B.E/B.TECH, M.E/M.TECH, MBA, MCA, POLYTECHNIC & SCHOOLS

Notes Syllabus Question Papers Results and Many more...

www.binils.com

Available @

	Reg. No. :
	Question Paper Code: 20471
	B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2022.
	Fourth Semester
	Electronics and Communication Engineering
	EC 8452 – ELECTRONIC CIRCUITS – II
	(Common to: Electronics and Telecommunication Engineering)
	(Regulations 2017)
Tim	ne: Three hours Maximum: 100 marks
	Answer ALL questions.
	PART A — $(10 \times 2 = 20 \text{ marks})$
1.	Define sensitivity and de-sensitivity of gain in feedback amplifiers.
2.	Write the expression for input and output resistance of voltage series feedback amplifier.
3.	If L1=2 mH, L2=4 mH and C=0.1 nF, Observe the frequency of oscillation for Hartley oscillator.
4.	In an RC phase shift oscillator, if R1 = R2 = R3 = $200k\Omega$ and C1 = C2 = C3 = 100 pF. Detect the frequency of oscillations.
5.	Illustrate the applications of tuned amplifiers.
6.	Define unloaded and loaded Q of tank circuits.
7.	Identify how the high pass RC circuit acts as a differentiator.
8.	Compare Astable, Monostable and Bistable multivibrators.
9.	Give the principle of operation of step-down DC-DC converter.
10.	Compare Buck and Boost converter.

Question Paper Sponsored by M.E.T. Engineering College, Chenbagaramanputhoor, Kanyakumari Dist.

B.E/B.TECH, M.E/M.TECH, MBA, MCA, POLYTECHNIC & SCHOOLS

Notes Syllabus Question Papers Results and Many more...

www.binils.com

Available @

PART B - (5 × 13 = 65 marks)

 (a) Draw the block diagram of Voltage series feedback amplifiers and derive the expressions of input impedance R_{if}, output impedance R_{of} and gain.

Or

- (b) Build the circuit diagram of current shunt feedback amplifier and develop the expressions for R_{if} and R_{of}
- (a) Demonstrate the working principle of RC phase shift oscillator circuit diagram also derive the expression for frequency of oscillation and condition for sustained oscillation.

Or

- (b) Estimate the frequency of oscillation and the condition for sustained oscillation of Colpitts oscillator with neat circuit diagram.
- (a) Demonstrate a capacitance coupled single tuned amplifier circuit and derive the expressions for its important parameters.

Or

- (b) Conclude the following with neat circuit diagram:
 - (i) Hazeltine neutralization
 - (ii) Neutrodyne neutralization
- 14. (a) (i) Classify the various types of diode clampers
 - (ii) Demonstrate the diode clippers with appropriate diagrams and waveforms.

Or

- (b) Illustrate the operation of collector coupled Astable multivibrator with neat diagrams and waveforms. (13)
- (a) Summarize the transfer characteristic, signal waveforms, power dissipation, power conversion efficiency of Class A amplifier.

Or

(b) Illustrate the Buck converter with necessary diagrams and derive the expressions for voltage and current.

20471

B.E/B.TECH, M.E/M.TECH, MBA, MCA, POLYTECHNIC & SCHOOLS

Notes Syllabus Question Papers Results and Many more...

www.binils.com

Available @

Question Paper Sponsored by M.E.T. Engineering College, Chenbagaramanputhoor, Kanyakumari Dist.