binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

UNIT: V MASS TRANSFER

1. What is mass transfer?

The process of transfer of mass as a result of the species concentration difference in a mixture is known as mass transfer.
2. Give the examples of mass transfer.

Some examples of mass transfer.

1. Humidification of air in cooling tower
2. Evaporation of petrol in the carburettor of an IC engine.
3. The transfer of water vapour into dry air.
4. What are the modes of mass transfer? (Nov/Dec 2010)(Nov/Dec 2104)

There are basically two modes of mass transfer,

1. Diffusion mass transfer 2. Convective mass transfer

4. What is molecular diffusion?

The transport of water on a microscopic level as a result of diffusion from a region of higher concentration to a region of lower concentration in a mixture of liquids or gases is known as molecular diffusion.
5. What is Eddy diffusion?

When one of the diffusion fluids is in turbulent motion, eddy diffusion takes place.
6. What is convective mass transfer? (May/June 2006)

Convective mass transfer is a process of mass transfer that will occur between surface and a fluid medium when they are at different concentration.
7. State Fick's law of diffusion. (April/May 2012) (NOV-DEC 14)(Nov/Dec 16)

The diffusion rate is given by the Fick's law, which states that molar flux of an element per unit area is directly proportional to concentration gradient.

$$
\frac{m a}{A}=-D a b \frac{d C a}{d x}
$$

Where,

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

$$
\frac{m a}{A} \text {-Molar flux, } \frac{k g-m o l e}{s-m^{2}}
$$

Dab- Diffusion coefficient of species a and $b, \mathrm{~m}^{2} / \mathrm{s}$
$\frac{d C a}{d x}$ - Concentration gradient, $\mathrm{kg} / \mathrm{m}^{3}$

8. What is free convective mass transfer?

If the fluid motion is produced due to change in density resulting from concentration gradients, the mode of mass transfer is said to be free or natural convective mass transfer.

Example: Evaporation of alcohol.

9. Define forced convective mass transfer.

If the fluid motion is artificially created by means of an external force like a blower or fan, that type of mass transfer is known as convective mass transfer.

Example: The evaluation if water from an ocean when air blows over it.

The dimensionless Schmidt number is defined as the ratio of momentum diffusivity to mass diffusivity $\mathrm{Sc}=\mathrm{v} / \mathrm{DAB}$, and it represents the relative magnitudes of momentum and mass diffusion at molecular level in the velocity and concentration boundary layers, respectively. The Schmidt number diffusivity corresponds to the Prandtl number in heat transfer. A Schmidt number of unity indicates that momentum and mass transfer by diffusion are comparable, and velocity and concentration boundary layers almost coincide with each other.

The dimensionless Lewis number is defined as the ratio of thermal diffusivity to mass diffusivity $\mathrm{Le}=\alpha / \mathrm{DAB}$ and it represents the relative magnitudes of heat and mass diffusion at molecular level in the thermal and concentration boundary layers, respectively. A Lewis number of unity indicates that heat and mass diffuse at the same rate, and the thermal and concentration boundary layers coincide.

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

11. Define Sherwood Number. (April/May 2012)

It is defined as the ratio of concentration gradients at the boundary.
$S c=\frac{h m X}{D_{a b}}$
hm- Mass transfer coefficient, m/s
D_{ab}-Diffusion coefficient, $\mathrm{m}^{2} / \mathrm{s}$
X- length, m

12. What is mass average velocity? (May/June 2010)

The bulk velocity of mixture , in which different compents mat have different mobilites ,is compared either on mass average . if luid mixture of two components A and B if u_{A} and u_{B} are the mean velocties then the average velocity is

$$
u_{\text {mass }}=\left(\rho_{A} u_{A+} \rho_{B} u_{B}\right) / \rho_{A+} \rho_{B}
$$

```
13. Distinguish between mass concentration and molar concentration
(April/May 2017)
Mass Concentration
Mass of a component per unit volume of the mixture. It is expressed in }\textrm{kg}/\mp@subsup{\textrm{m}}{}{3
Mass concentration =}=\frac{\mathrm{ Mass of a component }}{\mathrm{ Unit volume of mixture}
Molar concentration
Number of molecules of a component per unit volume of the mixture. It is expressed in Kg - mole /m³
Molar concentration \(=\frac{\text { Number of moles of component }}{\text { IInit wolume onf mixture }}\)
```


14. Define schmidt number and state its physical significance.) (Nov/Dec

 16)Schmidt number (Sc) is a dimensionless number defined as the ratio of momentum diffusivity (viscosity) and mass diffusivity, and is used to characterize fluid flows in which there are simultaneous momentum and mass diffusion convection processes.

Significance:
Analogous of Prandtl number in Heat Transfer. Used in fluid flows in which there is simultaneous momentum \& mass diffusion. It is also ratio of fluid boundary layer to mass transfer boundary layer thickness.

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

1. A vessel contains binary mixture of O_{2} and \mathbf{N}_{2} with partial pressure in the ratio 0.21 and 0.79 at $15^{\circ} \mathrm{C}=$. The total pressure of the mixture is $\mathbf{1 . 1}$ bar. Calculate the following.
I. Molar concentrations
II. Mass densities
III. Mass fractions
IV. Molar fraction of each species.
[APRIL/MAY 2014; NOV/DEC 2015]

Given:

Partial pressure of $\mathrm{O}_{2}=0.21 \mathrm{x}$ total pressure

$$
\begin{aligned}
& \left(\mathrm{Po}_{2}\right)=0.21 \times 1.1 \\
& \mathrm{Po}_{2}=0.231 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

So partial pressure of $\mathrm{N}_{2}=\mathrm{P}_{\mathrm{N} 2}=86.9 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}$
Temperature $\mathrm{T}=15^{\circ} \mathrm{C}=288 \mathrm{~K}$

To find

I. Molar concentrations, $\mathrm{Co}_{2}, \mathrm{C}_{\mathrm{N} 2}$
II. Mass densities, $\rho_{02}, \rho_{\mathrm{N} 2}$
III. Mass fractions, $\dot{\mathrm{m}}_{\mathrm{O} 2, \dot{\mathrm{~m}}_{\mathrm{N} 2}}$
IV. Molar fraction of each species. $\mathrm{X}_{02}, \mathrm{X}_{\mathrm{N} 2}$

Solution:

STEP-1

Molar concentration, $\mathrm{co}_{2}=\frac{\mathrm{po}_{2}}{G T}$
Universal Gas Constant, G=8314 J/kg mole K

$$
\begin{aligned}
& \mathrm{Co}_{2}=\frac{0.231 \times 10^{5}}{8314 \times 288} \\
& \mathrm{Co}_{2}=9.64 \times 10^{-3} \mathrm{~kg}-\text { mole } / \mathrm{m}^{3} \\
& C_{N 2}=\frac{p_{N 2}}{G T}
\end{aligned}
$$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

$$
\begin{aligned}
& C_{N 2}=\frac{86.9 \times 10^{3}}{8314 \times 288} \\
& C_{N 2}=0.036 \mathrm{~kg}-\text { mole } / \mathrm{m}^{3}
\end{aligned}
$$

Total concentration,

$$
\mathrm{C}=\mathrm{Co}_{2}+\mathrm{C}_{\mathrm{N} 2}=0.045 \mathrm{~kg} \text { mole } / \mathrm{m}^{3}
$$

STEP-2

Molar concentration

$$
\begin{aligned}
& C=\begin{array}{l}
\rho \\
\mu
\end{array} \\
& \quad \rho_{O 2}=C_{O 2} \times \mu_{O 2} \\
& =9.64 \times 10^{-3} \times 32 \\
& \rho_{O 2}=0.308 \mathrm{~kg} / \mathrm{m}^{3} \\
& =0.0362 \times 28 \\
& \rho_{N 2}=1.013 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Overall density, $\quad \rho=\rho_{O 2} \times \rho_{N 2}$

$$
\begin{aligned}
& =0.308+1.10136 \\
& \rho_{=1}=1.3216 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

STEP-3

Mass fractions $\quad \dot{\mathrm{m}}_{02}=\frac{\rho_{02}}{\rho}=\frac{0.308}{1.3216}$

$$
\begin{aligned}
\dot{\mathrm{m}}_{02} & =0.233 \\
\dot{\mathrm{~m}}_{\mathrm{N} 2}=\frac{\rho_{N 2}}{\rho} & =\frac{1.0136}{1.3216} \\
\dot{\mathrm{~m}}_{\mathrm{N} 2} & =
\end{aligned}
$$

0.766 STEP-4

$$
\text { Mole fractions, } \mathrm{X}_{02}=\frac{C_{02}}{C}=\frac{9.64 \times 10^{-3}}{0.045}
$$

$$
\begin{aligned}
\mathrm{X}_{\mathrm{O} 2} & =0.210 \\
\mathrm{X}_{\mathrm{N} 2}=\frac{C_{N 2}}{C} & =\frac{0.0362}{0.045} \\
\mathrm{X}_{\mathrm{O} 2} & =0.804
\end{aligned}
$$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

RESULT:

I. Molar concentrations, $\mathrm{Co}_{2},=9.64 \times 10^{-3} \mathrm{~kg}-$ mole $/ \mathrm{m}^{3}$

$$
\mathrm{C}_{\mathrm{N} 2,}=C_{N 2}=0.036 \mathrm{~kg}-\text { mole } / \mathrm{m}^{3}
$$

II. Mass densities, $\quad \rho_{O 2}=0.308 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\rho_{N 2}=1.013 \mathrm{~kg} / \mathrm{m}^{3}
$$

III. Mass fractions, $\quad \dot{\mathrm{m}}_{\mathrm{O} 2}=0.233$

$$
\dot{\mathrm{m}}_{\mathrm{N} 2}=0.766
$$

IV. Molar fraction of each species. $\mathrm{X}_{02}=0.210$

$$
\mathrm{X}_{\mathrm{N} 2}=0.804
$$

2. Air at $20^{\circ} \mathrm{C}\left(\rho=1.205 \mathrm{~kg} / \mathrm{m}^{3} ; v=15.06 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s} ; \mathrm{D}=4.16 \times 10^{-6}\right.$ $\mathrm{m}^{2} / \mathrm{s}$) flows over a tray (length $=32 \mathrm{~cm}$, width $=42 \mathrm{~cm}$) full of water with a velocity of $2.8 \mathrm{~m} / \mathrm{s}$. The total pressure of moving air is $1 \mathbf{~ a t m}$ and the partial pressure of water present in the air is $\mathbf{0 . 0 0 6 5 8}$ bar. If the temperature on the water surface $i s 15^{\circ} \mathrm{C}$ calculate the evaporation rate of water.
(MAY/JUNE 2012; NOV/DEC 2014; NOV/DEC 2015; APRIL/MAY 2016)

Given:

Fluid temperature, $\mathrm{T}_{\infty}=20^{\circ} \mathrm{C}$
Speed, $\mathrm{U}=2.8 \mathrm{~m} / \mathrm{s}$
Flow direction is 32 cm side. So, $\mathrm{x}=32 \mathrm{~cm}=0.32 \mathrm{~m}$
Area, $A=32 \mathrm{~cm} \mathrm{x} 42 \mathrm{~cm}=0.32 \mathrm{x} 0.42 \mathrm{~m}^{2}$
Partial pressure of water, $\mathrm{Pw}_{2}=0.0068$ bar

$$
\mathrm{Pw}_{2}=0.0068 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
$$

Water surface temperature, $\mathrm{Tw}=15^{\circ} \mathrm{C}$

To find:

Evaporation rate of water $\left(\mathrm{M}_{\mathrm{w}}\right)$

Solution:

Properties of air is given
$\rho=1.205 \mathrm{~kg} / \mathrm{m}^{3}$;
$v=15.06 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s} ;$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Diffusion coefficient $\mathrm{D}=4.16 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$

STEP-1

$$
\begin{aligned}
& \operatorname{Re}=\frac{U L}{v}=\frac{2.8 \times 0.32}{15.06 \times 10^{-6}} \\
& =0.594 \times 10^{5}<5 \times 10^{5}
\end{aligned}
$$

Since $\operatorname{Re}<5 \times 10^{5}$, flow is laminar
Flat plate laminar flow:
Sherwood number $(\mathrm{Sh})=\left[0.664(\mathrm{Re})^{0.5}(\mathrm{Sc})^{0.333}\right]$
[From HMT data book, P.no-175]

STEP-2

$\mathrm{Sc} \rightarrow$ Schmidt number $=\frac{v}{D_{a b}}=\frac{15.06 \times 10^{-6}}{4.16 \times 10^{-5}}$

$$
\text { Sc }=0.3620
$$

Sub Sc, Re in $\{1\}$

$$
(S h)=\left[0.664\left(0.594 \times 10^{5}\right)^{0.5}(0.3620)^{0.333}\right]
$$

Sh= 115.37

STEP-3

Sherwood number $\operatorname{Sh}=\frac{h_{m} L}{D_{a b}}$

$$
\begin{aligned}
& 115.37=\frac{h_{m} 0.32}{4.16 \times 10^{5}} \\
& \mathbf{h}_{\mathbf{m}}=\mathbf{0 . 0 1 4 9} \mathbf{~ m} / \mathbf{s}
\end{aligned}
$$

STEP-4

Mass transfer coefficient based on pressure difference is given

$$
\begin{aligned}
h_{m p}= & \frac{h_{m}}{R T_{w}}=\frac{0.0149}{287 \times 288} \quad\left[\mathrm{Tw}=15^{\circ} \mathrm{C}+273=288 \mathrm{~K}, \text { So } \mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{~K}\right] \\
& \mathbf{h}_{\mathbf{m p}}=\mathbf{1 . 8 0 \times 1 0 ^ { - 7 } \mathbf { m } / \mathbf { s }}
\end{aligned}
$$

Saturation pressure of water at $15^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{Pw}_{1}=0.017 \text { bar } \\
& \mathrm{Pw}_{1}=0.017 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} \quad[\text { From steam table (R.S khurmi) P.no-1] }
\end{aligned}
$$

STEP-5

The evaporation of water

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

$$
\mathrm{Mw}=\mathrm{h}_{\mathrm{mp}} \times \mathrm{A}\left(\mathrm{Pw}_{1}-\mathrm{Pw}_{2}\right)
$$

$$
M_{w}=2.66 \times 10^{-5} \mathrm{~kg} / \mathrm{s}
$$

Result:

The evaporation rate of water $\mathbf{M}_{\mathbf{w}}=\mathbf{2 . 6 6 \times 1 0} \mathbf{1 0} \mathbf{~ \mathbf { 5 g }} / \mathbf{s}$
3. Dry air at $270^{\circ} \mathrm{c}$ and 1 atm flows over a wet flat plate 50 cm long at a velocity of $50 \mathrm{~m} / \mathrm{s}$. Calculate the mass transfer coefficient of water vapour in air at the end of the plate.
(NOV/DEC 2014; APRIL/MAY 2015) (NOV/DEC
Given:
Fluid temperature $\mathrm{T}_{\infty}=27^{\circ} \mathrm{C}$
Velocity $u=50 \mathrm{~m} / \mathrm{s}$
Length $\mathrm{x}=35 \mathrm{~mm}=0.035 \mathrm{~m}$

To find:

Mass transfer co-efficient, $\left(\mathrm{h}_{\mathrm{m}}\right)$

Solution:

STEP-1
Properties of at $27^{\circ} \mathrm{C}$:

$$
\begin{aligned}
& \mathrm{V}=16 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s} \\
& \begin{aligned}
\operatorname{Re}=\frac{U L}{v} & =\frac{50 \times 0.035}{16 \times 10^{-6}} \\
& =1.09375 \times 10^{5}<5 \times 10^{5}
\end{aligned}
\end{aligned}
$$

Since $\operatorname{Re}<5 \times 10^{5}$, flow is laminar
Flat plate laminar flow:
Sherwood number $(\mathrm{Sh})=\left[0.664(\mathrm{Re})^{0.5}(\mathrm{Sc})^{0.333}\right]$
[From HMT data book, P.no-175]

STEP-2

[D ab-Diffusion coefficient (water+ air) @ $27^{\circ} \mathrm{c}=25.38 \times 10^{-6} \mathrm{~m}^{2} /$

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

$$
\begin{aligned}
\text { Sc } \rightarrow \text { Schmidt number } & =\frac{v}{D_{a b}}=\frac{16 \times 10^{-6}}{25.38 \times 10^{-6}} \\
\text { Sc } & =\mathbf{0 . 6 3 0 4}
\end{aligned}
$$

STEP-3
Sub Sc, Re in $\{1\}$

$$
(S h)=\left[0.664\left(1.09375 \times 10^{5}\right)^{0.5}(0.6304)^{0.333}\right]
$$

$$
\text { Sh= } 188.32
$$

STEP-4

$$
\begin{aligned}
& \text { Sherwood number } \mathrm{Sh}=\frac{h_{m} L}{D_{a b}} \\
& 188.32=\frac{h_{m} 0.35}{25.38 \times 10^{-6}} \\
& \mathbf{h}_{\mathbf{m}}=\mathbf{0 . 1 3 6 5} \mathbf{~ m} / \mathbf{s}
\end{aligned}
$$

Result:

Mass transfer coefficient of water vapour $\mathbf{h}_{\mathbf{m}}=\mathbf{0 . 1 3 6 5} \mathbf{~ m} / \mathbf{s}$.
4. CO_{2} and air experience equimolar counter diffusion in a circular tube whose length and diameter are 1 m and 50 mm respectively. The system of total pressure of 1 atm and a temperature of $25^{\circ} \mathrm{C}$. The ends of the tube are connected to large chambers in which the species concentrations are maintained at fixed values.the partial pressure of CO_{2} at one end is 190 mm of $\mathbf{H g}$ while at the other end is $\mathbf{9 5} \mathbf{~ m m ~ H g}$. Estimate the mass transfer rate of CO_{2} and air through the tube.
[MAY/JUNE 2012; APRIL/MAY 2016]

Given:

Diameter, $\mathrm{d}=50 \mathrm{~mm}=0.05 \mathrm{~m}$
Length $=1 \mathrm{~m}\left[\mathrm{x}_{2}-\mathrm{x}_{1}\right]$
Total pressure , $\mathrm{p}=1 \mathrm{~atm}=1 \mathrm{bar}$
Temperature, $\mathrm{T}=25^{\circ} \mathrm{C}=298 \mathrm{~K}$
Parital pressure of CO_{2} at one end

$$
\mathrm{P}_{\mathrm{a} 1}=190 \mathrm{~mm} \text { of } \mathrm{Hg}=\frac{190}{760} \mathrm{bar}
$$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{a} 1}=0.25 \mathrm{bar} \quad[1 \text { bar }=760 \mathrm{~mm} \text { of } \mathrm{Hg}] \\
& \mathrm{P}_{\mathrm{a} 1}=0.25 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\left[1 \text { bar }=10^{5} \mathrm{~N} / \mathrm{mm}^{2}\right]
\end{aligned}
$$

Parital pressure of CO_{2} at other end

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{a} 2}=95 \mathrm{~mm} \text { of } \mathrm{Hg}=\frac{95}{760} \text { bar } \\
& \mathrm{P}_{\mathrm{a} 2}=0.0312 \text { bar } \quad[1 \text { bar }=760 \mathrm{~mm} \text { of } \mathrm{Hg}] \\
& \mathrm{P}_{\mathrm{a} 2}=0.0312 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} \quad\left[1 \text { bar }=10^{5} \mathrm{~N} / \mathrm{mm}^{2}\right]
\end{aligned}
$$

To find:

1.Mass transfer rate of Co2
2. Mass transfer rate of air

Solution:

STEP-1

$$
\frac{m_{a}}{A}=\frac{D_{a b}}{G T} \frac{\left[C_{a 1}-C_{a 2}\right]}{\left[X_{2}-X_{1}\right]}
$$

Diffusion coefficient $\left(\mathrm{D}_{\mathrm{ab}}\right)$ for CO_{2}-Air combination is $11.89 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ [HMT data book page no.180]

$$
\mathrm{A}=1.9634 \times 10^{-3} \mathrm{~m}^{2}
$$

$$
\begin{aligned}
& \frac{m_{a}}{A}=\frac{D_{a b}}{G T} \frac{\left[C_{a 1}-C_{a 2}\right]}{\left[X_{2}-X_{1}\right]} \\
& m_{a}=\frac{11.89 \times 10^{-6}}{8314 \times 298} \frac{\left[0.25 \times 10^{5}-0.031 \times 10^{5}\right]}{[1]}
\end{aligned}
$$

Molar transfer rate of $\mathrm{Co}_{2}, \mathrm{~m}_{\mathrm{a}}=1.050 \times 10^{-7} \frac{\mathrm{~kg}-\text { mole }}{\mathrm{s}}$

STEP-2

We know,
Mass Transfer Rate $\mathrm{Co}_{2}=$ Molar Transfer \times Molecular Weight

$$
=1.050 \times 10^{-7} \mathrm{x} 44.01
$$

[Molecular weight of Co2 Refer HMT D.B Page 182]

Mass Transfer Rate $\mathrm{Co}_{2}=4.625 \times 10^{-6} \mathrm{~kg} / \mathrm{s}$

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Mass Transfer Rate of Air $=\mathrm{m}_{\mathrm{b}}=-1.050 \times 10^{-7} \frac{\mathrm{~kg}-\text { mole }}{\mathrm{s}}$

STEP-3

[$\mathrm{m}_{\mathrm{a}}=-\mathrm{m}_{\mathrm{b}}$]
Mass Transfer Rate Air = Molar Transfer x Molecular Weight of air

$$
=1.050 \times 10^{-7} \times 29
$$

Mass Transfer Rate Air $=-3.045 \times 10^{-6} \mathrm{~kg} / \mathrm{s}$

Result:

1. Mass transfer rate of $\mathrm{Co} 2=4.625 \times 10^{-6} \mathbf{~ k g} / \mathrm{s}$
2. Mass transfer rate of air $=-\mathbf{3 . 0 4 5} \times \mathbf{1 0}^{-6} \mathbf{~ k g} / \mathbf{s}$
3. Discuss briefly the Analogy between heat and mass transfer.
[MAY/JUNE 2013; NOV/DEC 2015; APRIL/MAY 2016]
There is similarity among heat and mass transfer. The three basic equations dealing with these are
I. Newtonian equation of momentum
II. Fourier law of heat transfer
III. Fick law of mass transfer

The momentum, heat and mass transfer equation can be written as
Continuity equation, $\frac{\partial u}{d x}+\frac{\partial v}{d y}=0$
Momentum transfer, $u \frac{\partial u}{d x}+v \frac{\partial v}{d y}=v \frac{\partial^{2} u}{d y^{2}}$
Heat transfer, $u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}=\alpha \frac{\partial^{2} u}{\partial y^{2}}$
Mass transfer, $u \frac{\partial C a}{\partial x}+v \frac{\partial C n}{\partial y}=D \frac{\partial^{2} C a}{\partial y^{2}}$
Heat and mass transfer takes place due to temperature difference. As per Fourier's law of conduction

$$
Q=-k A \frac{d t}{d x}
$$

Where $\quad \mathrm{Q}=$ rate of heat transfer

$$
\mathrm{K}=\text { thermal conductivity of material }
$$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

$$
\begin{aligned}
& \mathrm{A}=\text { Heat transfer area } \\
& \frac{d t}{d x}=\text { Temperature gradient }
\end{aligned}
$$

As per Newton's law of cooling

$$
Q=h A \Delta T
$$

Where $\mathrm{h}=$ heat transfer coefficient
Mass transfer takes place due to concentration difference.
As per Fick's law of diffusion

$$
N a=\frac{m_{A}}{A}=-D_{A B} \frac{d C_{A}}{d x}
$$

$\mathrm{m}_{\mathrm{A}}=$ Mass flow rate of species A by diffusion.
A = Area through which mass is flowing
$D_{A B}=$ Diffusion coefficient.
$\frac{d C_{A}}{d x}=$ concentration gradient .

(b) Concentration Profile
6. Explain Equimolar Counter diffusion in gases.
[APRIL/MAY 2013; NOV/DEC 2014]
Two large chambers ' a ' and ' b ' connected by a passage as shown below.

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Equimolar Counter Diffusion in a Binary Mixture
Na and Nb are the steady state molar diffusion rates of component a and b respectively.

Equimolar diffusion is defined as each molecule of ' a ' is replaced by each molecule of ' b ' and vice versa. The total pressure $p=p a+p b$ is uniform throughout the system.

$$
P=P a+P b
$$

Differentiating with respect to x

$$
\frac{d P}{r}=\frac{d P a}{r}+\frac{d P b}{r}
$$

Since the total pressure of the system remains constant under steady state conditions

$$
\begin{aligned}
& \frac{d P}{d x}=\frac{d P a}{d x}+\frac{d P b}{d x}=0 \\
& \frac{d P a}{d x}=-\frac{d P a}{d x}
\end{aligned}
$$

Let the total molar flux is zero, $\mathrm{Na}+\mathrm{Nb}=0$

$$
\rightarrow \mathrm{Na}=-\mathrm{Nb}
$$

From flick's law,

$$
-D_{B A} \frac{A}{G T} \frac{d P a}{d x}=D_{B A} \frac{A}{G T} \frac{d P b}{d x}
$$

$$
\begin{aligned}
\mathrm{D}_{\mathrm{AB}} & =\mathrm{D}_{\mathrm{BA}}=\mathrm{D} \\
N a & =\frac{m a}{A}=-D \frac{A}{G T} \int_{1}^{2} \frac{d P A}{d x}
\end{aligned}
$$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Molar flux,

$$
N a=\frac{m a}{A}=-D \frac{A}{G T}\left\lceil\left\lfloor\left.\frac{P a 1-P a 2}{\lfloor 2-x 1} \right\rvert\,\right\rfloor\right.
$$

Similarly,

$$
N b=\frac{m b}{A}=-D \frac{A}{G T}\left\lceil\left.\frac{P b 1-P b 2\rceil}{\mid x 2-x 1} \right\rvert\,\right\rfloor
$$

Where,

$$
\frac{m a}{A} \text {-Molar flux } \frac{k g-m o l e}{s-m^{2}}
$$

D- Diffusion coefficient
G- Universal constant- $8314 \frac{J}{\mathrm{~kg}-\text { mole }-K}$
A- Area - m ${ }^{2}$
Pa1- Partial pressure of constituent at 1 in $\mathrm{N} / \mathrm{m}^{2}$
Pa2- Partial pressure of constituent at 2 in $\mathrm{N} / \mathrm{m}^{2}$
T-Temperature - K
7. An open pan of 150 mm diameter and 75 mm deep contains water at $25^{\circ} \mathrm{C}$ and is exposed to atmosphere air at $25^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ R.H. calculate the evaporation rate of water in grams per hour.
[APRIL/MAY 2002]

Given:

Diameter, $\mathrm{d}=150 \mathrm{~mm}=0.150 \mathrm{~m}$
Deep, $\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)=75 \mathrm{~mm}=0.075 \mathrm{~m}$
Temperature, $\mathrm{T}=25^{\circ} \mathrm{C}+273=298 \mathrm{~K}$
Relative Humidity $=50 \%$

To Find:

Evaporation rate of water in grams per hour.

Solution:

Diffusion co-efficient (D_{ab}) [water + air] at $25^{\circ} \mathrm{C}$
[From HMT data book, page no, 180]

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

$$
\mathrm{D}_{\mathrm{ab}}=25.83 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}
$$

STEP-1

We know that, for isothermal evaporation, Molar flux, $\frac{m a}{A}=\frac{D_{a b}}{G T} \frac{p}{\left(x_{2}-x_{1}\right)} \ln \left[\frac{P-P w 2}{P-P w 1}\right]$ Area, $\mathrm{A}=0.0176 \mathrm{~m}^{2}$
$\mathrm{P}=$ Total pressure $=1 \mathrm{~atm}=1.013 \times 10^{5}$ $\mathrm{N} / \mathrm{mm}^{2}$

Pw1 = Partial pressure at the bottom of the test tube corresponding to saturation temperature $25^{\circ} \mathrm{C}$.

At $25^{\circ} \mathrm{C}$
$\rightarrow \mathrm{Pw} 1=0.03166 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$

Atmospheric air 50\% RH

[From steam table p.no 2]

Pw2 = Partial pressure at the top of the pan corresponding to 250 C and 50 oC relative humidity.

At $25^{\circ} \mathrm{C}$
$\operatorname{Pw} 2=0.03166 \times 10^{5}$
R. $\mathrm{H}=50 \%=0.50$

Pw2 $=0.03166 \times 10^{5} \times 0.50$

$$
\rightarrow \mathrm{Pw} 2=1583 \mathrm{~N} / \mathrm{m}^{2}
$$

STEP-2

$$
\operatorname{ma}_{0.076}=\frac{25.83 \times 10^{-6}}{8314 \times 298} \times{ }^{1.013 \times 10^{5}} 0.075\left[\begin{array}{c}
1.013 \times 10^{5}-1583 \\
\lfloor
\end{array} \frac{1.013 \times 10^{5}-0.03166 \times 10^{5}}{}\right\rfloor
$$

Molar rate of water vapour, $\mathrm{ma}=3.96 \times 10^{-9} \frac{\mathrm{~kg}-\text { mole }}{\mathrm{s}}$

STEP-3

Mass rate of water vapour $=$ molar rate of water vapour X molecular weight of steam

$$
=3.96 \times 10^{-9} \times 18.016 \mathrm{~kg} / \mathrm{s}
$$

Mass rate of water vapour $=0.256 \mathrm{~g} / \mathrm{h}$

Result:

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Evaporation rate of water $=0.256 \mathrm{~g} / \mathrm{h}$.

$$
\text { Evaporation rate of water }=0.256 \mathrm{~g} / \mathrm{h} \text {. }
$$

1. Two large tanks ,maintained at the same temperature and pressure are connected by a circular 0.15 m diameter direct, which is $\mathbf{3} \mathbf{m}$ length .One tank contains a uniform mixture of 60 mole $\%$ ammonia and 40 mole \% air and other tank contains a uniform mixture of 20 mole \% ammonia and 80 mole $\%$ air. The system is at 273 K and $1.013 \times 10{ }^{5}$ pa . Determine the rate of ammonia transfer between the two tanks.Assuming a steady state mass transfer.

Given:

$$
\begin{aligned}
& \text { Diameter } \mathrm{d}=0.15 \mathrm{~m} \\
& \text { Length }\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)=3 \mathrm{~m} \\
& \mathrm{~Pa} 1=\frac{60}{40}=0.6 \mathrm{bar}=0.6 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} \\
& \mathrm{~Pb} 1=\frac{40}{40}=0.4 \mathrm{bar}=0.4 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} \\
& \mathrm{~Pa} 2=\frac{20}{40}=0.2 \text { bar }=0.2 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} \\
& \mathrm{~Pb} 2=\frac{80}{40}=0.8 \mathrm{bar}=0.8 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

$$
\mathrm{Pb} 1=\frac{40}{40}=0.4 \mathrm{bar}=0.4 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
$$

$$
\mathrm{T}=273 \mathrm{~K}
$$

$$
\mathrm{P}=1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
$$

a-Ammonia
b-Air
To find
Rate of ammonia transfer

Solution:

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Equimolar counter diffusion

Molar flux,
$\frac{m a}{A}=\frac{D a b}{G T}\left[\frac{P a 1-P a 2}{X 2-X 1}\right\}$
Where G -universal constant $=8314 \mathrm{~J} / \mathrm{Kg}-\mathrm{mole}-\mathrm{K}$
A= area $=\frac{\pi}{4} \mathrm{~d}^{2}$
$\mathrm{A}=\frac{\pi}{4}(0.15)^{2}$
$\mathrm{A}=0.017 \mathrm{~m}^{2}$
Dab-Diffusion co efficient of ammonia with air $=21.6 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$
(From HMT data book P.No 180 (sixth edition)
Dab $=21.6 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$
(1) $=\frac{m a}{0.017}=\frac{21.6 \times 10^{-6}}{8314 \times 273} \times \frac{0.6 \times 10^{5}-0.2 \times 10^{5}}{3}$

Molar transfer rate of ammonia , $\mathrm{m}_{\mathrm{a}}=2.15 \times 10^{-9} \mathrm{Kg}$-mole $/ \mathrm{s}$

Mass transfer rate of ammonia $=$ Molar transfer rate of ammonia x Molecular weight of ammonia
$=2.15 \times 10^{-9} \times 17.03$ (Refer HMT data book P.No 182)
Mass transfer rate of ammonia $=3.66 \times 10^{-8} \mathrm{Kg} / \mathrm{s}$

Result

Mass transfer rate of ammonia $=3.66 \times 10^{-8} \mathrm{Kg} / \mathrm{s}$
2. An open pan 20 cm in diameter and 8 cm deep contains water at $25^{\circ} \mathrm{C}$ and is exposed to dry atmospheric air.If the rate of diffusion of water vapour is $8.5 \times 10^{-4} \mathrm{~kg} / \mathrm{h}$, estimate the diffusion co efficient of water in air.

Given :

Diameter $\mathrm{d}=20 \mathrm{~cm}=0.20 \mathrm{~m}$
Length ($\mathrm{x}_{2}-\mathrm{x}_{1}$) $=8 \mathrm{~cm}=0.08 \mathrm{~m}$
Temperature $\mathrm{T}=25^{\circ} \mathrm{C}+273=298 \mathrm{~K}$
Diffusion rate (or)
Mass rate of water vapour $=8.54 \times 10^{-4} \mathrm{~kg} / \mathrm{h}$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

$$
\begin{aligned}
& =\frac{8.54 \times 10^{-4} \mathrm{~kg}}{3600 \mathrm{~s}} \\
& =2.37 \times 10^{-7} \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

To find

Diffusion co efficient Dab

Solution

Molar rate of water vapour

We know that
Mass transfer rate of steam = Molar transfer rate of steam x Molecular weight of steam
$2.37 \times 10^{-7}=\frac{\operatorname{Dab} X A}{G T} \frac{p}{x_{2}-x_{1}} \times \ln \left[\frac{p-p_{w 2}}{p-p_{w 1}}\right] \times 18.016$

Where
Area $\mathrm{A}=\frac{\pi}{4} \mathrm{~d}^{2}$

$$
=\frac{\pi}{4}(0.20)^{2}
$$

$\mathrm{A}=0.0314 \mathrm{~m}^{2}$

G -universal constant $=8314 \mathrm{~J} / \mathrm{Kg}-\mathrm{mole}-\mathrm{K}$
P- Total Pressure $=1 \mathrm{~atm}=1.013 \mathrm{bar}=1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Pwi- Partial pressure at the bottom of the test tube corresponding to saturation temperature $25^{\circ} \mathrm{C}$

At $25^{\circ} \mathrm{C}$ (From Rs Khurmi Steam table P.No 2)

$$
\mathrm{Pw}_{1}=0.03166 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
$$

$\mathbf{P w}_{2}$ - Partial pressure at the top of the pan Hence air is dry and there is no water vapour $\mathrm{So}_{\mathrm{o}} \mathrm{Pw}_{2}=0$

$$
\mathrm{Pw}_{2}=0
$$

(1) $=$
2.37×10^{-7}
$=\frac{\operatorname{Dab} \times 0.0314}{8314 \times 298} \times \frac{1.013 \times 10^{5}}{0.08} \times \ln \left\lceil\frac{1.013 \times 10^{5}-0}{1.013 \times 10^{5}-0.03166 \times 10^{5}}\right\rceil \times 18.016$

Dab $=2.58 \times 10^{5} \mathrm{~m}^{2} / \mathrm{s}$

Result

Diffusion coefficient, $\mathrm{Dab}=2.58 \times 10^{5} \mathrm{~m}^{2} / \mathrm{s}$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

binils.com

