www.binils.com
 Anna University | Polytechnic | Schools

Reg. No. :

\square

Question Paper Code : 40779

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2021.

First Semester
Civil Engineering
MA 8151 - ENGINEERING MATHEMATICS - I
(Common to: Aeronautical Engineering/Aerospace Engineering/Agriculture Engineering/Automobile Engineering/Biomedical Engineering/Computer Science and Engineering/Computer and Communication Engineering/Electrical and Electronics Engineering/Electronics and Communication Engineering/Electronics and Instrumentation Engineering/Electronics and Telecommunication Engineering/ Environmental Engineering/Geoinformatics Engineering/Industrial Engineering/ Industrial Engineering and Management/Instrumentation and Control Engineering/ Manufacturing Engineering/Material Science and Engineering/Mechanical Engineering/Mechanical Engineering (Sandwich)/Mechanical and Automation
Engineering/Mechatronics Engineering/Medical Electronics/Petrochemical Engineering/Production Engineering/Robotics and Automation/Safety and Fire Engineering/Artificial Intelligence and Data Science/Bio Téchnology/Biotechnology and Biochemical Engineering/Chemical Engineering/Chemical and Electrochemical
Engineering/Computer Science and Business System/Fashion Technology/Food Technology/Handloom and Textile Technology/Information
Technology/Petrochemical Technology/Petroleum Engineering/Pharmaceutical Technology/Plastic Technology/Polymer Technology/Textile Chemistry/Textile Technology)
(Regulations 2017)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.
PART A - ($10 \times 2=20$ marks $)$

1. Find $\lim _{t \rightarrow 0} \frac{\sqrt{t^{2}+9}-3}{t^{2}}$.
2. Given $f(x)=\sin (\tan 2 x)$, find $f^{\prime}(x)$.

www.binils.com

Anna University | Polytechnic | Schools
3. Evaluate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $z=x^{2} y-x \sin x y$.
4. If $z=u^{2}+v^{2}$ where $u=a t^{2}$ and $v=2 a t$, find $\frac{d z}{d t}$.
5. Evaluate $\int_{1}^{9} \frac{x-1}{\sqrt{x}} d x$.
6. Determine whether the integral, $\int_{0}^{\infty} \frac{e^{x}}{e^{2 x}+3} d x$ is convergent or divergent.
7. Evaluate $\int_{1}^{2} \int_{1}^{3} x y^{2} d x d y$.
8. Evaluate $\iint_{R} r^{2} \sin \theta d r d \theta$ where R is the region bounded by the semi-circle $r=2 a \cos \theta$ above the initial line.
9. Find the particular integral of $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+4 y=8 \sin 2 x$.
10. Reduce the differential equation given by $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=\log (x) \sin [\log (x)]$ to the one with constant coefficients.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Find the derivative of $f(x)=\frac{1-2 x}{3+x}$ using the limit definition of the derivative.
(ii) Let $g(x)=\left\{\begin{array}{cl}x^{2}+x, & x<1 \\ a, & x=1 \\ 3 x+5, & x>1\end{array}\right.$. Is there a value of a for which g is continuous at 1? If yes, find the same. Else give reason.

Or
(b) (i) Find $\frac{d y}{d x}$ if $y=\left(x^{3}-x+1\right)^{4}+\sqrt{x^{2}+1}$.
(ii) Find the intervals on which the function $f(x)=x^{4}-2 x^{2}+3$ is increasing or decreasing. Also find the local maximum and minimum values of $f(x)$. Find the intervals of concavity and the point of inflexion.

www.binils.com
 Anna University | Polytechnic | Schools

12. (a) (i) If $u(x, y)=\tan ^{-1} \frac{x^{3}+y^{3}}{x+y}$, using Euler's theorem find $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$.(8)
(ii) Expand $e^{x} \log (1+y)$ in powers of x and y upto terms of third degree using Taylor's theorem.

Or
(b) (i) If $x=u v$ and $y=\frac{u}{v}$, find $J=\frac{\partial(x, y)}{\partial(u, v)}$ and $J^{\prime}=\frac{\partial(u, v)}{\partial(x, y)}$. Also verify $J J^{\prime}=1$.
(ii) Find the dimensions of the rectangular box, open at the top, of maximum capacity whose surface area is 432 sq. cm .
13. (a) (i) Evaluate $\int e^{2 x} \cos 3 x d x$ using integration by parts.
(ii) Using partial fractions method, evaluate $\int \frac{d x}{x^{2}-2 x+3}$.

Or
(b) (i) Evaluate $\int \frac{1}{x^{2} \sqrt{x^{2}+4}} d x$ by substituting $x=2 \tan \theta$.
(ii) Evaluate $\int \frac{x}{\sqrt{x^{2}+x+1}} d x$.
14. (a) (i) Change the order of integration and hence evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x d x d y}{x^{2}+y^{2}}$.
(ii) Find by triple integral, the volume of the tetrahedron bounded by the coordinate planes $x=0, y=0, z=0$ and the plane $x+y+z=1$.

Or
(b) (i) Using double integrals, find the area between the parabola $x^{2}=y$ and the line $x+y=2$.
(ii) Evaluate the triple integral, $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$.

www.binils.com

Anna University | Polytechnic | Schools
15. (a) (i) Use the method of variation of parameters to solve $\frac{d^{2} y}{d x^{2}}+4 y=\tan 2 x$.
(ii) Solve $x^{2} y^{\prime \prime}+x y^{\prime}+y=x \log (x)$.

Or
(b) (i) Use the method of undetermined coefficients to find the complete solution of $\frac{d^{2} y}{d x^{2}}+9 y=\cos 3 x$.
(ii) Solve the simultaneous differential equations given by $\frac{d x}{d t}+5 x-2 y=t, \frac{d y}{d t}+2 x+y=0$.

www.binils.com

