| S.   | COURSE  | COURSE TITLE                           | CATE  |    | RIOD:<br>R WEE |   | TOTAL<br>CONTACT | CREDITS |
|------|---------|----------------------------------------|-------|----|----------------|---|------------------|---------|
| NO.  | CODE    |                                        | GORY  | L  | Т              | Ρ | PERIODS          |         |
| THEC | DRY     | •                                      |       |    | •              |   |                  |         |
| 1.   | AE3701  | Wind Tunnel Techniques                 | PCC   | 3  | 0              | 0 | 3                | 3       |
| 2.   | GE3751  | Human Values and Ethics                | HSMC  | 2  | 0              | 0 | 2                | 2       |
| 3.   |         | Elective – Management#                 | HSMC  | 3  | 0              | 0 | 3                | 3       |
| 4.   |         | Open Elective – II**                   | OEC   | 3  | 0              | 0 | 3                | 3       |
| 5.   |         | Open Elective – III***                 | OEC   | 3  | 0              | 0 | 3                | 3       |
| 6.   |         | Open Elective – IV***                  | OEC   | 3  | 0              | 0 | 3                | 3       |
| PRA  | CTICALS |                                        |       |    |                |   |                  |         |
| 7.   | AE3711  | Aero Engine and Airframe<br>Laboratory | PCC   | 0  | 0              | 2 | 2                | 1       |
| 8.   | AE3712  | Aircraft Systems Laboratory            | PCC   | 0  | 0              | 2 | 2                | 1       |
| 9.   | AE3781  | Computational Analysis<br>Laboratory   | PCC   | 0  | 0              | 2 | 2                | 1       |
|      |         |                                        | TOTAL | 17 | 0              | 6 | 23               | 20      |

\*If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII.

\*\*Open Elective – II shall be chosen from the emerging technologies. \*\*\*Open Elective III and IV (Shall be chosen from the list of open electives offered by other Programmes) # Elective - Management shall be chosen from the elective Management courses

| S.<br>NO. | COURSE<br>CODE |                          | CATE<br>GORY | P | ERIC<br>R W | -  | TOTAL<br>CONTACT<br>PERIODS | CREDITS |
|-----------|----------------|--------------------------|--------------|---|-------------|----|-----------------------------|---------|
| PRAC      | TICALS         |                          |              |   |             |    |                             |         |
| 1.        | AE3811         | Project Work /Internship | EEC          | 0 | 0           | 20 | 20                          | 10      |
|           |                |                          | TOTAL        | 0 | 0           | 20 | 20                          | 10      |

\*If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII

# PROGRESS THROUGH KNOWLEDGE

## **TOTAL CREDITS: 166**

Attested

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

binils.com Anna University, Polytechnic & Schools

## 

## **OPEN ELECTIVES**

## (Students shall choose the open elective courses, such that the course contents are not similar to any other course contents/title under other course categories). OPEN ELECTIVE I AND II (EMERGING TECHNOLOGIES)

To be offered other than Faculty of Information and Communication Engineering

| SL.<br>NO. | COURSE<br>CODE | COURSE TITLE                                                    | CATE<br>GORY | PEF<br>PER | RIOE<br>WE |   | TOTAL<br>CONTACT | CREDITS |
|------------|----------------|-----------------------------------------------------------------|--------------|------------|------------|---|------------------|---------|
| 140.       |                |                                                                 | GOILI        | L          | Т          | Ρ | PERIODS          |         |
| 1.         | OCS351         | Artificial Intelligence and<br>Machine Learning<br>Fundamentals | OEC          | 2          | 0          | 2 | 4                | 3       |
| 2.         | OCS352         | IoT Concepts and<br>Applications                                | OEC          | 2          | 0          | 2 | 4                | 3       |
| 3.         | OCS353         | Data Science Fundamentals                                       | OEC          | 2          | 0          | 2 | 4                | 3       |
| 4.         | CCS333         | Augmented Reality /Virtual Reality                              | OEC          | 2          | 0          | 2 | 4                | 3       |

## **OPEN ELECTIVES – III**

| SL. | COURSE<br>CODE | COURSE TITLE, UN                        | CATE |   | erio<br>R W |   | TOTAL<br>CONTACT | CREDITS |
|-----|----------------|-----------------------------------------|------|---|-------------|---|------------------|---------|
| NO. | UUDL           |                                         | GORY | Ū | Т           | P | PERIODS          | ONEDITO |
| 1.  | OHS351         | English for Competitive<br>Examinations | OEC  | 3 | 0           | 0 | 3                | 3       |
| 2.  | OMG352         | NGOs and Sustainable Development        | OEC  | 3 | 0           | 0 | 3                | 3       |
| 3.  | OMG353         | Democracy and Good<br>Governance        | OEC  | 3 | 0           | 0 | 3                | 3       |
| 4.  | OCE353         | Lean Concepts, Tools And<br>Practices   | OEC  | 3 | 0           | 0 | 3                | 3       |
| 5.  | CME365         | Renewable Energy<br>Technologies        | OEC  | 3 | 0           | 0 | 3                | 3       |
| 6.  | OME354         | Applied Design Thinking                 | OEC  | 3 | 0           | 0 | 3                | 3       |
| 7.  | MF3003         | Reverse Engineering                     | OEC  | 3 | 0           | 0 | 3                | 3       |
| 8.  | OPR351         | Sustainable Manufacturing               | OEC  | 3 | 0           | 0 | 3                | 3       |
| 9.  | AU3791         | Electric and Hybrid Vehicles            | OEC  | 3 | 0           | 0 | 3                | 3       |
| 10. | OAS352         | Space Engineering                       | OEC  | 3 | 0           | 0 | 3                | 3       |
| 11. | OIM351         | Industrial Management                   | OEC  | 3 | 0           | 0 | 3                | 3       |
| 12. | OIE354         | Quality Engineering                     | OEC  | 3 | 0           | 0 | 3                | 3       |
| 13. | OSF351         | Fire Safety Engineering                 | OEC  | 3 | 0           | 0 | 3                | 3       |
| 14. | OML351         | Introduction to non-destructive testing | OEC  | 3 | 0           | 0 | 3                | 3       |
| 15. | OMR351         | Mechatronics                            | OEC  | 3 | 0           | 0 | 3                | 3       |
| 16. | ORA351         | Foundation of Robotics                  | OEC  | 3 | 0           | 0 | 3                | 3       |
| 17. | OGI351         | Remote Sensing Concepts                 | OEC  | 3 | 0           | 0 | 3                | 3       |
| 18. | OAI351         | Urban Agriculture                       | OEC  | 3 | 0           | 0 | 3                | 3       |
| 19. | OEN351         | Drinking Water Supply and<br>Treatment  | OEC  | 3 | 0           | 0 | 3                | 3       |
| 20. | OEE352         | Electric Vehicle technology             | OEC  | 3 | 0           | 0 | 3                | 3       |
| 21. | OEI353         | Introduction to PLC<br>Programming      | OEC  | 3 | 0           | 0 | 3                | 3       |
| 22. | OCH351         | Nano Technology                         | OEC  | 3 | 0           | 0 | 3                | 3       |
| 23. | OCH352         | Functional Materials                    | OEC  | 3 | 0           | 0 | 3                | 3       |

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

| 24. | OFD352 | Traditional Indian Foods        | OEC | 3 | 0                                                                                                               | 0 | 3 | 3 |
|-----|--------|---------------------------------|-----|---|-----------------------------------------------------------------------------------------------------------------|---|---|---|
| 25. | OFD353 | Introduction to Food Processing | OEC | 3 | 0                                                                                                               | 0 | 3 | 3 |
| 26. | OPY352 | IPR for Pharma Industry         | OEC | 3 | 0                                                                                                               | 0 | 3 | 3 |
| 27. | OTT351 | Basics of Textile Finishing     | OEC | 3 | 0                                                                                                               | 0 | 3 | 3 |
| 28. | OTT352 | Industrial Engineering for      | OEC | 3 | 0                                                                                                               | 0 | 3 | 3 |
|     |        | Garment Industry                |     |   |                                                                                                                 |   |   |   |
| 29. | OTT353 | Basics of Textile Manufacture   | OEC | 3 | 0                                                                                                               | 0 | 3 | 3 |
| 30. | OPE351 | Introduction to Petroleum       | OEC | 3 | 0                                                                                                               | 0 | 3 | 3 |
|     |        | Refining and Petrochemicals     |     |   |                                                                                                                 |   |   |   |
| 31. | OPE334 | Energy Conservation and         | OEC | 3 | 0                                                                                                               | 0 | 3 | 3 |
|     |        | Management                      |     |   |                                                                                                                 |   |   |   |
| 32. | OPT351 | Basics of Plastics Processing   | OEC | 3 | 0                                                                                                               | 0 | 3 | 3 |
| 33. | OEC351 | Signals and Systems             | OEC | 3 | 0                                                                                                               | 0 | 3 | 3 |
| 34. | OEC352 | Fundamentals of Electronic      | OEC | 3 | 0                                                                                                               | 0 | 3 | 3 |
|     |        | Devices and Circuits            |     |   |                                                                                                                 |   |   |   |
| 35. | CBM348 | Foundation Skills in integrated | OEC | 3 | 0                                                                                                               | 0 | 3 | 3 |
|     |        | product Development             |     |   |                                                                                                                 |   |   |   |
| 36. | CBM333 | Assistive Technology            | OEC | 3 | 0                                                                                                               | 0 | 3 | 3 |
| 37. | OMA352 | Operations Research             | OEC | 3 | 0                                                                                                               | 0 | 3 | 3 |
| 38. | OMA353 | Algebra and Number Theory       | OEC | 3 | 0                                                                                                               | 0 | 3 | 3 |
| 39. | OMA354 | Linear Algebra                  | OEC | 3 | 0                                                                                                               | 0 | 3 | 3 |
| 40. | OBT352 | Basics of Microbial Technology  | OEC | 3 | 0                                                                                                               | 0 | 3 | 3 |
| 41. | OBT353 | Basics of Biomolecules          | OEC | 3 | 0                                                                                                               | 0 | 3 | 3 |
| 42. | OBT354 | Fundamentals of Cell and        | OEC | 3 | 0                                                                                                               | 0 | 3 | 3 |
|     |        | Molecular Biology               |     |   | A.                                                                                                              |   |   |   |
|     |        |                                 |     |   | Participant in the second s |   |   |   |

# OPEN ELECTIVES - IV

| SL.<br>NO. | COURSE<br>CODE | COURSE TITLE                                              | CATE<br>GORY |    | WEE | ĸ | TOTAL<br>CONTACT | CREDITS    |  |  |  |  |  |
|------------|----------------|-----------------------------------------------------------|--------------|----|-----|---|------------------|------------|--|--|--|--|--|
| NO.        |                |                                                           | GONT         | L7 | Т   | Р | PERIODS          |            |  |  |  |  |  |
| 1.         | OHS352         | Project Report Writing                                    | OEC          | 3  | 0   | 0 | 3                | 3          |  |  |  |  |  |
| 2.         | OMA355         | Advanced Numerical Methods                                | OEC          | 3  | 0   | 0 | 3                | 3          |  |  |  |  |  |
| 3.         | OMA356         | Random Processes                                          | OEC          | 3  | 0   | 0 | 3                | 3          |  |  |  |  |  |
| 4.         | OMA357         | Queuing and Reliability<br>Modelling                      | OEC          | 3  | 0   | 0 | 3                | 3          |  |  |  |  |  |
| 5.         | OMG354         | Production and Operations<br>Management for Entrepreneurs | OEC          | 3  | 0   | 0 | 3                | 3          |  |  |  |  |  |
| 6.         | OCE354         | Basics of Integrated Water<br>Resources Management        | OEC          | 3  | 0   | 0 | 3                | 3          |  |  |  |  |  |
| 7.         | OMG355         | Multivariate Data Analysis                                | OEC          | 3  | 0   | 0 | 3                | 3          |  |  |  |  |  |
| 8.         | OME352         | Additive Manufacturing                                    | OEC          | 3  | 0   | 0 | 3                | 3          |  |  |  |  |  |
| 9.         | CME343         | New Product Development                                   | OEC          | 3  | 0   | 0 | 3                | 3          |  |  |  |  |  |
| 10.        | OME355         | Industrial Design & Rapid<br>Prototyping Techniques       | OEC          | 3  | 0   | 0 | 3                | 3          |  |  |  |  |  |
| 11.        | MF3010         | Micro and Precision Engineering                           | OEC          | 3  | 0   | 0 | 3                | 3          |  |  |  |  |  |
| 12.        | OMF354         | Cost Management of<br>Engineering Projects                | OEC          | 3  | 0   | 0 | 3                | 3          |  |  |  |  |  |
| 13.        | OAS353         | Space Vehicles                                            | OEC          | 3  | 0   | 0 | 3                | 3          |  |  |  |  |  |
| 14.        | AU3002         | Batteries and Management system                           | OEC          | 3  | 0   | 0 | 3                | 3          |  |  |  |  |  |
| 15.        | AU3008         | Sensors and Actuators                                     | OEC          | 3  | 0   | 0 | 3                | 3          |  |  |  |  |  |
| 16.        | OIM352         | Management Science                                        | OEC          | 3  | 0   | 0 | 3 Attes          | <b>a</b> 3 |  |  |  |  |  |
| 17.        | OIM353         | Production Planning and Control                           | OEC          | 3  | 0   | 0 | 3                | 3          |  |  |  |  |  |
| 18.        | OIE353         | Operations Management                                     | OEC          | 3  | 0   | 0 | 3                | 3          |  |  |  |  |  |

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

AE3701

## WIND TUNNEL TECHNIQUES

## LTPC 3003

9

9

9

9

9

TOTAL: 45 PERIODS

## COURSE OBJECTIVES:

- To learn the Types of low speed Wind tunnels and non-dimensional numbers with its applications.
- To learn the Types of high speed Wind tunnels and with its calibration methods.
- To Understand the Special Wind tunnels and with its calibration methods with its design methods.
- To describe flow visualization techniques and data acquisition methods. •
- To understand the functions of various instruments associated with wind tunnel •

### UNIT I LOW SPEED WIND TUNNELS

Classification -non-dimensional numbers-types of similarities - Layout of open circuit and closed circuit subsonic wind tunnels - design parameters-energy ratio - HP calculations - Calibration methods.

### UNIT II **HIGH SPEED WIND TUNNELS**

Blow down, in draft and induction tunnel layouts and their design features -Transonic, and supersonic tunnels- peculiar features of these tunnels and operational difficulties - sample design calculations and calibration methods.

### UNIT III SPECIAL WIND TUNNEL TECHNIQUES

Types of Special Wind Tunnels - Hypersonic, Gun and Shock Tunnels - Design features and calibration methods- Intake tests - store carriage and separation tests - wind tunnel model design for these tests

### UNIT IV WIND TUNNEL INSTRUMENTATION

Instrumentation and sensors required for both steady and unsteady measurements - Force measurements using three component and six component balances - calibration of measuring instruments – error estimation and uncertainty analysis.

### UNIT V FLOW VISUALIZATION and NON-INTRUSIVE FLOW DIAGNOSTICS

Smoke and Tuft grid techniques - Dye injection special techniques - Oil flow visualization and PSP techniques - Optical methods of flow visualization - PIV and Laser Doppler techniques - Image processing and data deduction

## COURSE OUTCOMES:

At the end of the course, students will be able to

- CO1: Explain the uses of various types of tunnels and its losses
- CO2: Experiment with calibration of different types of high speed tunnels
- CO3: Make use of various special tunnels and its applications
- CO4: Make use of various measurement techniques of instruments of wind tunnel
- CO5: Can use various techniques for aerodynamic data generation

## **TEXT BOOKS:**

- 1. NAL-UNI Lecture Series 12:" Experimental Aerodynamics", NAL SP 98 01 April 1998
- 2. Rae, W.H. and Pope, A., "Low Speed Wind Tunnel Testing", John Wiley Publication, 1984.

## **REFERENCES:**

- 1. Bradsaw "Experimental Fluid Mechanics".
- 2. Lecture course on Advanced Flow diagnostic techniques 17-19 September 2008 NAL, Bangalore
- 3. Pope, A., and Goin, L., "High Speed Wind Tunnel Testing", John Wiley, 1985.
- 4. Rathakrishnan, E., "Instrumentation, Measurements, and Experiments in Fluids," CRC Press -Taylor & Francis, 2007.
- 5. Short term course on Flow visualization techniques, NAL, 2009

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

## MAPPING OF COS AND POS:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | 1   | 2   | 1   | -   | -   | -   | -   | -   | -   | -    | -    | -    | 2    | -    | -    |
| CO2 | 1   | 3   | -   | -   | 3   | -   | -   | -   | -   | -    | -    | -    | 3    | 1    | -    |
| CO3 | 1   | 3   | 1   | 1   | 1   | -   | -   | -   | -   | -    | -    | -    | 3    | 1    | -    |
| CO4 | 1   | 2   | -   | 2   | 3   | -   | -   | -   | -   | -    | -    | -    | 2    | -    | -    |
| CO5 | 1   | 1   | 1   | -   | -   | -   | -   | -   | -   | -    | -    | -    | 3    | 1    | 1    |
| Avg | 1   | 2.2 | 1   | 1.5 | 2.3 | -   | -   | -   | -   | -    | -    | -    | 2.6  | 1    | 1    |

## GE3791

## HUMAN VALUES AND ETHICS

## **COURSE DESCRIPTION**

This course aims to provide a broad understanding about the modern values and ethical principles that have evolved and are enshrined in the Constitution of India with regard to the democratic, secular and scientific aspects. The course is designed for undergraduate students so that they could study, understand and apply these values in their day to day life.

## COURSE OBJECTIVES:

- To create awareness about values and ethics enshrined in the Constitution of India  $\triangleright$
- To sensitize students about the democratic values to be upheld in the modern society.  $\triangleright$
- To inculcate respect for all people irrespective of their religion or other affiliations.  $\geq$
- To instill the scientific temper in the students' minds and develop their critical thinking.  $\triangleright$
- To promote sense of responsibility and understanding of the duties of citizen.  $\geq$

### UNIT I DEMOCRATIC VALUES

Understanding Democratic values: Equality, Liberty, Fraternity, Freedom, Justice, Pluralism, Tolerance, Respect for All, Freedom of Expression, Citizen Participation in Governance - World Democracies: French Revolution, American Independence, Indian Freedom Movement. Reading Text: Excerpts from John Stuart Mills' On Liberty

### UNIT II SECULAR VALUES

Understanding Secular values - Interpretation of secularism in Indian context - Disassociation of state from religion - Acceptance of all faiths - Encouraging non-discriminatory practices.

Reading Text: Excerpt from Secularism in India: Concept and Practice by Ram Puniyani

### UNIT III SCIENTIFIC VALUES

Scientific thinking and method: Inductive and Deductive thinking, Proposing and testing Hypothesis, Validating facts using evidence based approach - Skepticism and Empiricism - Rationalism and Scientific Temper.

Reading Text: Excerpt from The Scientific Temper by Antony Michaelis R

### UNIT IV SOCIAL ETHICS

Application of ethical reasoning to social problems - Gender bias and issues - Gender violence - Social discrimination - Constitutional protection and policies - Inclusive practices.

Reading Text: Excerpt from 21 Lessons for the 21<sup>st</sup> Century by Yuval Noah Harari

### UNIT V SCIENTIFIC ETHICS

Transparency and Fairness in scientific pursuits - Scientific inventions for the betterment of society - Unfair application of scientific inventions - Role and Responsibility of Scientist in the modern society.

## binils.com Anna University, Polytechnic & Schools

## DIRECTOR ntre for Academic Courses unna University, Chennai-600 025

6

LTPC 2002

6

Reading Text: Excerpt from American Prometheus: The Triumph and Tragedy of J.Robert Oppenheimer by Kai Bird and Martin J. Sherwin.

## TOTAL: 30 PERIODS

## COURSE OUTCOMES

Students will be able to

- CO1: Identify the importance of democratic, secular and scientific values in harmonious functioning of social life
- CO2 : Practice democratic and scientific values in both their personal and professional life.
- CO3: Find rational solutions to social problems.
- CO4 : Behave in an ethical manner in society
- CO5 : Practice critical thinking and the pursuit of truth.

## **REFERENCES:**

- 1. The Nonreligious: Understanding Secular People and Societies, Luke W. Galen Oxford University Press, 2016.
- 2. Secularism: A Dictionary of Atheism, Bullivant, Stephen; Lee, Lois, Oxford University Press, 2016.
- 3. The Oxford Handbook of Secularism, John R. Shook, Oxford University Press, 2017.
- 4. The Civic Culture: Political Attitudes and Democracy in Five Nations by Gabriel A. Almond and Sidney Verba, Princeton University Press,
- 5. Research Methodology for Natural Sciences by Soumitro Banerjee, IISc Press, January 2022



Attested

binils.com Anna University, Polytechnic & Schools

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025 AE3711

## **OBJECTIVES:**

- To introduce the knowledge of the maintenance and repair procedures followed for overhaul of aero engines.
- To acquire knowledge in preparation of glass expoxy of composite laminates and its specimens
- To learn about Welding and sheet metal repair.

## LIST OF EXPERIMENTS

- 1. Dismantling of an aircraft piston engine.
- 2. Assembling of an aircraft piston engine.
- 3. Study of Camshaft operation, firing order and magneto, valve timing
- 4. Study of lubrication and cooling system
- 5. Study of auxiliary systems, pumps and carburetor
- 6. Aircraft wood gluing-single & double scarf joints
- 7. Preparation of Single/Double Riveted Lap joint
- 8. Preparation of Single/Double Riveted butt joint
- 9. Sheet metal forming
- 10. Sheet metal Riveted Patch Repair.
- 11. Dye penetrant test NDT
- 12. Tube bending and flaring

## TOTAL: 30 PERIODS

## OUTCOMES:

- Take part in Dismantling and reassembling of an aircraft piston engine
- Inspect the Welding repair in various components of aircraft frames
- Take part in preparation of glass epoxy of composite laminates and its specimens

| -     |      |     | -    | and the second se |         |      | Supervision and supervision of the local division of the local div |      |      | 1    | -    |      |      |      |      |
|-------|------|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|
| CO/PO | PO1  | PO2 | PO3  | PO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PO5     | PO6  | PO7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PO8  | PO9  | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| CO1   | 3    | 3   | 2    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2       | 1    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2    | 3    | 3    | 2    | 2    | 2    | 1    | 2    |
| CO2   | 2    | 3   | 1    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1       | 1    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2    | 2    | 2    | 1    | 1    | 3    | 2    | 3    |
| CO3   | 2    | 3   | 1    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1       | 1    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2    | 2    | 2    | 1    | 2    | 2    | 1    | 2    |
|       |      |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | : D E C | CT I |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ICH. | 210  | WIE  | 165  |      |      |      |      |
|       | 2.67 | 3   | 1.33 | SIN YO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.33    | 1.0  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.00 | 2.33 | 2.33 | 1.33 | 1.67 | 2.33 | 1.33 | 2.33 |

## AE3712

## AIRCRAFT SYSTEMS LABORATORY

L T P C 0 0 2 1

## **OBJECTIVES:**

- To train the students "ON HAND" experience in maintenance of various air frame systems in aircraft
- To train students in rectification of common snags.
- To train students on maintenance of control systems

## LIST OF EXPERIMENTS

- 1. Aircraft "Jacking Up" procedure
- 2. Aircraft "Levelling" procedure
- 3. Control System "Rigging check" procedure
- 4. Aircraft "Symmetry Check" procedure
- 5. "Flow test" to assess of filter element clogging

biniks.com Anna University, Polytechnic & Schools

Ittested

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

- 6. "Pressure Test" To assess hydraulic External/Internal Leakage
- 7. "Functional Test" to adjust operating pressure
- 8. "Pressure Test" procedure on fuel system components
- 9. "Brake Torque Load Test" on wheel brake units
- 10. Maintenance and rectification of snags in hydraulic and fuel systems.
- 11. Aircraft weighing procedure
- 12. Study of combinational control surfaces

## OUTCOMES:

- **CO 1** Take part in maintenance of aircraft systems.
- **CO 2** Take part in inspections of aircraft components and systems.
- **CO 3** Examine various control surfaces of aircraft and their functions.

| CO/PO | PO1 | PO2  | PO3  | PO4 | PO5  | PO6 | PO7  | PO8  | PO9  | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-------|-----|------|------|-----|------|-----|------|------|------|------|------|------|------|------|------|
| CO1   | 3   | 3    | 2    | 1   | 1    | 1   | 1    | 2    | 3    | 3    | 2    | 2    | 3    | 2    | 3    |
| CO2   | 3   | 2    | 1    | -   | -    | -   | -    | 2    | 2    | 2    | 1    | 1    | 2    | 1    | 1    |
| CO3   | 3   | 3    | 2    | 1   | 1    | 1   | -    | 2    | 3    | 3    | 2    | 2    | 2    | 2    | 2    |
|       |     |      |      |     |      |     |      |      |      |      |      |      |      |      |      |
|       | 3.0 | 2.67 | 1.67 | 1   | 1.00 | 1.0 | 1.00 | 2.00 | 2.67 | 2.67 | 1.67 | 1.67 | 2.33 | 1.67 | 2    |



## AE3781

## COMPUTATIONAL ANALYSIS LABORATORY

L T P C 0 0 2 1

**TOTAL: 30 PERIODS** 

## **OBJECTIVES:**

To familiarize with

- The stress distribution
- Meshing of various geometries
- Variation of mechanical properties on different load conditions,
- Flow analysis, and
- Thermal analysis.

## LIST OF EXPERIMENTS:

Attested

binils.com Anna University, Polytechnic & Schools

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025

- 1. Grid independence study and convergence test using any simple case like cylinder
- 2. Simulation of flow over an aero foil
- 3. Simulation of flow over backward facing step.
- 4. Simulation of Karman vortex trail (vortex shedding) using circular cylinder.
- 5. External flow simulation of subsonic and supersonic aero foils.
- 6. Internal flow simulation of subsonic, sonic and supersonic flow through a CD nozzle.
- 7. Structural analysis of bar and beam
- 8. Structural analysis of truss.
- 9. Structural analysis of tapered wing.
- 10. Structural analysis of fuselage structure.
- 11. Analysis of composite laminate structures.
- 12. Heat transfer analysis of structures.

## OUTCOMES:

On successful completion of this course, the student will be able to

- Develop and effectively employ solid modelling and simulation tools.
- Choose right specification and create a simple trade diagram.
- Choose appropriate structural models.
- Make use of tools to analyse stress distribution over complex structural components.
- Construct 3d designs and conduct flow analysis

|       | 1   | 1   | 1   |     |     | 100 March 100 Ma |     |     | -   |      |      | 1    |      |      |      |
|-------|-----|-----|-----|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|------|------|------|------|------|
| CO/PO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PO7 | PO8 | PO9 | PO10 | P011 | PO12 | PSO1 | PSO2 | PSO3 |
| CO1   | 2   | 2   | 2   | 1   | 1   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | -   | -   |      | 1    | 1    | 2    | 1    | 2    |
| CO2   | 2   | 2   | 1   | 1   | 1   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | 1   | 1   | 1    | -    | 1    | 2    | 2    | 1    |
| CO3   | 2   | 2   | 2   | 1   | 1   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |     |     |      | -    |      | 2    | 2    | 2    |
|       | 2   | 2   | 1   | 1   | 1   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5   | 1   |     | 1    |      | 1    | 2    | 1.67 | 1.67 |

## AE3811

## **PROJECT WORK / INTERNSHIP**

PROGRESS THROUGH KNOWLEDGE

L T P C 0 0 20 10

**TOTAL: 30 PERIODS** 

## COURSE OBJECTIVES:

- To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same. To train the students in preparing project reports and to face reviews and viva voce examination.
- The students in a group of 3 to 4 works on a topic approved by the head of the department under the guidance of a faculty member and prepares a comprehensive project report after completing the work to the satisfaction of the supervisor.
- The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required

DIRECTOR Centre for Academic Courses Anna University, Chennai-600 025