# www.binils.com <br> Anna University | Polytechnic | Schools 

Reg. No. : $\square$

## Question Paper Code : 40792

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2021.

Fourth/Fifth/Sixth Semester
Civil Engineering
MA 8491 - NUMERICAL METHODS
(Common to Aeronautical Engineering/Aerospace Engineering/ Agriculture Engineering/Electrical and Electronics Engineering/ Electronics and Instrumentation Engineering/Instrumentation and Control Engineering/Manufacturing Engineering/Mechanical Engineering (Sandwich)/ Mechanical and Automation Engineering/Chemical Engineering/Chemical and

Electrochemical Engineering/Plastic Technology/Polymer Technology/
Textile Technology)
(Regulations 2017)
Time : Three hours Maximum : 100 marks PART A - ( $10 \times 2=20$ marks $)$

1. State the condition for convergence of Newton-Raphson method and the order of convergence.
2. Solve $x-3 y=-1 ; 3 x+y=2$ by Gauss-Jordan method.
3. Prove that $\mu+\frac{1}{2} \delta=E^{1 / 2}$.
4. If $f(x)=\frac{1}{x}, x=1,3,4$ then find the second divided difference.
5. State the Newton's forward difference formulae for the first and second order derivatives at the value $x=x_{0}$ upto the fourth order difference term.
6. Evaluate $\int_{1}^{2} \frac{1}{1+x^{3}} d x$ using two point Gaussian quadrature formula.

# www.binils.com <br> Anna University | Polytechnic | Schools 

7. By Taylor's series method find $y(1.1)$ given $\frac{d y}{d x}=x+y, y(1)=0$.
8. What is the condition to apply Adams-Bashforth predictor corrector method?
9. Write down the Crank-Nicolson formula to solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ take $h=1 / 4$ and $k=a h^{2}$.
10. Write down the Liebmann's iteration formula to solve the Laplace equation $u_{x x}+u_{y y}=0$.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Find a real root of the equation $x^{3}+x^{2}=100$ correct to 4 decimal places using fixed point iteration method.
(ii) Use Jacobi method to find the eigen values and the corresponding eigen vectors of the matrix $\left(\begin{array}{cc}6 & \sqrt{3} \\ \sqrt{3} & 4\end{array}\right)$.
(b) (i) Solve the system of equations by Gauss-Seidel method $x-y+4 z=12, x+5 y+3 z=12$ and $3 x-y-z=-2$.
(ii) Using power method find the largest eigen value and the corresponding eigen vector of the matrix $\left(\begin{array}{ccc}5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5\end{array}\right)$.
12. (a) (i) Using Newton's divided difference formula, find the polynomial $f(x)$ and hence find $f(6)$ from the following data.

$$
\begin{array}{lcccc}
x: & -2 & -1 & 1 & 5  \tag{8}\\
f(x): & -84 & -42 & -6 & 42
\end{array}
$$

(ii) Using Newton's backward interpolation formula, find the polynomial $f(x)$ from the following data and hence find $f(10)$.

$$
\begin{array}{lccccc}
x: & -3 & 0 & 3 & 6 & 9  \tag{8}\\
f(x): & -1 & -19 & 71 & 1403 & 7055
\end{array}
$$

## www.binils.com

Anna University | Polytechnic | Schools
(b) (i) The following values of $x$ and $y$ are given

$$
\begin{array}{ccccc}
x: & 1 & 2 & 3 & 4  \tag{10}\\
y: & 1 & 2 & 5 & 11
\end{array}
$$

Find the cubic splines.
(ii) Using Newton's forward interpolation formula, find $y(-1)$ given (6)

$$
\begin{array}{lcccc}
x: & -2 & 0 & 2 & 4 \\
y(x): & -221 & -59 & 7 & 25
\end{array}
$$

13. (a) (i) The following data gives the velocity of a particle for 20 seconds at an interval of 5 seconds. Find the final acceleration using the entire data.

$$
\begin{array}{cccccc}
t: & 0 & 5 & 10 & 15 & 20  \tag{6}\\
v: & 0 & 3 & 14 & 69 & 228
\end{array}
$$

(ii) Evaluate $\int_{1}^{2} \frac{3 x}{1+2 x^{2}} d x$ using Romberg's method.

Or
(b) (i) A jet fighter's position of an aircraft carrier's runway was timed during landing.

where $y$ is the displacement from the end of the carrier. Estimate the velocity and acceleration at $t=1$.
(ii) Evaluate $\int_{2}^{3} \int_{1}^{2} \frac{d x d y}{x^{2}+y^{2}}$ using Simpson's rule with four sub-intervals in both directions.
14. (a) (i) Apply Taylor's series method and find $y(0.1)$ and $y(0.2)$ correct to three decimal places if $\frac{d y}{d x}=y^{2}+x$ and $y(0)=1$.
(ii) Apply Runge-Kutta method of order 4 to find an approximate value of $y$ for $x=0.2$ and $x=0.4$, taking $h=0.2$, if $\frac{d y}{d x}=x^{2}+y^{2}$ given that $y=1$ when $x=0$.

Or

## www.binils.com

Anna University | Polytechnic | Schools
(b) (i) Using modified Euler method, find $y(1.2)$ and $y(1.4)$ given $\frac{d y}{d x}=\log (x+y) ; y(1)=2$.
(ii) Solve $\frac{d y}{d x}=y-x^{2}$ at $x=0.8$ by Milne's predictor and corrector method, given $y(0)=1, y(0.2)=1.12186, \quad y(0.4)=1.46820$ and $y(0.6)=1.7379$.
15. (a) Solve the equation $u_{x x}+u_{y y}=0$ over a square region of side 4. Boundary conditions are $u(0, y)=0, u(4, y)=12+y, u(x, 0)=3 x, u(x, 4)=x^{2}$, $0 \leq x \leq 4$ and $0 \leq y \leq 4$.

## Or

(b) (i) Solve $16 u_{x x}=u_{t t}, 0<x<5, t>0$ given $u(0, t)=0, u(5, t)=0$ $u(x, 0)=x^{2}(5-x)$ and $u_{t}(x, 0)=0$. Compute $u$ for 5 time steps with $h=1$ and $k=1 / 4$.
(ii) Solve $\frac{\partial u}{\partial t}=4 \frac{\partial^{2} u}{\partial x^{2}}$ subject to the conditions $u(0, t)=0, u(8, t)=0$ and $u(x, 0)=\frac{x}{2}(8-x)$ using Bender-Schmidt formula.
www.binils.com

