binils.com Anna University, Polytechnic, Schools

S. NO.	COURSE CODE	COURSE TITLE	CATE GORY	PERIODS PER WEEK			TOTAL CONTACT	CREDITS			
140.				L	T	Р	PERIODS				
THEC	THEORY										
1.	MA3354	Discrete Mathematics	BSC	3	1	0	4	4			
2.	CS3351	Digital Principles and Computer Organization	ESC	3	0	2	5	4			
3.	CS3352	Foundations of Data Science	PCC	3	0	0	3	3			
4.	CS3301	Data Structures	PCC	3	0	0	3	3			
5.	CS3391	Object Oriented Programming	PCC	3	0	0	3	3			
PRACTICALS											
6.	CS3311	Data Structures Laboratory	PCC	0	0	3	3	1.5			
7.	CS3381	Object Oriented Programming Laboratory	PCC	0	0	3	3	1.5			
8.	CS3361	Data Science Laboratory	PCC	0	0	4	4	2			
9.	GE3361	Professional Development ^{\$}	EEC	0	0	2	2	1			
		10.0	TOTAL	15	1	14	30	23			

^{\$} Skill Based Course

SEMESTER IV

S. NO.	COURSE	COURSE TITLE	CATE GORY	PERIODS PER WEEK			TOTAL CONTACT	CREDITS	
				L	Т	Р	PERIODS		
THEORY									
1.	CS3452	Theory of Computation	PCC	3	0	0	3	3	
2.	CS3491	Artificial Intelligence and Machine Learning	PCC	3	0	2	5	4	
3.	CS3492	Database Management Systems	PCC	3	0	0	3	3	
4.	CS3401	Algorithms	PCC	3	0	2	5	4	
5.	CS3451	Introduction to Operating Systems	PCC	3	0	0	3	3	
6.	GE3451	Environmental Sciences and Sustainability	BSC	2	0	0	2	2	
7.		NCC Credit Course Level 2#		3	0	0	3	3 #	
PRACTICALS									
8.	CS3461	Operating Systems Laboratory	PCC	0	0	3	3	1.5	
9.	CS3481	Database Management Systems Laboratory	PCC	0	0	3	3	1.5	
			TOTAL	20	0	10	30	22	

^{*} NCC Credit Course level 2 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

binils.com Anna University, Polytechnic, Schools

- 6. Apply and explore various plotting functions on UCI data sets.
 - a. Normal curves
 - b. Density and contour plots
 - c. Correlation and scatter plots
 - d. Histograms
 - e. Three dimensional plotting
- 7. Visualizing Geographic Data with Basemap

LIST OF EQUIPMENTS: (30 Students per Batch)

Tools: Python, Numpy, Scipy, Matplotlib, Pandas, statmodels, seaborn, plotly, bokeh

Note: Example data sets like: UCI, Iris, Pima Indians Diabetes etc.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

At the end of this course, the students will be able to:

CO1: Make use of the python libraries for data science

CO2: Make use of the basic Statistical and Probability measures for data science.

CO3: Perform descriptive analytics on the benchmark data sets.

CO4: Perform correlation and regression analytics on standard data sets

CO5: Present and interpret data using visualization packages in Python.

CS3452 THEORY OF COMPUTATION L T P C COURSE OBJECTIVES:

- To understand foundations of computation including automata theory
- To construct models of regular expressions and languages.
- To design context free grammar and push down automata
- To understand Turing machines and their capability
- To understand Undecidability and NP class problems

UNIT I AUTOMATA AND REGULAR EXPRESSIONS

9

Need for automata theory - Introduction to formal proof – Finite Automata (FA) – Deterministic Finite Automata (DFA) – Non-deterministic Finite Automata (NFA) – Equivalence between NFA and DFA – Finite Automata with Epsilon transitions – Equivalence of NFA and DFA- Equivalence of NFAs with and without ϵ -moves- Conversion of NFA into DFA – Minimization of DFAs.

UNIT II REGULAR EXPRESSIONS AND LANGUAGES

9

9

Regular expression – Regular Languages- Equivalence of Finite Automata and regular expressions – Proving languages to be not regular (Pumping Lemma) – Closure properties of regular languages.

UNIT III CONTEXT FREE GRAMMAR AND PUSH DOWN AUTOMATA

Types of Grammar - Chomsky's hierarchy of languages -Context-Free Grammar (CFG) and Languages - Derivations and Parse trees - Ambiguity in grammars and languages - Push Down Automata (PDA): Definition - Moves - Instantaneous descriptions -Languages of pushdown automata - Equivalence of pushdown automata and CFG-CFG to PDA-PDA to CFG - Deterministic Pushdown Automata.

binils.com Anna University, Polytechnic, Schools

- Apply Normalization rules in designing the tables in scope.
- Prepared applicable views, triggers (for auditing purposes), functions for enabling enterprise grade features.
- Build PL SQL / Stored Procedures for Complex Functionalities, ex EOD Batch Processing for calculating the EMI for Gold Loan for each eligible Customer.
- Ability to showcase ACID Properties with sample queries with appropriate settings

List of Equipments:(30 Students per Batch)

MYSQL / SQL : 30 Users

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of this course, the students will be able to:

CO1: Create databases with different types of key constraints.

CO2: Construct simple and complex SQL queries using DML and DCL commands.

CO3: Use advanced features such as stored procedures and triggers and incorporate in GUI based application development.

CO4: Create an XML database and validate with meta-data (XML schema).

CO5: Create and manipulate data using NOSQL database.

