Reg. No. :

## **Question Paper Code : 40844**

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2021.

Seventh/Eighth/Ninth Semester

Manufacturing Engineering

ME 8793 — PROCESS PLANNING AND COST ESTIMATION

(Common to Material Science and Engineering/Mechanical Engineering/Mechanical Engineering (Sandwich)/ Mechanical and Automation Engineering/Mechatronics Engineering/Production Engineering/Robotics and Automation)

(Regulations 2017)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A —  $(10 \times 2 = 20 \text{ marks})$ 

- 1. Mention the factor affecting process planning. COM
- 2. What are parameters to determine the tool performance?
- 3. What are the functions of jig and fixture?
- 4. List the use of quality assurance.
- 5. Define overhead cost.
- 6. Distinguish cost estimation and cost accounting.
- 7. List the losses occur that during forging.
- 8. What is shrinkage allowance?
- 9. What is tear down time?
- 10. Mild steel shaft 20 cm long is to be ground rough from 33.3 to 33 mm dia using grinding wheel of 40 mm face width with the work speed of 12m/min and depth of cut 0.02 mm per pass, and 115 rpm. Calculate the time taken to grind the job.

PART B — (5 × 13 = 65 marks)

11. (a) Enlist the common approaches in CAPP system and state their advantages and limitations.

 $\mathbf{Or}$ 

- (b) Explain basic steps involve in process planning.
- 12. (a) What are the factors to be considered in the selection jigs and fixtures?

#### $\mathbf{Or}$

- (b) Explain the various quality assurance methods in detail.
- 13. (a) From the following data provided by a mask machine manufacturer, find prime cost, factory cost, production cost, total coat and profit.

| Items                                                           | INR                    |
|-----------------------------------------------------------------|------------------------|
| Value of stock material as on 1-07-2021                         | 52,000                 |
| Material purchased                                              | 5,48,000               |
| Wages to workers                                                | 2,40,000               |
| Depreciation of plant and machinery                             | 16,000                 |
| Depreciation of office equipment S<br>Rent, taxes and insurance | <b>4,000</b><br>32,000 |
| General administrative expenses                                 | 6,800                  |
| Water, power and telephone bill of factory                      | 19,200                 |
| Water, power and telephone bill of office                       | 5,000                  |
| Transportation in factory                                       | 4,000                  |
| Insurance and rent of office building                           | 4,000                  |
| Direct expenses                                                 | 1,00,000               |
| Commission and pay of salesman                                  | 21,000                 |
| Repair and maintenance                                          | 2,000                  |
| Production Managers salary                                      | 60,000                 |
| Salary of office staff                                          | 1,20,000               |
| Value of stock of material on 30-06-2021                        | 72,000                 |
| Sale of products                                                | 12.72.000              |

 $\mathbf{Or}$ 

 $\mathbf{2}$ 

**40844** 

| (b) Find out the production cost per gear automobile from the following data. | for a transmission unit in |
|-------------------------------------------------------------------------------|----------------------------|
| Charges for forging per kg                                                    | Rs. 22.5                   |
| Wrought iron used per month @ Rs. 90 per Kg                                   | 27 tonnes                  |
| Wages of operator                                                             | Rs. 450/day                |
| No of operator employed                                                       | 36                         |
| Cartage/day                                                                   | Rs. 2,250                  |
| Deprecation of machines and tools                                             | Rs. 4500 per month         |
| Wages of helpers                                                              | Rs. 270 per day each       |
| No of helpers employed                                                        | 8                          |
| Salary of supervisor                                                          | Rs. 45,000 per month       |
| Packing charges for 108 gears                                                 | Rs. 360                    |
| Electric charges                                                              | Rs. 11700 Per month        |
| Salary of manager and maintenance staff                                       | Rs. 1,26,000 per month     |

If 13,500 gears are to be produced per month and factory runs 26 days a month at 8 hour shift then what should be the selling price of each gears so as to earn profit of 20 percentage of factory cost?

14. (a) Calculate the cost of forging a crank shaft as show in figure 1 below using the following data available. The forging is to be made out of 50 mm dia.

| Material price        | Rs.100 per kg         |
|-----------------------|-----------------------|
| Direct labour charges | Rs. 43 per piece      |
| Overhead charges      | 150% of material cost |
| Density               | 7.5 g/cc              |
| Losses                | 28% of net weight     |
|                       |                       |



Figure 1

Or

3

**40844** 

(b) Calculate the cost of welding two pieces of mild steel sheets each 2 meters long and 7 mm thick. A 60° V is prepared by means of gas cutting before welding is to be commenced. The cost of oxygen is Rs. 7/cu meter and acetylene is Rs. 4/cu meter. The filler metal costs Rs. 20 per kg.

2 cu m/hr

The following data is also available :

For gas cutting (10 mm thick plate)

| Cutting speed | 20 m/hr |
|---------------|---------|
|               |         |
|               |         |

Consumption of oxygen

Consumption of acetylene 0.2 cu m/hr

Data for rightward welding

Consumption of oxygen Consumption of acetylene

| Dia of filler rod used            | $3.5 \mathrm{~mm}$ |
|-----------------------------------|--------------------|
| Filler rod used per meter of weld | 3.4 m              |
| Rate of welding                   | 3 m/hr             |
| Density of filler metal           | 8 g/cc             |

15. (a) A 400 mm × 60 mm rectangular cast iron piece is to be face milled with a carbide cutter. The cutting speed and feed are 60 m/min and 60 m/mm. If the cutter diais 80 mm with 12 cutting teeth. Find cutter r.p.m. feed per tooth, milling time.

Or

4

(b) Calculate the machining time to drill eight 8 mm dia holes and one 40 mm dia central hole in the flange shown below (Figure 2). With cutting speed 10 m/min, feed for 8 mm drill 0.1 mm/rev, 40 mm drill is 0.4 mm/rev, 20 mm dia drill 0.2 mm/rev.



#### Figure 2

PART C —  $(1 \times 15 = 15 \text{ marks})$ 

16. (a) A mild steel bar 150 mm long and 48 mm in diameter is turned to 45 dia and was again turned to diameter of 42 mm over a length of 60 mm as shown in Figure 3 below. The bar was machined at the both the ends to give the chamber of  $45^{\circ} \times 5$  mm after facing. Calculate the overall machining time, take cutting speed of 60 m/min and feed 0.4 mm/rev. The depth of cut should not exceed 3 mm.





Or

 $\mathbf{5}$ 

**40844** 

(b) A cast iron component is to be manufactured as shown in Figure below. Estimate the selling price per piece from the following data:

| Density of material                  | 7.2 gms/cc                 |
|--------------------------------------|----------------------------|
| Cost of molten metal at cupola spout | Rs. 20 per kg              |
| Process scrap                        | 20 percent of net weight   |
| Scrap return value                   | Rs. 6 per kg               |
| Administrative overheads             | Rs. 30 per hour            |
| Sales overheads                      | 20 percent of factory cost |
| Profit                               | 20 percent of factory cost |

The component shown in figure 4 is obtained after machining the casting. The pattern which costs Rs. 5,000 can produce 1,000 pieces before being scrapped. The machining allowance is to be taken as 2 mm on each side.



Figure 4