www.binils.com
 Anna University | Polytechnic | Schools

Reg. No. : \square

Question Paper Code : 40781

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2021.

Second Semester
Civil Engineering
MA 8251 - ENGINEERING MATHEMATICS - II

(Common to : Aeronautical Engineering/Aerospace Engineering/ Agriculture Engineering/Automobile Engineering/Biomedical Engineering/ Computer Science and Engineering/Computer and Communication Engineering/ Electrical and Electronics Engineering/Electronics and Communication Engineering/Electronics and Instrumentation Engineering/Electronics and Telecommunication Engineering/Environmental Engineering/Geoinformatics Engineering/Industrial Engineering/Industrial Engineering and Management/ Instrumentation and Control Engineering/Manufacturing Engineering/Material Science and Engineering/Mechanical Engineering/Mechanical Engineering (Sandwich)/Mechanical and Automation Engineering/Mechatronics Engineering/Medical Electronics/Petrochemical Engineering/Production Engineering/Robotics and Automation/Safety and Fire Engineering/ Bio Technology/Biotechnology and Biochemical Engineering/ Chemical Engineering/Chemical and Electrochemical Engineering/Fashion Technology/Food Technology/Handloom and Textile Technology/ Information Technology/Petrochemical Technology/Petroleum Engineering/ Pharmaceutical Technology/Plastic Technology/Polymer Technology/ Textile Chemistry/Textile Technology)
(Regulations 2017)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - ($10 \times 2=20$ marks $)$

1. If 2 and 3 are two eigen values of $A=\left[\begin{array}{ccc}3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7\end{array}\right]$, find the eigen values of A^{-1}.
2. If 1,1 and -2 are eigen values of the matrix A, then state its signature and index.
3. Find the unit normal vector to the surface $x y z=2$ at $(2,1,1)$.

www.binils.com

Anna University | Polytechnic | Schools
4. State Stokes theorem.
5. Is $f(z)=z^{3}$ analytic? Justify your answer.
6. Find the fixed points of the transformation $w=\frac{2 z+6}{z+7}$.
7. Find the nature of the singularity of $f(z)=\sin \left(\frac{1}{z+1}\right)$.
8. Find the residue of $\cot z$ at the pole $z=0$.
9. Find $L\left[\frac{1}{\sqrt{t}}\right]$.
10. If $L[f(t)]=\frac{s}{(s+2)^{3}}$, using initial value theorem find $\lim _{t \rightarrow 0}[f(t)]$.

$$
\text { PART B }-(5 \times 16=80 \mathrm{marks})
$$

11. (a) (i) Find the eigenvalues and eigenvectors of the matrix $\left[\begin{array}{ccc}4 & -20 & -10 \\ -2 & 10 & 4 \\ 6 & 30\end{array}\right]$
(ii) Verify Cayley Hamilton theorem for the matrix $A=\left[\begin{array}{ccc}1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]$ and hence find its inverse.

Or
(b) Reduce the quadratic form $3 x^{2}+3 y^{2}+3 z^{2}+2 x y+2 x z-2 y z$ to canonical form. Discuss its nature.
12. (a) (i) Find the values of a and b so that the surfaces $a x^{3}-b y^{2} z=(a+3) x^{2}$ and $4 x^{2} y-z^{3}=11$ may cut orthogonally at $(2,-1,-3)$.
(ii) Verify Green's theorem in the plane for $\int_{C}\left(x y+y^{2}\right) d x+x^{2} d y$ where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$.(10)

Or

www.binils.com

Anna University | Polytechnic | Schools
(b) (i) Prove that $\vec{F}=(y+z) \vec{i}+(x+z) \vec{j}+(x+y) \vec{k}$ is irrotational. Find its scalar potential.
(ii) Verify Gauss divergence theorem for $\vec{F}=x^{3} \vec{i}+y^{3} \vec{j}+z^{3} \vec{k}$ taken over the cube bounded by $x=0, x=a, y=0, y=a, z=0, z=a$.
13. (a) (i) Prove that the function $u=x^{3}-3 x y^{2}+3 x^{2}-3 y^{2}+1$ is harmonic. Find the conjugate harmonic function and the corresponding analytic function $f(z)$.
(ii) Find the bilinear transformation which maps the points $z=0,1, \infty$ onto the points $w=-5,-1,3$.

Or
(b) (i) If $f(z)=u+i v$ is analytic function, prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \log |f(z)|=0$.
(ii) Find the image of $1<x<2$ under the transformation $w=\frac{1}{z}$.
14. (a) (i) Evaluate $\int_{C} \frac{z+1}{z^{2}+2 z+4} d z$, where C is the circle $|z+1+i|=2$ using Cauchy's integral formula.
(ii) Evaluate $\int_{0}^{2 \pi} \frac{1}{2-\cos \theta} d \theta$ using contour integration.

Or
(b) (i) Find Laurent's series expansion of $\frac{6 z+5}{z(z+1)(z-2)}$ in $1<|z+1|<3$. (8)
(ii) Using Cauchy's residue theorem evaluate $\int_{C} \frac{12 z-7}{(z-1)^{2}(2 z+3)} d z$ where C is $|z|=2$.

www.binils.com

Anna University | Polytechnic | Schools
15. (a) (i) Find the Laplace transform of the periodic function

$$
f(t)=\left\{\begin{array}{ll}
1, & 0 \leq t \leq a \tag{8}\\
-1, & a \leq t \leq 2 a
\end{array} \text { and } f(t+2 a)=f(t) .\right.
$$

(ii) Find $L^{-1}\left[\frac{1}{\left(s^{2}+4\right)^{2}}\right]$ by using Convolution theorem.

Or
(b) (i) Find $L\left[\frac{e^{a t}-\cos 6 t}{t}\right]$.
(ii) Solve $\frac{d^{2} y}{d t^{2}}+y=\sin 2 t, y(0)=0, y^{\prime}(0)=0$ using Laplae transform. (8)

www.binils.com

