SEMESTER III

S. NO.	COURSE CODE	COURSE TITLE	CATE GORY	PERIODS PER WEEK			TOTAL CONTACT	CREDITS	
INO.				L	Т	Р	PERIODS		
THEORY									
1.	MA3303	Probability and Complex Functions	BSC	3	1	0	4	4	
2.	EE3301	Electromagnetic Fields	PCC	3	1	0	4	4	
3.	EE3302	Digital Logic Circuits	PCC	3	0	0	3	3	
4.	EC3301	Electron Devices and Circuits	PCC	3	0	0	3	3	
5.	EE3303	Electrical Machines - I	PCC	3	0	0	3	3	
6.	CS3353	C Programming and Data Structures	PCC	3	0	0	3	3	
PRACTICALS									
7.	EC3311	Electronic Devices and Circuits Laboratory	PCC	0	0	3	3	1.5	
8.	EE3311	Electrical Machines Laboratory – I	PCC	0	0	3	3	1.5	
9.	CS3362	C Programming and Data Structures Laboratory	PCC	0	0	3	3	1.5	
10.	GE3361	Professional Development ^{\$}	EEC	0	0	2	2	1	
TOTAL				18	2	11	31	25.5	

\$ Skill Based Course

SEMESTER IV

S. NO.	CODE	COURSE TITLE	CATE	PERIODS PER WEEK		VEEK	TOTAL CONTACT PERIODS	CREDITS	
THEC	DRY V								
1.	GE3451	Environmental Sciences and Sustainability	BSC	2	0	0	2	2	
2.	EE3401	Transmission and Distribution	PCC	3	0	0	3	3	
3.	EE3402	Linear Integrated Circuits	PCC	3	0	0	3	3	
4.	EE3403	Measurements and Instrumentation	PCC	3	0	0	3	3	
5.	EE3404	Microprocessor and Microcontroller	PCC	3	0	0	3	3	
6.	EE3405	Electrical Machines - II	PCC	3	0	0	3	3	
7.		NCC Credit Course Level 2#	ЛОВП	3	0	0	3	3#	
PRACTICALS									
8.	EE3411	Electrical Machines Laboratory - II	PCC	0	0	3	3	1.5	
9.	EE3412	Linear and Digital Circuits Laboratory	PCC	0	0	3	3	1.5	
10.	EE3413	Microprocessor and Microcontroller laboratory	PCC	0 17	0	3	3	1.5	
	ТО					9	26	21.5	

NCC Credit Course level 2 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

MA3303

PROBABILITY AND COMPLEX FUNCTIONS

L T P C 3 1 0 4

OBJECTIVES

- This course aims at providing the required skill to apply the statistical tools in engineering problems.
- To introduce the basic concepts of probability and random variables.
- To introduce the basic concepts of two dimensional random variables.
- To develop an understanding of the standard techniques of complex variable theory in particular analytic function and its mapping property.
- To familiarize the students with complex integration techniques and contour integration techniques which can be used in real integrals.
- To acquaint the students with Differential Equations which are significantly used in engineering problems.

UNIT I PROBABILITY AND RANDOM VARIABLES

9 + 3

Axioms of probability – Conditional probability – Baye's theorem - Discrete and continuous random variables – Moments – Moment generating functions – Binomial, Poisson, Geometric, Uniform, Exponential and Normal distributions – Functions of a random variable.

UNIT II TWO-DIMENSIONAL RANDOM VARIABLES

9 + 3

Joint distributions – Marginal and conditional distributions – Covariance – Correlation and linear regression – Transformation of random variables – Central limit theorem (for independent and identically distributed random variables).

UNIT III ANALYTIC FUNCTIONS

9 + 3

Analytic functions - Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates - Properties - Harmonic conjugates - Construction of analytic function - Conformal

mapping – Mapping by functions W = z + c, cz, $\frac{1}{z}$, z^2 – Bilinear transformation.

UNIT IV COMPLEX INTEGRATION

9 +

Line integral - Cauchy's integral theorem — Cauchy's integral formula — Taylor's and Laurent's series — Singularities — Residues — Residue theorem — Application of residue theorem for evaluation of real integrals — Applications of circular contour and semicircular contour (with poles NOT on real axis).

UNIT V ORDINARY DIFFERENTIAL EQUATIONS

9 + 3

Higher order linear differential equations with constant coefficients - Method of variation of parameters - Homogenous equation of Euler's and Legendre's type - System of simultaneous linear first order differential equations with constant coefficients - Method of undetermined coefficients.

COURSE OUTCOMES:

TOTAL: 60 PERIODS

Upon successful completion of the course, students will be able to:

CO1: Understand the fundamental knowledge of the concepts of probability and have knowledge of standard distributions which can describe real life phenomenon.

CO2: Understand the basic concepts of one and two dimensional random variables and apply in engineering applications.

- CO3: To develop an understanding of the standard techniques of complex variable theory in particular analytic function and its mapping property.
- CO4: To familiarize the students with complex integration techniques and contour integration techniques which can be used in real integrals.
- CO5: To acquaint the students with Differential Equations which are significantly used in engineering problems.

TEXT BOOKS

- 1. Johnson. R.A., Miller. I and Freund. J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 9th Edition, 2016.
- 2. Milton. J. S. and Arnold. J.C., "Introduction to Probability and Statistics", Tata McGraw Hill, 4th Edition, 2007.
- 3. Grewal.B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44th Edition, 2018.

REFERENCES

- 1. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 8th Edition, 2014.
- 2. Papoulis. A. and Unnikrishnapillai . S., "Probability, Random Variables and Stochastic Processes", McGraw Hill Education India, 4th Edition, New Delhi, 2010.
- 3. Ross . S.M., "Introduction to Probability and Statistics for Engineers and Scientists", 5thEdition, Elsevier, 2014.
- 4. Spiegel. M.R., Schiller. J. and Srinivasan . R.A., "Schaum's Outline of Theory and Problems of Probability and Statistics", Tata McGraw Hill Edition, 4th Edition, 2012.
- 5. Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineers and Scientists", Pearson Education, Asia, 9th Edition, 2010.
- 6. Kreyszig E, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, New Delhi, 2016.

EE3301

ELECTROMAGNETIC FIELDS

LTPC

3 1 0 4

OBJECTIVES:

- To introduce the basic mathematical concepts related to electromagnetic vector fields
- To impart knowledge on the concepts of
 - ✓ Electrostatic fields, electric potential, energy density and their applications.
 - ✓ Magneto static fields, magnetic flux density, vector potential and its applications.
 - ✓ Different methods of emf generation and Maxwell's equations
 - ✓ Electromagnetic waves and characterizing parameters

UNIT I ELECTROSTATICS – I

12

Sources and effects of electromagnetic fields – Coordinate Systems – Vector fields –Gradient, Divergence, Curl – theorems and applications - Coulomb's Law – Electric field intensity – Field due to discrete and continuous charges – Gauss's law and applications.

UNIT II ELECTROSTATICS - II

12

Electric potential – Electric field and equipotential plots, Uniform and Non-Uniform field, Utilization factor – Electric field in free space, conductors, dielectrics - Dielectric polarization –Dielectric strength - Electric field in multiple dielectrics – Boundary conditions, Poisson's and Laplace's equations, Capacitance, Energy density, Applications.

UNIT III MAGNETOSTATICS

12

Lorentz force, magnetic field intensity (H) – Biot–Savart's Law - Ampere's Circuit Law – H due to straight conductors, circular loop, infinite sheet of current, Magnetic flux density (B) – B in free space, conductor, magnetic materials – Magnetization, Magnetic field in multiple media –Boundary conditions, scalar and vector potential, Poisson's Equation, Magnetic force, Torque, Inductance, Energy density, Applications.

UNIT IV ELECTRODYNAMIC FIELDS

12

Magnetic Circuits - Faraday's law - Transformer and motional EMF - Displacement current -Maxwell's equations (differential and integral form) - Relation between field theory and circuit theory - Applications.

UNIT V ELECTROMAGNETIC WAVES

12

TOTAL: 60 PERIODS

Electromagnetic wave generation and equations – Wave parameters; velocity, intrinsic impedance, propagation constant – Waves in free space, lossy and lossless dielectrics, conductors- skin depth - Poynting vector – Plane wave reflection and refraction.

COURSE OUTCOMES:

Upon the successful completion of the course, students will be able to:

CO1: Explain Gradient, Divergence, and Curl operations on electromagnetic vector fields.

CO2: Explain electrostatic fields, electric potential, energy density and their applications.

CO3: Calculate magneto static fields, magnetic flux density, vector potential

23

CO4: Explain different methods of emf generation and Maxwell's equations

CO5: Explain the concept of electromagnetic waves and characterizing parameters

TEXT BOOKS:

- 1. Mathew N. O. Sadiku, 'Principles of Electromagnetics', 6th Edition, Oxford University Press Inc. Asian edition, 2015.
- 2. William H. Hayt and John A. Buck, 'Engineering Electromagnetics', McGraw Hill Special Indian edition, 2014.
- 3. Kraus and Fleish, 'Electromagnetics with Applications', McGraw Hill International Editions, Fifth Edition, 2010.

REFERENCES

- 1. V.V.Sarwate, 'Electromagnetic fields and waves', Second Edition, Newage Publishers, 2018.
- 2. J.P.Tewari, 'Engineering Electromagnetics Theory, Problems and Applications', Second Edition, Khanna Publishers 2013.
- 3. Joseph. A.Edminister, 'Schaum's Outline of Electromagnetics, Fifth Edition (Schaum's Outline Series), McGraw Hill, 2018.
- 4. S.P.Ghosh, Lipika Datta, 'Electromagnetic Field Theory', First Edition, McGraw Hill Education(India) Private Limited, 2017.
- 5. K A Gangadhar, 'Electromagnetic Field Theory', Khanna Publishers; Sixteenth Edition Eighth Reprint:2015

EE3302

DIGITAL LOGIC CIRCUITS

LTPC 3003

COURSE OBJECTIVES:

- To introduce the fundamentals of combinational and sequential digital circuits.
- To study various number systems and to simplify the mathematical expressions using Boolean functions word problems
- To study implementation of combinational circuits using Gates` and MSI Devices.
- To study the design of various synchronous and asynchronous circuits
- To introduce digital simulation techniques for development of application oriented logic circuit

UNIT I NUMBER SYSTEMS AND DIGITAL LOGIC FAMILIES

9

Number system, error detection, corrections & codes conversions, Boolean algebra: De-Morgan's theorem, switching functions and minimization using K-maps & Quine McCluskey method - Digital Logic Families -comparison of RTL, DTL, TTL, ECL and MOS families -operation, characteristics of digital logic family.

UNIT II COMBINATIONAL CIRCUITS

9

Combinational logic - representation of logic functions-SOP and POS forms, K-map representations - minimization using K maps - simplification and implementation of combinational logic — multiplexers and de multiplexers - code converters, adders, subtractors, Encoders and Decoders.

UNIT III SYNCHRONOUS SEQUENTIAL CIRCUITS

9

Sequential logic- SR, JK, D and T flip flops - level triggering and edge triggering - counters - asynchronous and synchronous type - Modulo counters - Shift registers - design of synchronous sequential circuits - Moore and Mealy models- Counters, state diagram; state reduction; state assignment.

UNIT IV ASYNCHRONOUS SEQUENTIAL CIRCUITS AND PROGRAMMABILITY 9 LOGIC DEVICES

Asynchronous sequential logic Circuits-Transition stability, flow stability-race conditions, hazards &errors in digital circuits; analysis of asynchronous sequential logic circuits-introduction to Programmability Logic Devices: PROM – PLA –PAL, CPLD-FPGA.

UNIT V VHDL 9

RTL Design – combinational logic – Sequential circuit – Operators – Introduction to Packages – Subprograms – Test bench. (Simulation /Tutorial Examples: adders, counters, flip flops, Multiplexers & De multiplexers).

TOTAL : 45 PERIODS

Course Outcomes:

Upon the successful completion of the course, students will be able to:

CO1: Explain various number systems and characteristics of digital logic families

CO2: Apply K-maps and Quine McCluskey methods to simplify the given Boolean expressions

CO3: Explain the implementation of combinational circuit such as multiplexers and de multiplexers - code converters, adders, subtractors, Encoders and Decoders

CO4: Design various synchronous and asynchronous circuits using Flip Flops

CO5: Explain asynchronous sequential circuits and programmable logic devices

CO6: Use VHDL for simulating and testing RTL, combinatorial and sequential circuits

TEXTBOOKS:

- 1. Morris Mano.M, 'Digital Logic and Computer Design', Prentice Hall of India, 3rdEdition, 2005.
- 2. Donald D.Givone, 'Digital Principles and Design', Tata McGraw Hill,1st Edition, 2003
- 3. Thomas L Floyd, 'Digital fundamentals', Pearson Education Limited, 11th Edition, 2018

REFERENCES:

- 1. Tocci R.J., Neal S. Widmer, 'Digital Systems: Principles and Applications', Pearson Education Asia, 12th Edition, 2017.
- 2. Donald P Leach, Albert Paul Malvino, Goutam Sha, 'Digital Principles and Applications', Tata McGraw Hill, 7th Edition, 2010.

EC3301

ELECTRON DEVICES AND CIRCUITS

L T PC

COURSE OBJECTIVES:

- To understand the structure of basic electronic devices.
- To be exposed to active and passive circuit elements.
- To familiarize the operation and applications of transistor like BJT and FET.
- To explore the characteristics of amplifier gain and frequency response.
- To learn the required functionality of positive and negative feedback systems.

UNIT I PN JUNCTION DEVICES

9

PN junction diode –structure, operation and V-I characteristics, diffusion and transition capacitance – Clipping & Clamping circuits - Rectifiers – Half Wave and Full Wave Rectifier– Display devices- LED, Laser diodes, Zener diode characteristics- Zener diode Reverse characteristics – Zener diode as regulator.

UNIT II TRANSISTORS AND THYRISTORS

9

BJT, JFET, MOSFET- structure, operation, characteristics and Biasing UJT, Thyristors and IGBT - Structure and characteristics.

UNIT III AMPLIFIERS

9

BJT small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response –MOSFET small signal model – Analysis of CS and Source follower – Gain and frequency response- High frequency analysis.

UNIT IV MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER

9

BIMOS cascade amplifier, Differential amplifier – Common mode and Difference mode analysis – FET input stages – Single tuned amplifiers – Gain and frequency response – Neutralization methods, power amplifiers –Types (Qualitative analysis).

UNIT V FEEDBACK AMPLIFIERS AND OSCILLATORS

9

Advantages of negative feedback – voltage / current, series, Shunt feedback –positive feedback – Condition for oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon successful completion of the course, the students will be able to:

- CO1: Explain the structure and operation of PN junction devices (diode, Zener diode, LED and Laser diode)
- CO2: Design clipper, clamper, half wave and full wave rectifier, regulator circuits using PN junction diodes
- CO3: Analyze the structure and characteristics BJT, FET, MOSFET, UJT, Thyristor and IGBT
- CO4: Analyze the performance of various configurations of BJT and MOSFET based amplifier
- CO5: Explain the characteristics of MOS based cascade and differential amplifier
- CO6: Explain the operation of various feedback amplifiers and oscillators

TEXT BOOKS:

- 1. David A. Bell, "Electronic devices and circuits", Oxford University higher education, 5th edition 2008.
- 2. Sedra and smith, "Microelectronic circuits", 7th Edition., Oxford University Press, 2017

REFERENCES:

- 1. Balbir Kumar, Shail.B.Jain, "Electronic devices and circuits" PHI learning private limited, 2nd edition 2014.
- 2. Thomas L.Floyd, "Electronic devices" Conventional current version, Pearson prentice hall, 10th Edition, 2017.
- 3. Donald A Neamen, "Electronic Circuit Analysis and Design" Tata McGraw Hill, 3rd Edition, 2003.
- 4. Robert L.Boylestad, "Electronic devices and circuit theory", 11th edition, Pearson prentice Hall 2013.
- 5. Robert B. Northrop, "Analysis and Application of Analog Electronic Circuits to Biomedical Instrumentation", CRC Press, Second edition, 2012.

EE3303

ELECTRICAL MACHINES - I

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To understand the concept of electromechanical energy conversion system.
- To identify the appropriate machine for a given application based on its characteristics.
- To identify the appropriate test to determine the performance parameters of a given machine.
- To familiarize with the procedure for parallel operation of generators and transformers.
- To deliberate the working of auto transformer and three phase transformers.

UNIT I ELECTROMECHANICAL ENERGY CONVERSION

9

Fundamentals of Magnetic circuits- Statically and dynamically induced EMF - Principle of electromechanical energy conversion forces and torque in magnetic field systems- energy balance in magnetic circuits- magnetic force- co-energy in singly excited and multi excited magnetic field system mmf of distributed windings — Winding Inductances-, magnetic fields in rotating machines- magnetic saturation and leakage fluxes. Introduction to Indian Standard Specifications (ISS) - Role and significance in testing.

UNIT II DC GENERATORS

9

Principle of operation, constructional details, armature windings and its types, EMF equation, wave shape of induced emf, armature reaction, demagnetizing and cross magnetizing Ampere turns, compensating winding, commutation, methods of improving commutation, interpoles, OCC and load characteristics of different types of DC Generators. Parallel operation of DC Generators, equalizing connections- applications of DC Generators.

UNIT III DC MOTORS

a

Principle of operation, significance of back emf, torque equations and power developed by armature, speed control of DC motors, starting methods of DC motors, load characteristics of DC motors, losses and efficiency in DC machine, condition for maximum efficiency. Testing of DC Machines: Brake test, Swinburne's test, Hopkinson's test, Field test, Retardation test, Separation of core losses-applications of DC motors.

UNIT IV SINGLE PHASE TRANSFORMER

9

Construction and principle of operation, equivalent circuit, phasor diagrams, testing - polarity test, open circuit and short circuit tests, voltage regulation, losses and efficiency, all day efficiency, back-to-back test, separation of core losses, parallel operation of single-phase transformers, applications of single-phase transformer.

UNIT V AUTOTRANSFORMER AND THREE PHASE TRANSFORMER

9

Construction and working of auto transformer, comparison with two winding transformers, applications of autotransformer. Three Phase Transformer- Construction, types of connections and their comparative features, Scott connection, applications of Scott connection.

TOTAL: 30+15=45 PERIODS

TEXT BOOKS

- 1. I. J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill Education, 5th Edition, 2017.
- 2. P. S. Bimbhra, "Electric Machinery", Khanna Publishers, 2nd Edition, 2021.

REFERENCES

- 1. A. E. Fitzgerald and C. Kingsley, "Electric Machinery", New York, McGraw Hill Education, 6th Edition 2017.
- 2. A. E. Clayton and N. N. Hancock, "Performance and design of DC machines", CBS Publishers, 2018
- 3. M. G. Say, "Performance and design of AC machines", CBS Publishers, First Edition 2008.
- 4. Sahdev S. K. "Electrical Machines", Cambridge University Press, 2018.

COURSE OUTCOMES:

At the end of the course students will be able to:

- CO1: Apply the laws governing the electromechanical energy conversion for singly and multiple excited systems.
- CO2: Explain the construction and working principle of DC machines.
- CO3: Interpret various characteristics of DC machines.
- CO4: Compute various performance parameters of the machine, by conducting suitable tests.
- CO5: Draw the equivalent circuit of transformer and predetermine the efficiency and regulation.
- CO6: Describe the working principle of auto transformer, three phase transformer with different types of connections.

PROGRESS THROUGH KNOWLEDGE

CS3353 C PROGRAMMING AND DATA STRUCTURES C 3

COURSE OBJECTIVES:

- To introduce the basics of C programming language.
- To learn the concepts of advanced features of C.
- To understand the concepts of ADTs and linear data structures.
- To know the concepts of non-linear data structure and hashing.
- To familiarize the concepts of sorting and searching techniques.

C PROGRAMMING FUNDAMENTALS (8+1 SKILL)

Data Types - Variables - Operations - Expressions and Statements - Conditional Statements -Functions – Recursive Functions – Arrays – Single and Multi-Dimensional Arrays.

UNIT II C PROGRAMMING - ADVANCED FEATURES (8+1 SKILL)

Structures – Union – Enumerated Data Types – Pointers: Pointers to Variables, Arrays and Functions - File Handling - Preprocessor Directives.

UNIT III LINEAR DATA STRUCTURES (8+1 SKILL)

Abstract Data Types (ADTs) - List ADT - Array-Based Implementation - Linked List - Doubly-Linked Lists - Circular Linked List - Stack ADT - Implementation of Stack - Applications - Queue ADT -Priority Queues – Queue Implementation – Applications.

UNIT IV NON-LINEAR DATA STRUCTURES (8+1 SKILL)

Trees – Binary Trees – Tree Traversals – Expression Trees – Binary Search Tree – Hashing - Hash Functions – Separate Chaining – Open Addressing – Linear Probing– Quadratic Probing – Double Hashing – Rehashing.

UNIT V SORTING AND SEARCHING TECHNIQUES (8+1 SKILL)

9

5

Insertion Sort – Quick Sort – Heap Sort – Merge Sort – Linear Search – Binary Search.

TOTAL **45 PERIODS**

SKILL DEVELOPMENT ACTIVITIES (Group Seminar/Mini Project/Assignment/Content Preparation / Quiz/ Surprise Test / Solving GATE questions/ etc) COURSE OUTCOMES:

- CO₁ Develop C programs for any real world/technical application.
- CO2 Apply advanced features of C in solving problems.
- CO3 Write functions to implement linear and non-linear data structure operations.
- CO4 Suggest and use appropriate linear/non-linear data structure operations for solving a given problem.
- CO₅ Appropriately use sort and search algorithms for a given application.
- CO6 Apply appropriate hash functions that result in a collision free scenario for data storage and retrieval.

TEXT BOOKS:

- **1.** Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", Second Edition, Pearson Education, 1997.
- 2. ReemaThareja, "Programming in C", Second Edition, Oxford University Press, 2016.

REFERENCES:

- 1. Brian W. Kernighan, Rob Pike, "The Practice of Programming", Pearson Education, 1999.
- 2. Paul J. Deitel, Harvey Deitel, "C How to Program", Seventh Edition, Pearson Education, 2013.
- 3. Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, "Data Structures and Algorithms", Pearson Education, 1983.
- 4. Ellis Horowitz, SartajSahni and Susan Anderson, "Fundamentals of Data Structures", Galgotia, 2008.

List of Open Source Software/ Learning website:

https://www.coursera.org/specializations/data-structures-algorithms https://nptel.ac.in/courses/112107243 https://nptel.ac.in/courses/112105598

COURSE OBJECTIVES:

- To enable the students to understand the behavior of semiconductor device based on experimentation.
- Be exposed to active and passive circuit elements.
- Familiarize the operation and characteristics of transistor like BJT and FET.
- Explore the characteristics of amplifier gain and frequency response.
- Learn the required functionality of positive and negative feedback systems.

LIST OF EXPERIMENTS

- 1. Characteristics of Semiconductor diode, Zener diode, photo diode, and photo transistor,
- 2. Characteristics of NPN Transistor under common emitter, common collector and common base configurations
- 3. Characteristics of JFET and draw the equivalent circuit
- 4. Characteristics of UJT and generation of saw tooth waveforms
- 5. Design and frequency response characteristics of a Common Emitter amplifier
- 6. Characteristics of light activated relay circuit
- 7. Design and testing of RC phase shift and LC oscillators
- 8. Characteristics of Single Phase half-wave and full wave rectifiers with inductive and capacitive filters

- 9. Design of Differential amplifiers using FET
- 10. Measurement of frequency and phase angle using CRO
- 11. Realization of passive filters

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon successful completion of the course, the students will be able to:

- CO1: Analyze the characteristics of PN, Zener diode and BJT in CE,CC,CB configurations experimentally
- CO2: Analyze the characteristics of JFET and UJT experimentally
- CO3: Analyze frequency response characteristics of a Common Emitter amplifier experimentally
- CO4: Analyze the characteristics of RC phase shift and LC oscillators experimentally
- CO5: Analyze the characteristics of half-wave and full-wave rectifier with and without filters experimentally
- CO6: Analyze the characteristics of FET based differential amplifier experimentally
- CO7: Calculate the frequency and phase angle using CRO experimentally
- CO8: Analyze the frequency response characteristics of passive filters experimentally

COURSE OBJECTIVES:

- To expose the students to determine the characteristics of DC machines and transformers by performing experiments on these machines.
- To provide hands on experience to evaluate the performance parameters of DC machines and transformer by conducting suitable tests.

LIST OF EXPERIMENTS:

- 1. Open circuit and load characteristics of DC shunt generator- calculation of critical resistance and critical speed.
- 2. Load characteristics of DC compound generator with differential and cumulative connections.
- 3. Load test on DC shunt motor.
- 4. Load test on DC compound motor.
- 5. Load test on DC series motor.
- 6. Swinburne's test and speed control of DC shunt motor.
- 7. Hopkinson's test on DC motor generator set.
- 8. Load test on single-phase transformer and three phase transformers.
- 9. Open circuit and short circuit tests on single phase transformer.

- 10. Sumpner's test on single phase transformers.
- 11. Separation of no-load losses in single phase transformer.
- 12. Study of starters and 3-phase transformers connections.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of the course students will be able to:

- CO1: Construct the circuit with appropriate connections for the given DC machine/transformer.
- CO2: Experimentally determine the characteristics of different types of DC machines.
- CO3: Demonstrate the speed control techniques for a DC motor for industrial applications.
- CO4: Identify suitable methods for testing of transformer and DC machines.
- CO5: Predetermine the performance parameters of transformers and DC motor.
- CO6: Understand DC motor starters and 3-phase transformer connections.

CS3362 C PROGRAMMING AND DATA STRUCTURES LABORATORY LTPC 0031.5

COURSE OBJECTIVES:

- To develop applications in C
- To implement linear and non-linear data structures
- To understand the different operations of search trees
- To get familiarized to sorting and searching algorithms

LIST OF EXPERIMENTS

- 1. Practice of C programming using statements, expressions, decision making and iterative statements
- 2. Practice of C programming using Functions and Arrays
- 3. Implement C programs using Pointers and Structures
- 4. Implement C programs using Files
- 5. Development of real time C applications
- 6. Array implementation of List ADT
- 7. Array implementation of Stack and Queue ADTs
- 8. Linked list implementation of List, Stack and Queue ADTs
- 9. Applications of List, Stack and Queue ADTs
- 10.Implementation of Binary Trees and operations of Binary Trees
- 11. Implementation of Binary Search Trees
- 12. Implementation of searching techniques
- 13. Implementation of Sorting algorithms: Insertion Sort, Quick Sort, Merge Sort
 14. Implementation of Hashing any two collision techniques

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of the course, the students will be able to:

- CO1 Use different constructs of C and develop applications
- CO₂ Write functions to implement linear and non-linear data structure operations
- CO₃ Suggest and use the appropriate linear / non-linear data structure operations for a given problem
- Apply appropriate hash functions that result in a collision free scenario for data storage and CO4 Retrieval
- CO₅ Implement Sorting and searching algorithms for a given application