www.binils.com
 Anna University | Polytechnic | Schools

Reg. No. : \square

Question Paper Code : 40785

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2021.

Third Semester
Biomedical Engineering
MA 8352 - LINEAR ALGEBRA AND PARTIAL DIFFERENTIAL EQUATIONS
(Common to Computer and Communication Engineering/Electronics and Communication Engineering/Electronics and Telecommunication Engineering/ Medical Electronics)
(Regulations 2017)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - ($10 \times 2=20 \mathrm{marks})$

1. Let V_{1} and V_{2} be subspaces of a vector space V. Is $V_{1} V_{2}$ a subspace of V ?
2. Define linear independence of vectors.
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $T\left(a_{1}, a_{2}\right)=\left(2 a_{1}+a_{2}, a_{1}\right)$. Is T linear?
4. Define range of a linear transformation.
5. If $\langle x, y\rangle$ is an inner product on a vector space V , then $2\langle x, y\rangle$ can be an inner product on V ?
6. Define norm.
7. Define singular solution of a partial differential equation.
8. Solve $\frac{y^{2} z}{x} p+x z q=y^{2}$.
9. State Dirichlet's conditions.
10. Write an example of two-dimensional heat equation.

www.binils.com
 Anna University | Polytechnic | Schools

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Prove that any intersection of subspaces of a vector space V is a subspace of V.
(ii) Prove that the span of any subset S of a vector space V is a subspace of V .

Or

(b) (i) Let V be a vector space and let $S_{1} \subseteq S_{2} \subseteq V$. If S_{2} is linearly independent, then prove that S_{1} is linearly independent.
(ii) Let V be a vector space with dimension n. Prove that any linearly independent subset of V that contains exactly n vectors is a basis for V.
12. (a) State and prove 'Dimension theorem'.

Or

(b) (i) Find the eigen values and eigen vectors of the matrix $A=\left(\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right)$.
(ii) Reduce the matrix $A=\left(\begin{array}{ccc}-1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0\end{array}\right)$ to the diagonal form.
13. (a) (i) Explain the Gram-Schmidt process.
(ii) $\operatorname{In} \mathbb{R}^{4}$ the set $\{(1,0,1,0),(1,1,1,1),(0,1,2,1)\}$ is linear independent. Using Gram-Schmidt process, obtain an orthonormal set.

Or

(b) (i) Let V be a finite dimensional inner product space over F , and $g: V \rightarrow F$ be a linear transformation. Then prove that there exists a unique vector $y \in V$ such that $g(x)=\langle x, y\rangle$ for all $x \in V$.
(ii) Let $A=M_{m \times n}(F)$. Then prove that rank $(A * A)=\operatorname{rank}(A)$.
14. (a) (i) Solve $x^{2} p^{2}+y^{2} q^{2}=z^{2}$
(ii) Solve $\frac{\partial^{3} z}{\partial x^{3}}-2 \frac{\partial^{3} z}{\partial x^{2} \partial y}=2 e^{2 x}+3 x^{2} y$.

Or

www.binils.com

Anna University | Polytechnic | Schools
(b) (i) Solve $\left(D^{2}+2 D D^{\prime}+D^{\prime 2}-2 D-2 D^{\prime}\right) z=\sin (x+2 y)$.
(ii) Classify the partial differential equation
$x^{2} \frac{\partial^{2} z}{\partial x^{2}}+\left(1-y^{2}\right) \frac{\partial^{2} z}{\partial y^{2}}=0,-\infty<x<\infty,-1<y<1$.
15. (a) (i) Find the Fourier series of
$f(x)=\left\{\begin{array}{cc}x^{2} \text { if } & 0 \leq x \leq \pi \\ -x^{2} \text { if } & -\pi \leq x \leq 0\end{array}\right.$
(ii) Using the method of seperation of variables, solve the partial differential equation $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ where $u(x, 0)=6 e^{-3 x}$.

Or
(b) (i) A tightly stretched flexible string has its ends fixed at $x=0$ and $x=l$. At time $t=0$, the string is given a shape defined by $f(x)=\mu x(l-x)$, where μ is a constant, and then released. Find the displacement of any point x of the string at any time $t>0$.
(ii) Solve the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} y}{\partial x^{2}}$ with boundary conditions $u(x, 0)=3 \sin n \pi x, u(0, t)=0$ and $u(1, t)=0$, where $0<x<1, t>0$. (8) WWW.bInIS.COm

