www.binils.com
 Anna University | Polytechnic | Schools

Reg. No. : \square

Question Paper Code : 40793

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2021.

Fifth Semester
Computer Science and Engineering
MA 8551 - ALGEBRA AND NUMBER THEORY
(Common to Computer and Communication Engineering/Information Technology)
(Regulations 2017)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - ($10 \times 2=20 \mathrm{marks})$

1. Consider a set G together with a well "defined binary operation * on it. Let $e_{1}, e_{2} \in G, *>$ such that $e_{1}=a=a * e_{1}=a$ and $e_{2}=a=a * e_{2}=a$ for all $a \in G$. What is the relation between e_{1} and e_{2} ? Justify your answer.
2. Prove or disprove: Every Field is an Integral domain.
3. Suppose $p(x)$ and $q(x)$ are two polynomials each of degree m and n respectively, over the ring of integer moduto 8 . The degree of the polynomial $p(x) q(x)$ is $m+n$. Comment on this statement.
4. Consider the polynomial $p(x)=x^{2}+2 x+6$ in the field $Z_{7}[x]$. What are the factors of $p(x)$?
5. Let a, b and c be any integers. If $a \mid b$ and $b \mid c$, then prove that $a \mid c$.
6. Find the $\operatorname{GCD}(161,28)$ using Euclidean algorithm.
7. Is it possible to find the remainder when $1!+2!+3!++100$! is divided by 15 ? Justify your answer.
8. Compute the value of x such that $2^{8} \equiv x(\bmod 7)$.
9. Compute the value of $\tau(18)$ and $\sigma(28)$.
10. If ϕ denotes Euler's totient function, then compute value of $\phi(\phi(38))$.

www.binils.com
 Anna University | Polytechnic | Schools

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) State and prove Lagrange's theorem.

Or

(b) If $f:(R,+, \cdot) \rightarrow(S, \oplus, \odot)$ is a ring homomorphism from R to S then prove the following:
(i) If R is a commutative ring then S is a commutative ring.
(ii) If I is an ideal of R then $f(I)$ is an ideal of S.
12. (a) Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$ be a polynomial of degree n with integer coefficients, and let p be a prime number. Suppose that p does not divide a_{n}, p divides $a_{0}, a_{1}, a_{2} \ldots a_{n-1}$, and p^{2} does not divide a_{0}. Then prove that the polynomial f is irreducible over the field Q of rational numbers. Also verify whether or not the polynomial $3 x^{5}+15 x^{4}-20 x^{3}+10 x+20$ is reducible over Q.

Or
(b) Suppose $f(x)=x^{2}+1$ and $g(x)=x^{4}+x^{3}+x^{2}+x+1$ are the two polynomials over the field $Z_{2}[x]$ then
(i) Find $q(x)$ and $r(x)$ such than $g(x)=q(x) f(x)+r(x)$ where $r(x)=0$ or degree of $r(x)<$ degree of $f(x)$.
(ii) Compute $f(x) g(x)$.
13. (a) Let a be any integer and b a positive integer. Then prove that there exist unique integers q and r such that $a=b q+r$ where $0 \leq r \leq b$.

Or
(b) State and prove fundamental theorem of arithmetic.
14. (a) (i) Solve the linear Diophantine equation $1076 x+2076 y=3076$.
(ii) Find all the solutions of $2076 x=3076(\bmod 1076)$.

Or
(b) (i) Compute the remainder when 3^{247} is divided by 17
(ii) Find an integer that has a remainder of 3 when divided by 7 and 13 , but is divisible by 12 .

www.binils.com
 Anna University | Polytechnic | Schools

15. (a) (i) Prove that "A positive integer a is self invertible modulo p if and only if $\alpha \equiv \pm 1(\bmod p)$ ".
(ii) State and prove Wilson's Theorem.

Or

(b) (i) If p is a prime number and a is any integer such that $p \nmid a$ then prove that $a^{p-1} \equiv 1(\bmod p)$.
(ii) State and prove Euler's Theorem.

www.binils.com

