter atleast L.S at Every 30M and C.S at every 90 M
- 3. Offset of Buildings and Plotting the Location
- 4. Sun observation to determine azimuth (guidelines to be given to the students)
- 5. Use of GPS to determine latitude and longitude and locate the survey camp location
- 6. Traversing using GPS
- 7. Curve setting by deflection angle

Apart from above students may be given survey exercises in other area also based on site condition to give good exposure on survey.

COURSE OUTCOMES

- · On completion of the course, the student is expected to be able to
- CO1 Handle the modern surveying instruments like Total station and GPS
- **CO2** Apply modern surveying techniques in field to establish horizontal control.
- CO3 Understand the surveying techniques in field to establish vertical control
- CO4 Apply different survey adjustment techniques.
- CO5 Carry out different setting out works in the field

COs- PO's & PSO's MAPPING

PO/PSO			Cours	Overall						
		CO1	C 02	CO 2	CO4	COF	Correlation of			
		COI	002	003	C04	005	CO s to POs			
PROGRAM OUTCOMES(PO)										
PO1	Knowledge of EngineeringSciences	3	3	3	3	3	3			
PO2	Problem analysis	3	3	3	3	3	3			
PO3	Design / development of solutions		1. AN . A	2	2	2	2			
PO4	Investigation	3	3	3			3			
PO5	Modern Tool Usage	3	3	3	3	3	3			
PO8	Engineer and Society	3	3	2	2	2	2			
PO10	Environment and Sustainability	2	2	2	2	2	2			
PO9	Ethics	2	2	2	2		2			
PO6	Individual and Team work	2	2	3	2	2	2			
PO7	Communication	2	2	2	2	2	2			
PO11	Project Management and Finance	2	2	2	2	2	2			
PO12	Life Long Learning	3	3	3	3	3	3			
PROGRAM SPECIFIC OUTCOMES(PSO)										
PSO1	Knowledge of Civil Engineering discipline	3	3	3	3	3	3			
PSO2	Critical analysis of Civil Engineering problems and innovation	3	3	3	3	3	3			
PSO3	Conceptualization and evaluation of engineering solutions to Civil Engineering Issues	3	3	3	3	3	3			