ME8692 FINITE ELEMENT ANALYSIS
 IMPORTANT QUESTIONS AND QUESTION BANK

UNIT I: INTRODUCTION

2-Marks

1. Write the stiffness matrix for a one dimensional 2 noded linear element?
2. Point out any four advantages of finite element method?
3. State the advantages of Rayleigh Ritz method?
4. Compare the Ritz technique with the nodal approximation method?
5. How to develop the equilibrium equation for a finite element?
6. List the various method of solving boundary value problems?
7. How will you identify types of Eigen Value Problems?
8. Mention the weak formulation of FEA?
9. Discuss Ritz method?
10. State the principle of minimum potential energy?

Part-B

1. Describe the step by step procedure of solving FEA?
2. The Governing Equation for one dimensional heat transfer through a fin of length / attached to a hot source as shown in fig is given by if the free end of the fin in insulated give the boundary conditions and determine using the Collocation technique the temperature distribution in the fin. Report the temperature at the free end?
3. The following differential equation is available for a physical phenomenon, $d^{2} y / d x^{2}-10 x^{2}=5,0 \leq x \leq 1$ with boundary conditions as $y(0)=0$ and $y(1)=0$. Find an approximate solution of the above differential equation by using Galerkin's method of weighted residuals and also compare with exact solution.?
4. Solve the ordinary differential equation $d^{2} y / d x^{2}+10 x^{2}=0,0 \leq x \leq 1$ with boundary conditions as $y(0)=0$ and $y(1)=0$ using the Galerkin's method with the trial function $\mathrm{No}(\mathrm{x})=0 ; \mathrm{N} 1(\mathrm{x})=\mathrm{x}\left(1-\mathrm{x}^{2}\right)$.
5. Solve the differential equation for a physical problem expressed as $d^{2} y / d x^{2}$ $+50=0,0 \leq x \leq 10$ with boundary conditions as $y(0)=0$ and $y(10)=0$ using the trial function $y=a_{1 x}(10-x)$ find the value of the parameters $a 1$ by the following methods listed below.
(i) Point collocation method (ii) Sub domain collocation method (iii) Least squares method and (iv) Galerkin method
6. A beam AB of span 'I' simply supported at the ends and carrying a concentrated load ' W ' at the centre ' C ' as shown in figure. Determine the

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA \& SCHOOLS

Notes
Available @
Syllabus
Question Papers
www.binils.com
Results and Many more...
deflection at the mid span by using Rayleigh-Ritz method and compare with exact solution/
7. Determine the expression for deflection and bending moment in a simply supported beam subjected to uniformly distributed load over entire span. Find the compare with exact solution Rayleigh-Ritz

$$
y=a_{1} \sin \left(\frac{\pi x}{l}\right)+a_{2} \sin \left(\frac{3 \pi x}{l}\right)
$$

8. Calculate the value of central deflection in the figure below by assuming $Y=$ a $\sin \pi x / L$ the beam is uniform throughout and carries and central point load P.
9. Explain the various methods of engineering analysis with suitable illustrations?
10. Describe the principle of stationary total potential energy?
11. Explain the details about the List the various weighted residual methods?
12. Write a short notes on error and residual?
13. Explain the details about Ritz method?
14. A uniform rod subjected to a uniform axial load is illustrated in figure, the deformation of the bar is governed by the differential equation given below. Determine the displacement by applying Weighted Residual

/ / NMethod (WRM)

UNIT 2 ONE-DIMENSIONAL PROBLEMS

2-Marks

1. Define shape function?
2. Illustrate shape function of a two node line element?
3. Differentiate global and local coordinate?
4. Express the element stiffness matrix of a truss element?
5. Define natural coordinate system?
6. Give the shape function equation for a 1D quadratic bar element?
7. Define mode superposition technique?
8. Express the mass matrix for a 1D linear bar element?

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA \& SCHOOLS
Notes
Syllabus
Question Papers
Available @

Results and Many more...
9. Illustrate the expression of longitudinal vibration of the bar element?
10. Define the transverse vibration?

Part-B

1. Formulate the shape function for One-Dimensional Quadratic bar element.?
2. For the bar element as shown in the figure. Calculate the nodal displacements and elemental stresses. Take $\mathrm{E}=2.1 \times 10^{5}$

3. A steel bar of length 800 mm is subjected to an axial load of 3 kN as shown in fig. Estimate the nodal displacement of the bar and

4. Determine the eigen values for the stepped bar shown in figure?

5. Consider a bar as shown in figure an axial load of 200 kN is applied atpoint P. Take $A_{1}=2400 \mathrm{~mm}^{2}, E_{1}=70 \times 10^{9} \mathrm{~N} / \mathrm{mm}^{2} \mathrm{~A}_{2}=600 \mathrm{~mm}^{2}$ and E_{2} $=200 \times 10^{9} \mathrm{~N} / \mathrm{mm}^{2}$. Calculate the following (i) the nodal displacement

Notes
Syllabus
Question Papers
Results and Many more...

Available @
www.binils.com
at point, P (ii) Stress in each element (iii) Reaction force

6. For a tapered bar of uniform thickness $t=10 \mathrm{~mm}$ as shown in figure Predict the displacements at the nodes by forming into two element model. The bar has a mass density $\rho=7800 \mathrm{~kg} / \mathrm{m}^{3}$, the young's modulus $\mathrm{E}=2 \times 10^{5} \mathrm{MN} / \mathrm{m}^{2}$. In addition to self-weight, the bar is subjected to a point load $P=1 \mathrm{kN}$ at its Centre. Also determine the reaction forces at the support?
7. Consider a bar as shown in fig Young's Modulus $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ $A_{1}=2 \mathrm{~cm}^{2} ; A_{2}=1 \mathrm{~cm}^{2}$ and force of 100 N . Calculate the nodal

WWW

displacement

8. A metallic fin 20 mm wide and 4 mm thick is attached to a furnace whose wall temperature is $180^{\circ} \mathrm{C}$. The length of the fin is 120 mm . if the thermal conductivity of the material of the fin is $350 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$ and convection coefficient is $9 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}$, determine the temperature distribution assuming that the tip of the fin is open to the atmosphere and that the ambient temperature is $25^{\circ} \mathrm{C}$
9. Calculate the temperature distribution in the stainless steel fin shown in the figure. The region can be discretized in three elements of equal

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA \& SCHOOLS

Notes
Available @
Syllabus
Question Papers
www.binils.com
Results and Many more...
10. Determine the first two natural frequencies of longitudinal vibration of the stepped steel bar shown in fig. and plot the mode shapes. all the dimensions are in $\mathrm{mm} \mathrm{E}=200 \mathrm{GPa}$. and $\rho=0.78 \mathrm{~kg} / \mathrm{cc} . \mathrm{A}=4 \mathrm{~cm}^{2}$, length $l=500 \mathrm{~mm}$?

11. For the twobar truss shown in the fig, Estimate the displacements of node 1 and the stress in element 1-3Take $E=70$ GPa $A=200 \mathrm{~mm}^{2}$

12. Determine the deflection in the beam loaded as shown in fig. at the mid span and at the length of 0.5 m from the left support. Determine also the reactions at the fixed ends. $\mathrm{E}=200 \mathrm{GPa} . \mathrm{I}_{1}=20 \times 10^{-6} \mathrm{~m}^{4} \mathrm{I}_{2}=$ $10 \times 10^{-6} \mathrm{~m}^{4}$
13. Develop the Shape function, Stiffness matrix and force vector for one dimensional linear element?
14. Explain the details about the elements types linear and higher order elements?

UNIT 3 TWO DIMENSIONAL SCALAR VARIABLE PROBLEMS

2-Marks

1. Show the displacement function equation for CST element?
2. How will you modify a three-dimensional problem to a Two dimensional problem?
3. What is meant by steady state heat transfer? Write down its governing differential equation?
4. Define two-dimensional scalar variable problem?
5. How do you define two dimensional elements?
6. Define QST (Quadratic strain Triangle) element.
7. Relate path line with streamline?
8. Formulate the (B) matrix for CST element?

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA \& SCHOOLS

Notes
Available @
Syllabus
Question Papers
www.binils.com
Results and Many more...
9. List out the CST and LST elements?
10. Write down the shape functions for a 4 noded quadrilateral element? Part-B

1. Derive the conductance matrix for a 3 noded triangular element whose nodal coordinates are known. The element is to be used for two dimensional heat transfer in a plate fin?
2. Determine the shape functions for a constant strain triangular (CST) element?
3. Compute the element matrices and vectors for the element shown in fig. when the edges $2-3$ and 1-3 experience convection heat loss?
4. Find the temperature distribution in a square region with uniform energy generation as shown in fig. assume that there is no temperature variation in the Z-direction. Take $\mathrm{k}=300 \mathrm{~W} / \mathrm{cm}^{\circ} \mathrm{C}$, $\mathrm{L}=10 \mathrm{~cm}, \mathrm{~T}_{\infty}=50^{\circ} \mathrm{C}$ and $\mathrm{q}=100 \mathrm{~W} / \mathrm{cm}$
5. Derive the expression for shape function for heat transfer in 2D element?
6. Develop the shape function derivation for a two-dimensional quadratic element?
7. Estimate the stiffness matrix for the triangular element with the (x, y) coordinates of the nodes are $(0,-4),(8,0)$ and $(0,4)$ at nodes i, j, k. Assume plane stress condition $\mathrm{E}=200 \mathrm{GPa}$, Poisson's ratio $=0.35$?
8. The x, y coordinates of nodes i, j and k of a triangular element are given by $(0,0)(3,0)$ and $(1.5,4) \mathrm{mm}$ respectively. Evaluate the shape functions N1 and N2 and N3 at an interior point $(2,2.5) \mathrm{mm}$ of the element evaluate the strain displacement relation matrix B for the above same triangular element and explain how stiffness matrix is obtained assuming scalar problem?
9. Calculate the value of pressure at the point A which is inside the 3 noded triangular element as shown in fig. The nodal values are Φ_{1} $=40 \mathrm{MPa}, \Phi_{2}=34 \mathrm{MPa}$ and $\Phi_{3}=46 \mathrm{MPa}$. point A is located at $(2$, 1.5). Assume the pressure is linearly varying in the element. Also determine the location of 42 MPa contour line?
10.For a 4-noded rectangular element shown in fig. Infer the temperature at the point $(2.5,2.5)$. The nodal values of the temperatures are $\mathrm{T}_{1}=100^{\circ} \mathrm{C}, \mathrm{T}_{2}=60^{\circ} \mathrm{C}$ and $\mathrm{T}_{3}=50^{\circ} \mathrm{C}$ and $\mathrm{T}_{4}=90^{\circ} \mathrm{C}$. Also determine the $80^{\circ} \mathrm{C}$ isotherm?
10. Calculate the element stiffness matrix and temperature force vector for the plane stress element shown in fig. The element experiences a $20^{\circ} \mathrm{C}$ increase in temperature. Assume $\alpha=6 \times 10^{-6} \mathrm{C}$. Take $\mathrm{E}=2 \times 10^{5}$ $\mathrm{N} / \mathrm{mm}^{2}, \mathrm{v}=0.25, \mathrm{t}=5 \mathrm{~mm}$

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA \& SCHOOLS

Notes
Available @
Syllabus
Question Papers
www.binils.com
Results and Many more...
12. Develop the shape function derivation for a one-dimensional quadratic element?
13. Estimate the stiffness matrix for the triangular element with the (x, y) coordinates of the nodes are $(0,-4),(8,0)$ and $(0,4)$ at nodes $\mathrm{i}, \mathrm{j}, \mathrm{k}$. Assume plane stress condition $\mathrm{E}=200 \mathrm{GPa}$, Poisson's ratio $=0.35$

UNIT 4 TWO DIMENSIONAL VECTOR VARIABLE PROBLEMS

2-Marks

1. Classify the types of shell element?
2. List out the various elasticity equations?
3. Define plane stress and plane strain?
4. Discuss "Principal stresses"?
5. Write the strain displacement matrix for a 3 noded triangular element.?
6. Distinguish between plate and shell elements?
7. Define axisymmetric formulation?
8. Develop the Shape functions for axisymmetric triangular elements?
9. Show the Stress-Strain displacement matrix for axisymmetric solid?
10. Define a plane stress problem with a suitable example?

11. Develop shape function for axisymmetric triangular elements?
12. Calculate the element stiffness matrix for the axisymmetric triangular element shown in fig. The element experiences a 150 C increase in temperature. The coordinate are in mm . Take $\alpha=10 \times 10^{-6} /{ }^{\circ} \mathrm{C}$, $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{v}=0.25$?
13. Explain the classification of shell elements and also brief the assumption used in finite elements analysis of shell elements?
14. A tin plate of thickness 5 mm is subjected to an axial loading as shown in the fig. It is divided into two triangular elements by dividing diagonally. Determine the Strain displacement matrix [B], load vector and the constitutive matrix. How will you derive the stiffness matrix? (Need not be determined). What will be the size of the assembled stiffness matrix? What are the boundary conditions? $\mathrm{E}=2 \times 107 \mathrm{~N} / \mathrm{cm} 2 \mu=0.3$?
15. Evaluate the Stress-Strain relationship matrix for axisymmetric triangular element?
16. Develop Strain-Displacement matrix for axisymmetric triangular element?

POLYTECHNIC, B.E/B.TECH, M.E/M.TECH, MBA, MCA \& SCHOOLS

Notes
Available @
Syllabus
Question Papers
www.binils.com
Results and Many more...
7. Derive the Finite element equation for triangular plate bending element with 9 degrees of freedom?
8. Develop the four basic sets of elasticity equation?
9. Evaluate the stiffness matrix. Take modulus of elasticity $\mathrm{E}=210 \mathrm{GPa}$. Poisson's ratio $=0.25$. the coordinates are given in millimeters ?
10. Triangular element are used for the stress analysis of plate subjected to in plane loads. The (x, y) coordinates of nodes 1,2 , and 3 of an element are given by $(5,5)$, $(25,5)$, and $(15,15) \mathrm{mm}$ respectively. The nodal displacement are given as: $u 1=0.005 \mathrm{~mm}, \mathrm{u} 2=0.002 \mathrm{~mm}, \mathrm{u} 3=0.0$ $\mathrm{mm}, \mathrm{u} 4=0.0 \mathrm{~mm}, \mathrm{u} 5=0.005 \mathrm{~mm}, \mathrm{u} 6=0.0 \mathrm{~mm}$. Evaluate element stress. LetE=200 GPa, poisson's ratio $=0.3$ and use unit thickness of the element
11. A long hollow cylinder of inside diameter 100 mm and outside diameter 120 mm is firmly fitted in a hole of another rigid cylinder over its full length as shown in fig. The cylinder is then subjected to an internal pressure of 2 MPa . By using two element on the 10 mm length shown calculate the displacements at the inner radius tame $\mathrm{E}=210$ GPa. $\mu=0.3$
12. The nodal coordinates for an axisymmetric triangular element . Evaluate the strain-displacement matrix
13. state whether plane stress or plane strain elements can be used to model the following structures. Explain your answer A wall subjected to wind load

A wrench subjected to a force in the plane of the wrench
14. Derive the Finite element equation for triangular plate bending element with 9 degrees of freedom?

ME8692 FINITE ELEMENTS ANALYSIS

IMPORTANT QUESTIONS AND QUESTION BANK

UNIT 5 ISOPARAMETRIC FORMULATION

2-Marks

1. Illustrate the purpose of Iso parametric element?
2. Define Iso parametric formulation?
3. Explain the Jacobian transformation?
4. Give the shape functions for a four- node linear quadrilateral element in natural coordinates?
5. List out the advantages of Gauss quadrature numerical integration for Iso parametric element?
6. Define Iso parametric element?
7. Discuss about Numerical integration?
8. Discuss about Gaūss-quadrature method?
9. Differentiate between geometric and material non-linearity.
10. Distinguish between trapezoidal rule and Gauss quadrature? Part-B
11. Develop the shape function for 4 node Iso parametric quadrilateral element?
12. Develop the strain displacement matrix, stress-strain matrix and stiffness matrix for an Iso parametric quadrilateral element?
13. Consider the Iso parametric quadrilateral element with nodes 1 to 4 at $(5,5),(11,7)(12,15)$, and $(4,10)$ respectively. Estimate the jacobian matrix and determinant at the element centroid
14. Tabulate the element characteristics of a fournode quadrilateral element?
15. Write a short notes on (a) Jacobian matrix (b)StrainDisplacement matrix (c) Element strain and (d) Element stress
16. Evaluate the Jacobian matrix at the local coordinates $\varepsilon=\eta=0.5$ for the linear quadrilateral element with its global coordinates

Notes
Syllabus
Question Papers
Results and Many more...
7. Develop the shape function for 3 node Iso parametric quadrilateral elements?
8. Develop Stiffness matrix for Iso parametric quadrilateral element?
9. State the transformation for mapping x-coordinate system into a natural element co-ordinate system for a linear spar element and for a quadratic spar?
10. Distinguish between trapezoidal rule and Gauss quadrature rule and Simpson's rule?
11. Explain the details of plane stress and plane strain?
12. Write a note on body forces and temperature effects?

