www.binils.com Anna University, Polytechnic & Schools

3.2 E.M.F EQUATION OF A TRANSFORMER

Transformer EMF Equation

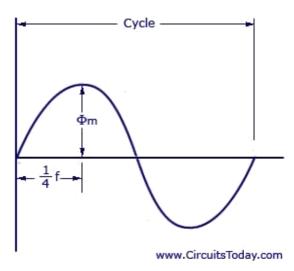


Figure 3.2 EMF Equation

[Source: "Basic Electrical and Electronics Engineering" by Kothari D.P., Page – 435]

Transformer EMF Equation Let, ON S. COM

 N_A = Number of turns in primary

 N_B = Number of turns in secondary

 $Ø_{\text{max}} = \text{Maximum flux in the core in}$

webers = $B_{max} X A f = Frequency of$

alternating current input in hertz (H_Z)

As shown in figure above, the core flux increases from its zero value to maximum value \emptyset_{max} in one quarter of the cycle, that is in $\frac{1}{4}$ frequency second.

Therefore, average rate of change of flux = $\emptyset_{max}/\sqrt{1/4}$ f = 4f \emptyset_{max} Wb/s

Now, rate of change of flux per turn means induced electro

motive force in volts. Therefore, average electro-motive force

 $induced/turn = 4f Ø_{max}volt$

If flux Ø varies sinusoidally, then r.m.s value of induced e.m.f is obtained by

BE3251 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

binils Android App on Play Store

www.binils.com Anna University, Polytechnic & Schools

multiplying the average value with form factor.

Form Factor = r.m.s. value/average value = 1.11

Therefore, r.m.s value of e.m.f/turn = $1.11 \times 4f$

 $Ø_{\text{max}} = 4.44 \text{ f } Ø_{\text{max}} \text{ Now, r.m.s value of induced e.m.f}$

in the whole of primary winding

= (induced e.m.f./turn) X Number of

primary turns Therefore,

 $E_A = 4.44 f N_A Ø_{max} = 4.44 f N_A B_m A$

Similarly, r.m.s value of induced e.m.f in secondary is $E_B = 4.44 f N_B \mathcal{O}_{max} = 4.44 f N_B B_m A$

In an ideal transformer on no load,

 $V_A = E_A$ and $V_B = E_B$, where V_B is the terminal voltage

Voltage Transformation Ratio (K) From the above equations we get $E_B/E_A = V_B/V_A =$

$$N_B/N_A = K$$

This constant K is known as voltage transformation ratio.

- (1) If $N_B > N_A$, that is K > 1, then transformer is called step-up transformer.
- (2) If $N_B < 1$, that is K < 1, then transformer is known as step-down transformer.

Again for an ideal transformer, Input V_A = output V_A

$$V_A I_A = V_B I_B$$

Or,
$$I_B/I_A = V_A/V_B = 1/K$$

Hence, currents are in the inverse ratio of the (voltage) transformation ratio.

Applications of a transformer

Transformers are used in most electronic circuits. A transformer has only 3 applications;

- 1. To step up voltage and current.
- 2. To Step down voltage and current

BE3251 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

www.binils.com Anna University, Polytechnic & Schools

3. To prevent DC – transformers can pass only Alternating Currents so they totally prevent DC from passing to the next circuit.

www.binils.com

BE3251 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING