VECTOR SPACES

Definition :

Let F be a given field and let V be a non-empty set with addition and scalar multiplication rules applicable to any u, $v \in V$ such as a sum $u + v \in V$ and to any $u \in V$, $\alpha \in F$ a product $\alpha u \in V$. Then V is called a vector space over F if the following condition hold :

- 1. Closure : for all $u, v \in V \Rightarrow u + v \in V$
- 2. Associative $(u + v) = (u + v) + w \forall u, v, w \in V$.
- 3. Identity : u + 0 = 0 + u = u for all u ∈ V, there exist 0 ∈ V
 4. Inverse : (-u) + u = 0 = u + (-u) there exist -u ∈V, for all u ∈ V
- 5. Commutative : u + v = v + u for all $u, v \in V$
- 6. For all $\alpha \in F$ and for all $u \in V$, $\alpha u \in V$.
- 7. $\alpha(u+v) = \alpha u + \alpha v$, for all $\alpha \in F$ for all $u, v \in V$
- 8. $(\alpha + \beta)v = \alpha v + \beta v$, for all $\alpha, \beta \in F$ and for all $v \in V$
- 9. $(\alpha\beta)v = \alpha (\beta v)$, for all $\alpha, \beta \in F$ and for all $u, v \in V$
- 10. 1 . v = v for all $v \in V$

Properties of vector space :

- (i) $\alpha . 0 = 0, 0 \in V$, for all $\alpha \in F$
- (ii) $0 \cdot v = 0$, for all $v \in V$, $0 \in F$

MA8451-PROBABILITY AND RANDOM PROCESSES

- (iii) $(-\alpha)v = -(\alpha v) = \alpha (-v)$ for all $v \in F, v \in V$
- (iv) $\alpha v = 0, v \neq 0, \alpha = 0$ where $\alpha \in F, \alpha \in V$
- (v) $\alpha (u v) = \alpha v \alpha v$ for all $\alpha \in F$ and $u, v \in V$

Proof:

(i) since
$$0+0 = 0$$
 where $0 \in V$
 $\alpha (0+0) = \alpha$ for all $\alpha \in F$
 $\Rightarrow \alpha 0 + \alpha 0 = \alpha 0$
 $\Rightarrow \alpha 0 + \alpha 0 = \alpha 0 + 0$
Hence $\alpha 0 = 0$ [by left cancellation law]

(ii) since
$$0 + 0 = 0$$
 where $0 \in F$
 $(0+0) v = 0 v$ for all $v \in V$
 $\Rightarrow 0v + 0v = 0v$

 $\Rightarrow 0v + 0v = 0v + 0$

Hence 0v = 0 [by left cancellation law]

(iii)
$$(-\alpha)v = -(\alpha v) = \alpha (-v)$$
 for all $v \in F, v \in V$

Since $\alpha \in F \Longrightarrow -\alpha \in F$ and $v \in V$, $-v \in V$

$$=> \alpha + (-\alpha) = 0 \in F; v + (-v) = 0 \in V$$

$$\Rightarrow \alpha v + (-\alpha)v = [\alpha + (-\alpha)]v$$

For all
$$v \in V$$
; $\alpha v + \alpha(-v) = \alpha[v + (-v)]$

For all $\alpha \in F$

 $=> \alpha v + (-\alpha)v = 0v$ for all $v \in V$; $\alpha v + \alpha(-v) = \alpha 0$ for all $\alpha \in F$

MA8451-PROBABILITY AND RANDOM PROCESSES

 $\Rightarrow \alpha v + (-\alpha)v = 0$ for all $v \in V$; $\alpha v + \alpha(-v) = 0$ for all $\alpha \in F$

=> (- α)v is the additive inverse of α v in V ; α (-v) is the additive

inverse of αv in V.

 $(-\alpha)v = -(\alpha v)$; $\alpha(-v) = -(\alpha v)$

(iv) $\alpha v = 0, v \neq 0$

To prove $\alpha = 0$ where $\alpha \in F$, $v \in V$

Let $\alpha \neq 0$ then $\alpha^{-1} \in F$

Consider $\alpha v = 0$

$$\therefore \alpha^{-1} (\alpha v) = \alpha^{-1} (0)$$

$$\Rightarrow (\alpha^{-1} \alpha) v = 0$$

$$\Rightarrow 1 v = 0$$

 \Rightarrow v = 0 which is a contradiction.

Hence
$$\alpha = 0$$

Note : The vector space of V over the field F is denoted as V(F).

- (i) C is a vector space over a field C and \mathbb{R}
- (ii) R is a vector space over a field \mathbb{R} but not in a field C
- (iii) Q is a vector space over a field Q.
- (iv) Z is not a vector space over a field R.
- (v) The set $\mathbb{R}^n = \{(a_1, a_2, \dots, a_n) \mid a_1 \in \mathbb{R}\}$ is a vector space over \mathbb{R} .

MA8451-PROBABILITY AND RANDOM PROCESSES

- (vi) The set $M_2(R)$ and $M_2(Q)$ of 2 X 2 matrices with entries from R and Q is a vector space over R.
- (vii) The set $Z_p[R]$ of polynomials with coefficients from Z_p is a vector space over Z_p , where P is a prime.
- (viii) Let E be a field and F be a subfield of E. Then E is a vector space overF.
- (ix) Let $P_n(t)$ be the set of all polynomials P(t) over a field F, where the degree of P(t) is less than or equal to n. i.e.,

 $P(t) = a_0 + a_1 t + \dots + a_n t^n$.

PROBLEMS UNDER VECTOR SPACE

Example 1. Prove that $R \times R$ is a vector space aver R under addition and multiplication defined by $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$ and $a(x_1, x_2) = (\alpha x_1, \alpha x_2)$ Sol: Let $x, y \in V = R \times R$ Then $x = (x_1, x_2)$ $y = (y_1, y_2)$

Where $x_1, x_2y_1y_2 \in R$

$$x + y = (x_1, x_2) + (y_1, y_2)$$
$$= (x_1 + y_1, x_2 + y_2) \in R \times R$$

MA8451-PROBABILITY AND RANDOM PROCESSES

Let $\alpha \in F$ and $x \in \mathcal{Y}$

$$\alpha x = \alpha(x_1, x_2)$$
$$= (\alpha x_1, \alpha x_2) \in R \times R.$$

Therfore vector addition and scalar multiplications are true in $R \times R$.

1 Under addition

*A*₁: Commutativity: x + y = x + y, $\forall x, y \in R \times R$

$$x + y = (x_1, x_2) + (y_1, y_2)$$

= $(x_1 + y_1, x_2 + y_2)$
= $(y_1 + x_1, y_2 + x_2)$
= $(y_1, y_2) + (x_1, x_2)$
= $x + y$

 $\therefore x + y = x + y, \forall x, y \in R \times R$

*A*₂: Associativity: $x + (y + z) = (x + y) + z, \forall x, y, z \in R \times R$

Let $x, y, z \in R \times R$. Then

$$x = (x_1, x_2), y = (y_1, y_7)_2 z = (z_1, z_2)$$

Where $x_1, x_2, y_1, y_2, z_1, z_2 \in R$

$$x + (y + z) = (x_1, x_2) + [(y_1, y_z) + (z_1, z_2)]$$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$= (x_1, x_2) + (y_1 + z_1, y_2 + z_2)$$

= $(x_1 + (y_1 + z_1), x_2 + (y_2 + z_2))$
= $((x_1 + y_1) + z_1, (x_2 + y_2) + z_2)$
= $(x_1 + y_1, x_2 + y_2) + (z_1, z_2)$
= $((x_1, x_2) + (y_1, y_2)) + (z_1, z_2)$
= $(x + y) + z$

 $x + (y + z) = (x + y) + z, \forall x, y, z \in R \times R$

*A*₃: Existence of Identity: There exists $0 \in R \times R$ such that

$$x + 0 = x, \forall x \in R \times R$$
 S CO

Let $0 \in R$. Then $0 = (0,0) \in R \times R$.

$$x + 0 = (x_1, x_2) + (0, 0)$$
$$= (x_1 + 0, x_2 + 0)$$
$$= (x_1, x_2)$$
$$= x$$

0 = (0,0) is the zero clement of $R \times R$

A₄: Existence of Inverse: For all x in $R \times R$, there exists $-x \in R \times R$, such that x + (-x) = 0

MA8451-PROBABILITY AND RANDOM PROCESSES

Let $x \in R \times R$

 $\therefore x = (x_1, x_2)$, where $x_1, x_2 \in R$

Which implies $-x_1, -x_2 \in R$

$$\Rightarrow -x = (-x_1, -x_2) \in R \times R$$
$$x + (-x) = (x_1, x_2) + (-x_1 - x_2)$$
$$= (x_1 - x_1, x_2 - x_2)$$
$$= (0,0)$$

x + (-x) = 0

 \Rightarrow lnverse of x is -x

ie, inverse of (x_1, x_2) is $(-x_1, -x_2)$

II Under scalar multiplicatiou:

 $M_1: a(x + y) = arx + \alpha y; \forall a \in R \text{ and } \forall x, y \in R \times R$

$$\alpha(x + y) = \alpha(x_2 + y_1x_2 + y_2)$$
$$= (a(x_1 + y_1), a(x_2 + y_2))$$

$$= (\alpha x_1 + \alpha y_1 - a x_2 + a y_2)$$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$= (\alpha x_1, \alpha x_2) + (\alpha y_1, \alpha y_2)$$

$$= \alpha (x_1, x_2) + \alpha (y_1, y_2)$$

$$= ax + ay$$

$$\therefore a(x + y) = \alpha x + \alpha y \forall a \in R \text{ and } \forall x, y \in R \times R$$

$$M_2: (\alpha + \beta)x = ax + \beta x, \forall \alpha, \beta \in R, \forall x \in R \times R$$

$$(\alpha + \beta)x = (u + \beta)(x_1, x_2)$$

$$= ((\alpha + \beta)x_1(\alpha + \beta)x_2)$$

$$= (\alpha x_1 + \beta x_1, \alpha x_2 + \beta x_2)$$

$$= (\alpha x_1, \alpha x_2) + (\beta x_1, \beta x_2)$$

$$= \alpha (x_1, x_2) + \beta (x_1, x_2)$$

$$= \alpha x + \beta x$$

 $(\boldsymbol{a} + \boldsymbol{\beta})x = ax + \boldsymbol{\beta}x, \forall \alpha, \boldsymbol{\beta} \in R, \forall x \in R \times R$

 $M_3: a(\beta x) = (\alpha \beta)(x), \forall a_{\nu}, \beta \in R, \forall x \in R \times R$

$$\alpha(\beta x) = \alpha(\beta(x_1, x_2))$$
$$= \alpha(\beta x_1, \beta x_2)$$
$$= (\alpha(\beta x_1), \alpha(\beta x_2))$$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$= ((\alpha\beta)x_1, (\alpha\beta)x_2)$$

$$= (\alpha\beta)(x_1, x_2)$$

$$= (\alpha\beta)(x)$$

$$\therefore \alpha(\beta x) = (\alpha\beta)(x) \forall \alpha, \beta \in R, \forall x \in R \times R$$

$$M_4: 1. x = x, \forall x \in R \times R \text{ and } 1 \in R$$

$$1. x = 1(x_1, x_2)$$

$$= (1. x_1, 1. x_2)$$

$$= (x_1, x_2) = x$$

$$1. x = x, \forall x \in R \times R \text{ and } 1 \in R$$
Therefore $V = R \times R$ is a vector space over R

Example 2. Prove that F^n is a vector space over a field F under addition and multiplication defined by $(x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$ and $\alpha(x_1, x_2, ..., x_n) = (\alpha x_1, \alpha x_2, ..., \alpha x_n)$ Let $x, y \in V = F^n$

Then $x = (x_1, x_2, ..., x_n)$

$$y = (y_1, y_2, \dots, y_n)$$

where $x_1, x_2, ..., x_n, y_1, y_2, ..., y_n \in F$

$$x + y = (x_1 + y_1, x_2 + y_2 \dots, x_n + y_n) \in F^n$$

Let $\alpha \in F$ and $x \in F^n$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$\begin{aligned} \alpha x &= \alpha(x_1, x_2, \dots, x_n) \\ &= (\alpha x_1, \alpha x_2, \dots, \alpha x_2) \in F^n \end{aligned}$$

Therefore vector addition and scalar multiplications are true in F^n .

I. Under addition

 A_1 : Commutativity: $x + y = y + x, \forall x, y \in F^n$

$$x + y = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$$

= $(y_1 + x_1, y_2 + x_2, ..., y_n + x_n)$
= $(y_1, y_2, ..., y_n) + (x_1, x_2, ..., x_n)$
= $y + x$
 $x + y = y + x, \forall x, y \in F^n$ **ISCOM**

*A*₂: Associativity: $x + (y + z) = (x + y) + z, \forall x, y, z \in F^n$

Let $x, y, z \in F^n$. Then

$$x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n), z = (z_1, z_2, \dots, z_n)$$

Where $x_1, x_2, ..., x_n, y_1, y_2, ..., y_n, z_1, z_2, ..., z_n \in F$

$$x + (y + z) = (x_1, x_2, ..., x_n) + [(y_1, y_2, ..., y_n) + (z_1, z_2, ..., z_n)]$$

= $(x_1, x_2, ..., x_n) + (y_1 + z_1, y_2 + z_2, ..., y_n + z_n)$
= $(x_1 + (y_1 + z_1), x_2 + (y_2 + z_2), ..., x_n + (y_n + z_n))$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$= ((x_1 + y_1) + z_1, (x_2 + y_2) + z_2, \dots, (x_n + y_n) + z_n)$$
$$= (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n) + (z_1, z_2, \dots, z_n)$$
$$= ((x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n)) + (z_1, z_2, \dots, z_n)$$
$$= (x + y) + z$$

 $\therefore x + (y + z) = (x + y) + z, \forall x, y, z \in F^n$

 A_3 : Existence of Identity: There exists $0 \in F^n$ such that

$$x + 0 = 0 + x = x, \forall x \in F^{n}$$

Let $0 \in F$. Then $0 = (0,0,...,0) \in F^{n}$ COM
 $x + 0 = (x_{1}, x_{2}, ..., x_{n}) + (0,0,...,0)$
 $= (x_{1} + 0, x_{2} + 0, ..., x_{n} + 0)$
 $= (x_{1}, x_{2}, ..., x_{0})$
 $= x$
 $0 = (0,0, ...0)$ is the zero element of F^{x}

 A_4 : Fxistence of Inverse: For all x in F^n , there exists -x in F^n such that

$$(-x) + x = 0$$

Let $x \in F^n$.

MA8451-PROBABILITY AND RANDOM PROCESSES

$$\therefore x = (x_1, x_2, \dots, x_n)$$
; where $x_1 x_2, \dots, x_n \in F_1$

Which implies $-x_1, -x_{2i} \dots, -x_n \in F$

$$-x = (-x_1 - x_2, \dots, -x_n) \in k^n$$
$$x + (-x) = (x_1, x_2, \dots, x_n) + (-x_{1+} - x_2 \dots, -x_n)$$
$$= (x_1 - x_1, x_2 - x_2 + \dots, x_n - x_n)$$
$$= (0, 0, \dots, 0)$$
$$= 0$$

=>Inverse of x is - x
ie, inverse of
$$(x_1, x_2, ..., x_n)$$
 is $(-x_1 \land x_2, ..., x_n)$
II Under scalar multiplication:

$$M_1 = \alpha(x + y) = \alpha x + \alpha y, \forall a \in F \text{ and } \forall x, y \in F^a$$

$$a(x + y) = \alpha(x_1 + y_1x_2 + y_2 ..., x_n + y_n)$$

$$= (\alpha(x_1 + y_1), \alpha(x_2 + y_2), ..., \alpha(x_n + y_n))$$

$$= (\alpha x_1 + \alpha y_1, \alpha x_2 + \alpha y_2 ..., \alpha x_n + \alpha y_n)$$

$$= (\alpha x_1, \alpha x_2) + (\alpha y_1, \alpha y_2), ..., (\alpha x_n + \alpha y_n)$$

$$= \alpha(x_1, x_2) + \alpha(y_1, y_2), ..., (\alpha x_n + \alpha y_n)$$

$$= \alpha x + \alpha y$$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$\therefore \alpha(x + y) = \alpha x + \alpha y, \forall \alpha \in F \text{ and } \forall x, y \in F^{n}$$

$$\mathbf{M}_{2}: (\alpha + \beta)x = ax + \beta x \alpha, \beta \in F, \forall x \in F''$$

$$(a + \beta)x = (\alpha + \beta)(x_{1}, x_{2}, ..., x_{n})$$

$$= ((\alpha + \beta)x_{1}(\alpha + \beta)x_{2}, ..., (\alpha + \beta)x_{n})$$

$$= (\alpha x_{1} + \beta x_{1}, \alpha x_{2} + \beta x_{2}, ..., \alpha x_{n} + \beta x_{n})$$

$$= (\alpha x_{1} + \beta x_{1}, \alpha x_{2} + \beta x_{2}, ..., \alpha x_{n} + \beta x_{n})$$

$$= (\alpha x_{1}, \alpha x_{2}, ..., \alpha x_{n}) + (\beta x_{1}, \beta x_{2}, ..., \beta x_{n})$$

$$= \alpha (x_{1}, x_{2}, ..., x_{n}) + \beta (x_{1}, x_{2}, ..., x_{n})$$

$$= \alpha x + \beta x$$

$$\therefore (\alpha + \beta)x = \alpha x + \beta x, \forall \alpha, \beta \in F, \forall x \in F^{n}$$

$$\alpha (\beta x) = (\alpha \beta) (x), \alpha, \beta \in F, \forall x \in F^{n}$$

$$\alpha (\beta x) = \alpha (\beta (x_{1}, x_{2}, ..., x_{n}))$$

$$= (\alpha (\beta x_{1}, \beta x_{2}, ..., \alpha (\beta x_{n}))$$

$$= ((\alpha \beta)(x_{1}, \alpha \beta)x_{2}, ..., (\alpha \beta)\hat{x}_{n})$$

$$= (\alpha \beta)(x_{1}, x_{2}, ..., x_{n})$$

 $= (\alpha\beta)(x)$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$\therefore \alpha(\beta x) = (\alpha\beta)(x), \forall \alpha, \beta \in F, \forall x \in F^n$$

$$M_4: 1. x = x_1 \forall x \in F^n \text{ and } 1 \in F$$

$$1. x = 1. (x_1, x_2, \dots, x_n)$$

$$= (1. x_1, 1. x_2, \dots, 1 \cdot x_n)$$

$$= (x_1, x_2, \dots, x_n) = x$$

 \therefore 1. $x = x, \forall x \in F^n$ and $1 \in F$

 \therefore F^n is a vector space over F.

Example 3. Prove that set of complex numbers is a vector space over field

R.
Sol:
$$V = C = \{(x + iy)/x, y \in R\}$$
 COM
Let $x, y \in C$
Then $x = x_1 + iy_1, y = x_2 + iy_2$
Where $x_1, y_1, x_2, y_2 \in R$
Addition of vectors is defined by

$$x + y = (x_1 + iy_1) + (x_2 + iy_2)$$

$$= x_1 + x_2 + i(y_1 + y_2) \in C$$

Scalar multiplication is defined by

For $\alpha \in R$ and $x \in C$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$\alpha x = a(x_1 + iy_1)$$
$$= \alpha x_1 + i\alpha x_2 \in C$$

Therefore vector addition and scalar multiplications are true in *C*.

1. Under Addition

*A*₁: Commutativity: x + y = y + x, $\forall x, y \in C$

$$x + y = (x_1 + x_2) + i(y_1 + y_2)$$

= $(x_2 + x_1) + i(y_2 + y_1)$
= $(x_2 + iy_2) + (x_1 + iy_1)$
= $y + x$

 $\therefore x + y = y + x, \forall x, y \in C$

A₂: Associativity: $x + (y + z) = (x + y) + z, \forall x, y, z \in C$

Let $x, y, z \in C$

$$\therefore x = x_1 + iy_1$$
. $y = x_2 + iy_2$, $z = x_3 + iy_3$

$$x + (y + z) = (x_1 + iy_1) + [(x_2 + iy_2) + (x_3 + iy_3)]$$

$$=(x_1 + iy_1) + [(x_2 + x_3) + i(y_2 + y_3)]$$

$$=(x_1 + (x_2 + x_3)) + i(y_1 + (y_2 + y_3))$$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$=((x_1 + x_2) + x_3) + i((y_1 + y_2)y_3)$$
$$=[(x_1 + x_2) + i(y_1 + y_2)] + (x_3 + iy_3)$$
$$=[(x_1 + iy_1) + (x_3 + iy_2)] + (x_3 + iy_3)$$
$$=(x + y) + z$$

 $x + (y + z) = (x + y) + z, \forall x, y, z \in C$

 A_3 : Existence of Identity: There exists $0 \in C$ such that

$$x + 0 = x, \forall \in C$$

Let $0 \in R$. Then $0 = 0 + i0 \in C$

$$x + 0 = (x_1 + iy_1) + (0 + i0)$$
$$= x_1 + 0 + i(y_1 + 0)$$
$$= x_1 + iy_1$$
$$= x$$

0 = 0 + i0 is the zero element of *C*

 A_4 : Existence of Inverse: For all x in C, there exists -x in C such that

$$(-x) + x = 0$$

MA8451-PROBABILITY AND RANDOM PROCESSES

Let $x \in C$. Then

$$x = x_1 + iy_1$$
, where $x_1, y_1 \in R$

Which implies $-x_1, y_{-1} \in R$

$$\therefore -x = -x_1 + i(-y_1) \in C$$

$$x + (-x) = (x_1 + iy_1) + (-x_1 + i(-y_1))$$

$$= x_1 - x_1 + i(y_1 - y_1)$$

$$= 0 + i0$$

$$= 0$$

:. Inverse of x is -x **SCOM** i.e. inverse of $x_1 + iy_1$ is $-x_1 + i(-y_1)$

II. Under scalar multiplication

 $M_1: \alpha(x + y) = \alpha x + \alpha y, \forall \alpha \in R \text{ and } \forall x, y \in C$

$$\alpha(x + y) = \alpha[(x_1 + x_2) + i(y_1 + y_2)]$$

= $\alpha(x_1 + x_2) + i\alpha(y_1 + y_2)$
= $(\alpha x_1 + \alpha x_2) + i(\alpha y_1 + \alpha y_2)$
= $(\alpha x_1 + i\alpha y_1) + (\alpha x_2 + i\alpha y_2)$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$= \alpha(x_1 + iy_1) + \alpha(x_2 + iy_2)$$

$$= \alpha x + \alpha y$$

$$\therefore \alpha(x + y) = \alpha x + \alpha x, \forall \alpha \in R \text{ and } \forall x, y \in C$$

$$M_2: (\alpha + \beta)x = \alpha x + \beta x, \forall \alpha, \beta \in R, \forall x \in C$$

$$(\alpha + \beta)x = (\alpha + \beta)(x_1 + iy_1)$$

$$= (\alpha + \beta)x_1 + i(\alpha + \beta)y_1$$

$$= \alpha x_1 + \beta x_1 + i(\alpha y_1 + \beta y_1)$$

$$= (\alpha x_1 + iay_1) + (\beta x_1 + i\beta y_1)$$

$$= \alpha(x_1 + iy_1) + \beta(x_1 + iy_1)$$

$$= \alpha x + \beta x$$

$$\therefore (\alpha + \beta) x = \alpha x + \beta x, \forall \alpha, \beta \in R, \forall x \in C$$

$$M_{3}d\alpha(\beta x) = (\alpha\beta)(x), \forall \alpha, \beta \in R, \forall x \in C$$

$$\alpha(\beta x) \& = \alpha(\beta(x_1 + iy_1))$$
$$= \alpha(\beta x_1 + i\beta y_1)$$
$$= \alpha(\beta x_1) + i\alpha(\beta y_1)$$
$$= (\alpha\beta)x_1 + l(\alpha\beta)y_1$$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$= (\alpha\beta)(x_1 + iy_1)$$

 $= (\alpha\beta)x$

$$\therefore \alpha(\beta x) = (\alpha\beta)x, \forall \alpha, \beta \in R, \forall x \in C$$

$$M_4: 1. x = x, \forall x \in C \text{ and } 1 \in R$$

$$1. x = (1 + i0)(x_1 + iy_1)$$

 $= x_1 + iy_1$

= x

$\therefore 1. x^n = x, \forall x \in C \text{ and } 1 \in R$ $\therefore C \text{ is a vector space over } R.$

MA8451-PROBABILITY AND RANDOM PROCESSES

1.2 SUBSPACES

Definition :

Let V be a vector space and U be a non-empty subset of V. If U is a vector space under the operation of addition and scalar multiplication of V, then it is said to be a subspace of V.

Note:

- (i) {0} and V itself are called trivial subspaces.
- (ii) All other vector subspace of V are called non-trivial subspaces.

Note :

(i) A non-empty subset U of a vector space V over F is called subspace of V, if $u + v \in U$ and $\alpha u \in U$ for all u, $v \in U$ and $\alpha \in F$ or simply

 $\alpha u + \beta v \in U$ and $\alpha, \beta \in F$

- (ii) {0} is a subspace of V called zero subspace.
- (iii) V is a subspace of its own.
- (iv) {0} and V are called trivial subspace (or) improper subspaces.
- (v) Any subspace other than{0} and V are called proper subspaces of V(or) non-trivial subspaces.
- (vi) The vectors lying on a line L through the origin R² are subspaces of the vector space.

MA8451-PROBABILITY AND RANDOM PROCESSES

(vii) A non-empty subset U of vector space V is a subspace iff $u + \alpha v \in U$ for any $v \in U$ and $\alpha \in F$.

Theorem : 1.

Let w_1 and w_2 be two subspaces of vector space V over F. Then $w_1 \cap w_2$ is a subspace of V.

Proof :

As $0 \in w_1 \cap w_2$, $w_1 \cap w_2$ is non-empty.

Consider $u, v \in w_1 \cap w_2, \alpha \in F$.

Then u,
$$v \in w_1, \alpha \in F$$
 and $u, v \in w_2, \alpha \in F$
u + $\alpha v \in w_1$ and u + $\alpha v \in w_2$ **S CO**

So, $u + \alpha v \in w_1 \cap w_2$

Hence $w_1 \cap w_2$ is a subspace of V.

PROBLEMS BASED ON SUBSPACES

- 1. Let $V = R^3$. The XY-plane $w_1 = \{(x,y,0) : x, y \in R \}$ and the XZ-plane
 - w₂ = {(x,0,z) :x, z $\in R$ }. These are subspace of R³. Then w₁ $\cap w_2$ =

 $\{(x,0,0) : x \in R \}$ is the x-axis.

Solution :

Let
$$v \in V$$
, $v = (x, y, z) \in V$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$v = (x, y, 0) + (0, 0, z) \in w_1 + w_2$$

So, $V \subseteq w_1 + w_2 \subseteq V$

Hence $V = w_1 + w_2$

2. Express the polynomial $3t^2 + 5t - 5$ as a linear combination of the polynomials $t^2 + 2t + 1, 2t^2 + 5t + 4, t^2 + 3t + 6$

Solution :

Let $a, b, c \in F$ such that

$$3t^{2} + 5t - 5 = a(t^{2} + 2t + 1) + b(2t^{2} + 5t + 4) + c(t^{2} + 3t + 6)$$

$$3t^{2} + 5t - 5 = (a + 2b + c)t^{2} + (2a + 5b + 3c)t + (a + 4b + 6c)$$

Comparing the co-efficients, we get

$$a + 2b + c = 3 \dots (1)$$

$$2a + 5b + 3c = 5 \dots (2)$$

$$a + 4v' + 6c = -5 \dots (3)$$

$$(3) - (1) \Rightarrow \qquad 2b + 5c = -8 \dots (4)$$

Multiply (1) by 2,

$$2a + 4b + 2c = 6$$
(5)

MA8451-PROBABILITY AND RANDOM PROCESSES

(2) - (5) => $b + c = -1 \dots (6)$

Multiply (6) by 2,

$$2b + 2c = -2 \dots (7)$$

(4) - (7) $\Rightarrow 3c = -6$

$$\therefore c = -2$$

Substituting c in (6),

b - 2 = -1

Substituting *c*, *b* in (1)

a + 2(1) - 2 = 3a + 2 - 2 = 3 $\Rightarrow a = 3$ $\therefore a = 3, b = 1, c = -2$

Hence, $3t^2 + 5t - 5 = 3(t^2 + 2t + 1) + 1(2t^2 + 5t + 4)$

 $-2(t^2+3t+6)$

3. Let $V = R^3$, then which of the following sets is/are subspace(s) of V.

MA8451-PROBABILITY AND RANDOM PROCESSES

(i)
$$w_1 = \{(a, b, 0); a, b \in \mathbf{R}\}$$

(ii)
$$w_2 = \{(a, b, 0); a \ge 0\}$$

Solution :

(i)
$$0 = (0,0,0) \in w_1$$
, so $w_1 \neq \phi$

Let $v_1, v_2 \in w_1, \alpha \in \mathbb{R}$

Then, $v_1 = (a, b, 0)$ and $v_2 = (c, d, 0)$ for some $a, b, c, d \in \mathbb{R}$

 $v_1 + v_2 = (a + c, b + d, 0) \in w_1$

$$\alpha v_1 = (\alpha a, \alpha b, 0) \in w_1$$

Hence w_1 is a subspace of V.

(ii) Consider $w_2 = \{(a, b, 0); a \ge 0\}$ COM Here we should take the value of *a* as zero or positive.

Let
$$V = (2,1,0) \in w_2$$

But under scalar multiplication, the vector is not in w_2

That is $-v = (-2, -1, 0) \notin W_2$

$$(-1)v \notin w_2$$

Hence w_2 is not a subspace of V

4. Let V be a vector space of all 2×2 matrices over real numbers. Determine

whether W is a subspace of V or not, where

MA8451-PROBABILITY AND RANDOM PROCESSES

(i) W consists of all matrices with non-zero determinant.

(ii) W consists of all matrices A such that $A^2 = A$.

Solution :

(i) Let
$$w = \{ \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} : x, y \in \mathbb{R} \}$$

Since $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in W, W$ is a non-empty subset of V.
Consider $A = \begin{bmatrix} x_1 & 0 \\ 0 & y_1 \end{bmatrix}, B = \begin{bmatrix} x_2 & 0 \\ 0 & y_2 \end{bmatrix} \in W$ and $\alpha, \beta \in R$
 $\alpha A = \begin{bmatrix} \alpha x_1 & 0 \\ 0 & \alpha y_1 \end{bmatrix}$ and $\alpha B = \begin{bmatrix} \beta x_2 & 0 \\ 0 & \beta y_2 \end{bmatrix}$
 $\alpha A + \beta B = \begin{bmatrix} \alpha x_1 + \beta x_1 & 0 \\ 0 & \alpha y_1 + \beta y_2 \end{bmatrix} \in W$

Hence W is a subspace of V.

(ii) W is not a subspace of V because w is not closed under addition.

Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, so that
 $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1+0 & 0+0 \\ 0+0 & 0+0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = A$
 $\therefore A \in W$
But $A + A = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$=\begin{bmatrix}4&0\\0&0\end{bmatrix}\neq A+A$$

Thus $A + A \notin W$

7. Let $\mathbf{V} = {\mathbf{A}/\mathbf{A} = [a_{ij}]_{n \times n}, a_{ij} \in \mathbf{R}}$ be a vector space over **R**. Show W =

 $\{A \in V | AX = XA \text{ for all } A \in V\}$ is a sub-space of V(R)

Solution :

Since
$$0X = 0 = X0$$
 for all $X \in V$
 $\Rightarrow 0 \in W$. Thus W is non-empty.
Now, let $\alpha, \beta \in R$ and $A_1, A_2 \in W$
 $\Rightarrow A_1X = XA_1$ and $A_2X = XA_2$ for all $X \in V$
 $\therefore (\alpha A_1 + \beta A_2)X = (\alpha A_1)X + (\beta A_2)X$
 $= \alpha(A_1X) + \beta(A_2X)$
 $= \alpha(XA_1) + \beta(XA_2)$
 $= X(\alpha A_1) + X(\beta A_2)$
 $= X(\alpha A_1 + \beta A_2)$
 $= \alpha(A_1 + \beta A_2)$

Hence W is a vector space of V(R).

MA8451-PROBABILITY AND RANDOM PROCESSES

Theorem : 3. If S is any subset of a vector space V(F), then S is a subspace of

V(F) if and only if L(S) = S.

Proof:

Given *S* is a subspace of V(F)

To prove L(S) = S

Let $x \in L(S) \Rightarrow$ there exists $x_1, ..., x_n \in S$

$$\alpha_1, \alpha_2, \dots, \alpha_n \in F$$

$$x = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n \in S$$

$$L(S) \subset S \quad \dots \dots (1)$$

Also $S \subset L(S) \dots (2)$ [Since S is a subspace of V(F)]

From (1) and (2), L(S) = S

Conversely, Given L(S) = S

To prove: S is a subspace of V(F)

Since L(S) is a subspace of V(F)

 \therefore S is also a subspace of V(F)

MA8451-PROBABILITY AND RANDOM PROCESSES

8. Let V be the set of all solutions of the differential equation 2y'' - 7y' +

3y = 0. Then V is a vector space over R.

Solution :

Let $f, g \in V$ and $\alpha \in R$.

Then 2f'' - 7f' + 3f = 0 and

$$2g'' - 7g' + 3g = 0$$

$$2\frac{d^2}{dx^2}(f+g) - 7\frac{d}{dx}(f+g) + 3(f+g) = 0$$

Hence $f + g \in V$

Also
$$2(\alpha f)^n = 7(\alpha f)' + 3(\alpha f) = 0$$

Hence $\alpha f \in V$

Hence V is a vector space over R.

9 Examine whether (1, -3, 5) belongs to the linear space generated by S,

where $S = \{(1,2,1), (1,1,-1), (4,5,-2)\}$ or not?

Solution :

Suppose (1, -3, 5) belongs to S.

 \therefore There exists scalars α , β , γ such that

$$(1, -3, 5) = \alpha(1, 2, 1) + \beta(1, 1, -1) + \gamma(4, 5, -2)$$

$$(1, -3, 5) = (\alpha + \beta + 4\gamma, 2\alpha + \beta + 5\gamma, \alpha - \beta - 2\gamma)$$

MA8451-PROBABILITY AND RANDOM PROCESSES

Comparing both sides, we get

$$\alpha + \beta + 4\gamma = 1 \qquad \dots \dots \dots (1)$$
$$2\alpha + \beta + 5\gamma = -3 \dots \dots (2)$$
$$\alpha - \beta - 2\gamma = 5 \dots \dots (3)$$

Adding (1) and (3), we get

$$2\alpha + 2\gamma = 6 \Rightarrow \alpha + \gamma = 3 \dots (4)$$

Adding (2) and (3), we get

$$3\alpha + 3\gamma = 2 \Rightarrow \alpha + \gamma = \frac{2}{3} \dots$$
 (5)
Equation (4) and (5) are contradiction

Hence (1, -3, 5) does not belong to linear space of *S*.

Remark :

The union of the subspace may not be a sub-space.

MA8451-PROBABILITY AND RANDOM PROCESSES

1.5 LINEARLY INDEPENDENCE AND LINEARLY DEPENDENCE

Linearly dependent set

A subset *S* of a vector space is called linearly dependent if there is a finite number of distinct vectors $v_1, v_2, ..., v_n$ in *S* and scalars $\alpha_1, \alpha_2, ...,$ zero such that

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = 0$$

Linearly independent set

A subset *S* of a vector space that is not linearly dependent is called independent. i.e., A subset *S* of a vector space is called linearly independent if there exis. number of distinct vectors $v_1, v_2, ..., v_n$ in *S* and scalars $\alpha_1, \alpha_2, ..., \alpha_n$ such

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = 0$$
. Implies $\alpha_1 = \alpha_2 = \dots = \alpha_n = 0$

Note:

• Any set of vectors which contains zero vectors is linearly dependen

inils.co

- In R^2 any two straight lines which are not parallel are linearly indep
- In R^2 any two straight lines which are parallel are linearly dependen
- In R^2 any three vectors are linearly dependent therefore any set of n in the R^m are linearly dependent if n > m.

Theorem 1.16: {0} is a dependent set Proof: Let V be a vector space over F Let $v_1 = 0$ Therefore $\alpha_1 v_1 = 0 \Rightarrow \alpha_1 \neq 0$ \therefore {0} is linearly dependent.

Theorem 1.17: A singleton non zero vector is linearly independent set

MA8451-PROBABILITY AND RANDOM PROCESSES

Proof: Let V be a vector space over F

Let $v_1 \neq 0 \in V$

Therefore $\alpha_1 v_1 = 0 \Rightarrow \alpha_1 = 0$

 \therefore { v_1 } is linearly independent.

Theorem 1.18: Any subset of a linearly independent set is linearly independent.

Proof:

Let *V* be a vector space over a field *F*.

Let $S = \{v_1, v_2, ..., v_n\}$ be a linearly independent set.

Let $S_1 = \{v_1, v_2, \dots, v_m\}$ be a subset of *S*, where m < n.

Suppose S_1 is a linearly dependent set. Then there exist $\alpha_1, \alpha_2, \dots, \alpha_m$ in F not all zero, such that

Hence $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_m v_m + 0 v_{m+1} + \dots + 0 v_n = 0$ with $\alpha_1, \alpha_2, \dots, \alpha_m$ in F not all zero.

Therefore $\{v_1, v_2, ..., v_m, v_{m+1}, ..., v_n\}$ is a linearly dependent set of *V* i.e., *S* is a linearly dependent set of *V*, which is a contradiction.

Therefore S_1 is linearly independent.

Theorem 1.19: Any set containing a linearly dependent set is also linearly dependent

OR

Any super set of a linearly dependent set is linearly dependent set

MA8451-PROBABILITY AND RANDOM PROCESSES

Proof: Let V a vector space over F.

et S be a linearly dependent set of V...

Then there exits scalar $\alpha_1, \alpha_2, \dots, \alpha_n \in F$ not all zero such that

 $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = 0$

now consider the super set $S_1 = \{v_1, v_2, \dots, v_n, v_{n+1}\}$

Then we have $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n + 0 v_{n+1} = 0$ with at least one $\alpha_i \neq 0$ $\therefore S_1$ is linearly dependent.

Theorem 1.20: A finite set of vectors that contains the zero vector will be linearly dependent.

Proof: Let $S = \{0, v_1, v_2, ..., v_n\}$ be any set of vectors that contains the zero vector. Consider

Therefore $S = \{0, v_1, v_2, ..., v_n\}$ linearly dependent.

Theorem 1.21: Let $S = \{v_1, v_2, ..., v_n\}$ be a linearly independent set of vectors in

a vector space *V* over a field *F*. Then every element of L(S) can be uniquely written in the form $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$, where $v_i \in S$ and $\alpha_i \in F$.

Proof: By the definition, every element of L(S) is of the form

 $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$

We prove that every element of L(S) can be uniquely written in the form

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

MA8451-PROBABILITY AND RANDOM PROCESSES

If not suppose there is linear combination $\beta_1 v_1 + \beta_2 v_2 + \dots + \beta_n v_n$ of *S* such that

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = \beta_1 v_1 + \beta_2 v_2 + \dots + \beta_n v_n, \quad \text{where} \quad \beta_i \in F$$

$$\Rightarrow (\alpha_1 - \beta_1) v_1 + (\alpha_2 - \beta_2) v_2 + \dots + (\alpha_n - \beta_n) v_n = 0$$

Since *S* is a linearly independent set, $(\alpha_i - \beta_i) = 0$ for all *i*.

 $\alpha_i - \beta_i = 0$ for all i $\therefore \alpha_i = \beta_i$ for all i

Hence every element of L(S) can be uniquely written in the form

 $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n$

Theorem 1.22: A set $S = \{v_1, v_2, ..., v_n\}; n \ge 2$ is a linearly dependent set of vectors in V if and only if there exists a vector $v_k \in S$ such that v_k is a linear combination of the preceding vectors $v_1, v_2, ..., v_{k-1}$.

1. Determine whether the following sets of vectors v₃(**R**) are linearly dependent or linearly independent.

i.
$$V_{1=}=(0,2,-4), V_{2}=(1,-2,-1), V_{3}=(1,-4,3)$$

ii.
$$V_{1=}=(1,2,-3), V_{2}=(1,-3,2), V_{3}=(2,-1,5)$$

iii. $V_{1=}=(1,2,3), V_{2}=(3,1,5), V_{3}=(3,-4,7)$

Solution:

(i) Let $av_1 + bv_2 + cv_3 = 0$, a, b, c ϵ R

$$a(0,2,-4)+b(1,-2,-1)+c(1,-4,3)=(0,0,0)$$

$$\Rightarrow$$
 (0, 2a, -4a)+(b, -2b, -b)+(c, -4c, -3c) =(0, 0, 0)

$$\Rightarrow$$
 (b+c, 2a-2b-4c, -4a-b+3c) =(0,0,0)

b + c = 0.....(1)

MA8451-PROBABILITY AND RANDOM PROCESSES

 $2a - 2b - 4c \implies a - b - 2c \equiv 0....(2)$

-4a - b + 3c = 0.....(3)

Subtracting (3) from (2)

5a - 5c = 0 = a = c

From (1) b = -c

If we choose c = k, then a=k and b=-k

Hence the system is linearly dependent

(ii) a (1,2,-3)+b (1,-3,2)+c (2,-1,5) = (0,0,0) a + b + 2c = 0(1) 2a - 3b - c = 0(2) -3a + 2b + 5c = 0(3) Multiply (1) by 2, 2a + 2b + 4c = 0(4)

Subtracting (1) and (2),

We get 5b + 5c = 0.....(5)

Multiply (1) by (3),

3a + 3b + 6c = 0.....(6)

Adding (3) and (6),

5b = 11c = 0.....(7)

Substituting c=0 in (5)

We get b=0

From (1), a=0

MA8451-PROBABILITY AND RANDOM PROCESSES

a = 0, b = 0, c = 0

The given system is linearly independent.

(iii) a(1,2,3)+b(3,1,5)+c(3,-4,7)=(0,0,0)a+3b+3c=0(1) 2a + b - 4c = 0.....(2) a+ 5b+ 7c =0.....(3)

Subtracting (3) and (1),

$$2b + 4c = 0$$
(4)

Multiply (1) by (2), 2a + 6b + 6c = 0...(5)

Subtracting (5) and (2),

5b + 10c = 0

2b + 4c = 0(7)

From (4) and (7),

B = -2c

Substituting b in (2)

2a - 2c - 4c = 0

2a = 6c

a = 3c

The given system is linearly dependent.

MA8451-PROBABILITY AND RANDOM PROCESSES

2.If $V_1 = (2, -1, 0)$, $V_2 = (1, 2, 1)$ and $V_3 = (0, 2, -1)$. Show V_1 , V_2 , V_3 are linearly independent. Is it possible (3, 2, 1) as a linear combination of V_1 , V_2 , V_3 .

Solution:

Let $av_1 + bv_2 + cv_3 = 0$, a, b, c ϵ F

$$a(2,-1,0)+b(1,2,1)+c(0,2,-1) = (0,0,0)$$

$$2a+b = 0 \qquad \dots \dots (1)$$

$$-a + 2b+2c = 0 \dots \dots (2)$$

$$b-c = 0 \dots \dots (3)$$

these equation can be put in the form AX = 0

$$2 1 0 a 0
[-1 2 2] [b] = [0]
0 1 -1 c 0
Det A = det [-1 2 2]
0 1 -1
= det [-1 4 2] C_1-> C_2 + C_3
0 0 -1
= - det [2 1]
= - det [2 1]
= -1 = -9 \neq 0$$

a = b = c = 0

hence the system is linearly independent.

Let $v=a_1v_1+a_2v_2+a_3v_3$ where a_1 , a_2 , $a_3 \in F$

$$(3,2,1) = a_1(2,-1,0) + a_2(1,2,1) + a_3(0,2,-1)$$

$$(3,2,1) = (2 a_1 + a_2, -a_1 + 2 a_2 + 2 a_3, a_2 - a_3)$$

Comparing

MA8451-PROBABILITY AND RANDOM PROCESSES
$3=2 a_1+a_2....(4)$

 $2=-a_1+2a_2+a_3....(5)$

 $1 = a_2 - a_3$(6)

Multiplying (5) by 2,

$$4=2-a_1+4a_2+4a_3$$
 .(7)

Adding (4) and (7)

 $7= 5 a_2+4 a_3 \dots(8)$

Multiplying (6) by 5,

 $5=5 a_2+5 a_3 \dots(9)$

Subtracting (8) and (9) $2= 9 a_3 \Rightarrow a_3 = 2/9$

Substituting a₃ in (6)

$$1 = a_2 - 2/9 \implies 1 + 2/9$$

$$a_2 = \frac{11}{9}$$

Substituting a_2 in (4)

$$3 = 2a_1 + \frac{11}{9}$$
$$2 a_1 = 3 - \frac{11}{9}$$
$$2 a_1 = \frac{27 - 11}{9}$$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$\Rightarrow a_1 = \frac{16}{2*9} = \frac{8}{9}$$

$$a_1 = \frac{8}{9}, a_2 \frac{11}{9}, a_3 = \frac{2}{9}$$

hence $(3,2,1) = \frac{8}{9}(2,-1,0) + \frac{11}{9}(1,2,1) + \frac{2}{9}(0,2,-1)$

which is the required linear combination.

1. If x,y,z are linearly independent vectors in a vector space V then prove that all linearly independent x+y,x-y,x-2y+2

Solution:

Let a, b, c ϵ F such that

A(x+y)+b(x-y)+c(x-2y-z)=0

 $\Rightarrow (a+b+c)x+(a-b-2c)y+cz=0, x+0, y+0, z$ Comparing $a + b + c = 0 \dots (1)$

 $a - b - 2c = 0 \dots (2),$

c=0 (3)

Note:

- 1. Any matrix with distint eigen values can be diagonalizable.
- 2. All matrices donot posses n linearly independent eigen vectors. Therefore all matrices are not diagonalizable.
- 3. Similar matrices have the same eigen values.
- 4. If A is diagonalizable then it has n linearly indebendent eigen vectors.
- 5. Symmetric matrices are always diagonalizable.
- 6. Let A be a square matirix, A is orthogonally diagonalizable iff it is a symmetric matrix.

MA8451-PROBABILITY AND RANDOM PROCESSES

Definition:

A square matrix A is said to be orthogonally diagonalizable if there exists an orthogonal matrix N such that $D = N^{T}AN$ is a diagonal matrix.

1.Show that the following matrix $A = \begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix}$ is diagonalizable

hence find A⁹.

Solution:

The characteristic equation I spiven by $|A - \lambda I| = 0$

(i.e.,)
$$\begin{vmatrix} -4 - \lambda & -6 \\ 3 & 5 - \lambda \end{vmatrix} = 0$$
$$=>(-4 - \lambda) (5 - \lambda) -3(-6) = 0$$
$$=> -20 + 4 \lambda - 5 \lambda + \lambda^2 + 18 = 0$$
$$=> \lambda^2 - \lambda - 2 = 0$$
 COM
(λ +1)(λ -2) = 0
 λ = -1,2

The eigen values are λ =-1,2

To find eigen vectors :

$$(A - \lambda I)v = 0$$

$$\begin{vmatrix} -4 - \lambda & -6 & x_1 & 0 \\ 3 & 5 - \lambda \end{vmatrix} \begin{bmatrix} x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \dots \dots (1)$$

Case (i)

Substituting $\lambda = 2$ in we get

$$\begin{vmatrix} -4 - 2 & -6 & x_1 & 0 \\ 3 & 5 - 2 \end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$\begin{vmatrix} -6 & -6 \\ 3 & 3 \end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

-6x₁ -6x₂ =0
3x₁ +3x₂ =0 => 3x₁ = -3x₂
=>x₁ = -x₂

Let $x_2 = t$, then $x_1 = t$

$$V_1 = t \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

Case (ii)

Substituting $\lambda = -1$ in we get

$$\begin{vmatrix} -4_{3}+1 & -6_{5+1} \\ 5+1 & x_{2}^{1} \\ 3 & 6 & x_{2}^{1} \\ -3_{x_{1}} & -6_{x_{2}} \\ -3_{x_{1}} & -6_{x_{2}} = 0 \end{vmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$3x_1 + 6x_2 = 0 \implies 3x_1 = -6x_2$$

$$=>x_1 = -2x_2$$

Let $x_2 = s$, then $x_1 = -2s$

$$V_2 = s(-2)$$

Since A has two linearly indebendent eigen vectors it is diagonalizable.

Modal matrix is the column vectors of the diagonalizing matrix M.

$$M = \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}$$
$$M^{-1} A M = \begin{bmatrix} -1 & -2 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} -1 & -4 & -6 & -1 & -2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -2 & -1 & -4 & -6 \end{bmatrix} \begin{bmatrix} -1 & -2 \\ -1 & 1 \end{bmatrix}$$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$M^{-1} = \frac{1}{|M|} (\text{cofactor matrix})^{\mathrm{T}}$$
$$= \frac{1}{(-1+2)} \begin{bmatrix} -1 & 2\\ 1 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} -1 & 2\\ 1 & -1 \end{bmatrix}$$

Substituting M⁻¹ in (2),

$$M^{-1} AM = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}^{-1} \begin{bmatrix} -4 & -6 & -1 & -2 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} -4+6 & -6+10 \\ 4-3 & 6-5 \end{bmatrix} \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 4 \\ -1+1 & -2 \end{bmatrix}$$
$$= \begin{bmatrix} -2+4 & -4+4 \\ -1+1 & -2+1 \end{bmatrix}$$
$$= \begin{bmatrix} -2+4 & -4+4 \\ -1+1 & -2+1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} = D \quad \text{IS COM}$$
$$M^{-1} AM = D.$$
(3)

Pre-multiply (3) by M and postmultiply (3) by M^{-1} on both

 $MM^{-1} AM M^{-1} = MDM^{-1}$

 $A = MDM^{-1}$

 $A^9 = MD^9 M^{-1}$(4)

$$D^{9} = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}^{9} = \begin{bmatrix} 2^{9} & 0 \\ 0 & (-1)^{9} \end{bmatrix}$$
$$= \begin{bmatrix} 512 & 0 \\ 0 & -1 \end{bmatrix}$$

 $A^9 = MD^9 M^{-1}$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$= \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 512 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 512 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} -512 + 0 & 0 + 2 \\ 512 + 0 & 0 - 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} -514 & +1026 \\ 513 & 1025 \end{bmatrix}$$

binils.com

MA8451-PROBABILITY AND RANDOM PROCESSES

LINEAR COMBINATIONS

Definition :

Let v_1, v_2, \ldots, v_m be vectors of vector space V. The vector v in V is a linear combination of v_1, \ldots, v_m if there exist scalars a_1, \ldots, a_m such that v can be written as $v = a_1v_1 + a_2v_2 + \ldots + a_mv_m$

Span

Definition:

Let v_1, v_2, \ldots, v_m be vector of vector space V. These vector span V if every vector in V can be expressed as a linear combination of them.

THE SYSTEM OF HOMOGENOUS EQUATIONS The system of homogenous equations is AX = 0

where
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}, X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ x_n \end{bmatrix}, 0 = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ [0] \end{bmatrix}$$

Evidently X = 0 is a solution of AX = 0 in which X = 0, called trivial solution.

There are solutions to AX = 0 in which $X \neq 0$, called non-trivial solution.

Note: For AX = 0, there is more than one solution.

We have the following two theorems without proof.

MA8451-PROBABILITY AND RANDOM PROCESSES

Theorem 1 : The system of homogenous equations AX = 0 has trivial |ution (X = 0) if and only if $|A| \neq 0$

Theorem 2 : The system of homogenous equations AX = 0 has non-trivial ution

 $(X \neq 0)$ if and only if |A| = 0.

Find the non-trivial solutions of the equations

$$x_1 + 2x_2 - x_3 = 0, 3x_1 + x_2 - x_3 = 0, 2x_1 - x_2 = 0$$

Sol:

The system is equivalent to

Hence rank of *A* is r = 2.

n = number of unknown = 3

Therefore, n - r = 3 - 2 = 1.

MA8451-PROBABILITY AND RANDOM PROCESSES

There is only one linearly independent non-zero solution.

Solving actually, by rule of cross multiplication, the equation

 $x_{1} + 2x_{2} - x_{3} = 0$ $3x_{1} + x_{2} - x_{3} = 0 \text{ we get,}$ $\frac{x_{1}}{-2 + 1} = \frac{x_{2}}{-3 + 1} = \frac{x_{3}}{1 - 6}$ $\frac{x_{1}}{-1} = \frac{x_{2}}{-2} = \frac{x_{3} x_{1}}{-5 1} = \frac{x_{2}}{2} = \frac{x_{3}}{5}.$

 $x_1 = 1, x_2 = 2, x_3 = 5$

Solve the system of homogeneous equations

 $x_{1} + x_{2} + 2x_{3} = 0, 2x_{1} - 3x_{2} - x_{3} = 0, -3x_{1} + 2x_{2} + 5x_{3} = 0$ The system is equivalent to $AX = \begin{bmatrix} 1 & 1 & 2 & x_{1} & 0 \\ 2 & -3 & -1 \end{bmatrix} \begin{bmatrix} x_{2} \end{bmatrix} = \begin{bmatrix} 0 \\ -3 & 2 & 5 & x_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ -3 & 2 & 5 & x_{3} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 \\ -3 & 2 & 5 & x_{3} \end{bmatrix} = \begin{bmatrix} 1 \\ -3 & 2 & 5 \end{bmatrix}$ = 1(-15 + 2) - 1(10 - 3) + 2(4 - 9) $= -30 \neq 0$

Therefore the system has a trivial solution

$$x_1 = 0, x_2 = 0, x_3 = 0$$

MA8451-PROBABILITY AND RANDOM PROCESSES

THE SYSTEM OF NON-HOMOGENOUS EQUATIONS

The system of non-homogenous equations is AX = B

where
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

 $\begin{bmatrix} a_{11} & a_{12} & \dots & a_{2n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$
 $\begin{bmatrix} a_{11} & a_{22} & \dots & a_{2n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$

The system AX = B is said to be consistent if it has a solution. Otherwise it is inconsistence.

Roaches' theorem : The system AX = B is consistent if and only if r(A, B) = r(A)

Note

- If r(A, B) = r(A) = number of unknowns, then the system has unique solution.
- If r(A, B) = r(A) < number of unknowns, then the system has an infinite number of solutions.
- If $\tau(A, B) \neq r(A)$, then the system has no solution.

MA8451-PROBABILITY AND RANDOM PROCESSES

Show that the equations +y + z = 6, x - y + 2z = 5, 3x + y + z = 8,

and, 2x - 2y + 3z = 7 are consistent and solve them.

Sol:

The system of the given equations is

$$\begin{bmatrix} 1 & 1 & 1 & x \\ 1 & -1 & 2 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 6 \\ 5 \\ 8 \end{bmatrix}$$

2 -2 3 7

$$[A , B] = \begin{pmatrix} 1 & -1_1 & \frac{1}{2} & \frac{1}{9} \\ 3 & 1 & 1 & 8 \end{pmatrix}^{2}$$

$$b = \begin{pmatrix} 3 & 1 & 1 & 8 \\ 2 & -2 & 3 & 7 \\ b = 1 & 1 & 1 & 8 \end{pmatrix}^{2}$$

$$c \begin{pmatrix} 0 & -2 & 1 & -1 \\ 1 & -1 & 1 & 8 \\ 0 & -2 & -2 & -10 \\ 0 & -4 & 1 & -5 \end{pmatrix}^{R_{3} \to R_{3} - 3R_{1}}$$

$$c \begin{pmatrix} 0 & -2 & -2 & -10 \\ 0 & -4 & 1 & -5 \end{pmatrix}^{R_{4} \to R_{4} - 2R_{1}}$$

$$\begin{pmatrix} 1 & 1 & 1 & 6 \\ (0 & -2 & 1 & -1 \\ 0 & 0 & 3 & 9 \end{pmatrix}^{R_{4} \to R_{4} - 2R_{2}}$$

$$[A , B] = \begin{pmatrix} 1 & 1 & 1 & 6 \\ 0 & -2 & 1 & -1 \\ 0 & 0 & 3 & 9 \end{pmatrix}^{R_{4} \to 3R_{4} - R_{3}}$$

$$Now A \sim \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

MA8451-PROBABILITY AND RANDOM PROCESSES

r(A) = number of non-zero rows of A

$$= 3$$

r(A, B) = number of non-zero rows of [A, B]

= 3

Since r(A, B) = r(A) = 3 = number of unknowns, the system is consistent unique solution.

$$3z = 9$$

$$\therefore z = 3$$

$$-2y + z = -1$$

$$-2y = -4$$

$$\therefore y = 2$$

$$x + y + z = 6$$

$$x + 2 + 3 = 6$$

$$\therefore x = 1$$

Examine if the following system of equations is consistent and find the solution if it exists. The system of the given equations is +y + z = 1, 2x - 1

MA8451-PROBABILITY AND RANDOM PROCESSES

2y + 3z = 1, x - y + 2z = 5, and, 3x + y + z = 2

Sol: The system of the given equations is

The augmented matrix is given by

$$[A,B] = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 2 & -2 & 3 & 1 \\ 1 & -1 & 2 & 5 \\ 3 & 1 & 1 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 & R_2 \to R_2 - 2R_1 \\ 0 & -4 & 1 & 1 \\ -2 & -2 & -2 & -1 \\ 1 & R_3 \to R_3 - R_1 \\ 0 & -2 & -2 & -1 \\ 1 & R_4 \to R_4 - 3R_1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 0 & -4 & 1 & -1 \\ 0 & -4 & 1 & -1 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & -5 & -1 \\ R_4 \to 2R_4 - R_2 \end{pmatrix}$$

$$[A,B] \sim \begin{pmatrix} 0 & -4 & 1 & -1 \\ 0 & -4 & 1 & -1 \\ 0 & 0 & 1 & 9 \\ 0 & 0 & 0 & 44 \end{pmatrix} R_4 \to R_4 + 5R_3$$

 \sim (*A*) = number of non-zeru rows of [*A*, *B*]

= 4

MA8451-PROBABILITY AND RANDOM PROCESSES

$$Now A \sim \begin{bmatrix} 1 & 1 & 1 \\ 0 & 4 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\begin{array}{c} 0 & 0 & 0 \end{bmatrix}$$

r(A) = number of non-zero rows of A

= 3

r(A, B) = number of non-zero rows of [A, B]

$$= 3$$

Since $r(A, B) \neq r(A)$, the system is inconsistent and has no solution.

Solve the system of equations if consistent

$$x_1 + 2x_2 - x_3 - 5x_4 = 4$$
 COM
 $x_1 + 3x_2 - 2x_3 - 7x_4 = 5$

$$2x_1 - x_2 + 3x_3 = 3$$

Sol: The system of the given equations is

The augmented matrix is given by

$$[A,B] = \begin{bmatrix} 1 & 2 & -1 & -5 & 4 \\ [1 & 3 & -2 & -7 & 5] \\ 2 & -1 & 3 & 0 & 3 \end{bmatrix}$$

MA8451-PROBABILITY AND RANDOM PROCESSES

r(A, B) = number of non-zero rows of [A, B]

$$= 2$$

$$A \sim \begin{bmatrix} 1 & 2 & -1 & -5 & 4 \\ 0 & 1 & -1 & -2 & 1 \end{bmatrix}$$

r(A) = number of non-zero rows of A

$$= 2$$
(A, B) = $r(A) = 2$ < number of unknowns = 4, OCM

The system is consistent and has many solution.

To find the solutions

we have,

$$x_1 + 2x_2 - x_3 - 5x_4 = 4 \dots (1)$$

and

$$x_2 - x_3 - 2x_4 = 1.....(2)$$

MA8451-PROBABILITY AND RANDOM PROCESSES

As there are 2 equations, we can solve for only two unknown. Hence other two variables are treated as parameters

Let $x_3 = k_1$, $x_4 = k_2$

 $(2) \Rightarrow x_2 - k_1 - 2k_2 = -1$ $x_2 = k_1 + 2k_2 + 1$ $(1) \Rightarrow x_1 + 2(k_1 + 2k_2 + 1) - k_1 - 5k_2 = 4$ $x_1 + 2k_1 + 4k_2 + 2 - k_1 - 5k_2 = 4$ $x_1 + k_1 - k_2 = 2$

 $x_1 = 2 - k_1 + k_2$

: The given system possess a two parameters family of solution.

Definition : Let *V* be a vector space over *F* and $v_1, v_2, \dots, v_n \in V$. Any vector of the form

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$$

where $\alpha_1, \alpha_2, ..., \alpha_n \in F$, is called a linear combination of the vectors $v_1, v_2, ..., v_n$

If $w_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $w_2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$, what is the linear combination $w_1y_1 + w_2y_2$? 1 0

Sol:

MA8451-PROBABILITY AND RANDOM PROCESSES

$$w_{1}y_{1} + w_{2}y_{2} = \begin{pmatrix} 1 & 1 \\ (0) & y_{1} + \begin{pmatrix} 2 \\ 2 \end{pmatrix} & y_{2} \\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} y_{1} & y_{2} \\ (0) & + \begin{pmatrix} 2y_{2} \\ 2y_{2} \end{pmatrix} \\ y_{1} & 0 \end{pmatrix}$$
$$= \begin{pmatrix} y_{1} + y_{2} \\ (2y_{2}) \\ y_{1} \end{pmatrix}$$

In R^3 , determine whether (5, 1, -5) is expressed as a line combination of (1, -2, -3) and (-2, 3, -4).

Sol: Given v = (5,1,-5), $v_1 = (1,-2,-3)$ and $v_2 = (-2,3,-4)$ The linear combination of v_1 and v_2 is $v = a_1v_1 + a_2v_2$

$$(5,1,-5) = a_1(1,-2,-3) + \alpha_2(-2,3,-4) \dots (1)$$

$$= (\alpha_1, -2\alpha_1, -3\alpha_1) + (-2\alpha_2, 3\alpha_2, -4\alpha_2)$$
$$= (\alpha_1 - 2\alpha_2, -2\alpha_1 + 3\alpha_2, -3\alpha_1 - 4\alpha_2)$$

From the equivalent system of equations by setting corresponding components equal to each other and then reduce to echelon form

$$a_1 - 2\alpha_2 = 5 \dots (2)$$
$$-2\alpha_1 + 3\alpha_2 = 1 \dots (3)$$
$$-3\alpha_1 - 4\alpha_2 = -5 \dots (4)$$

MA8451-PROBABILITY AND RANDOM PROCESSES

sol ve(2) and (3)

$$(1) \times 2 \Rightarrow 2\alpha_1 - 4\alpha_2 = 10$$

$$(3) \Rightarrow -2\alpha_1 + 3\alpha_2 = 1$$

 $\alpha_2 = -11$

 $(3) \Rightarrow \alpha_1 - 2(-11) = 5$

 $a_1 = -17$ Substitute the values in (1), we get **SCOM** (5,1,-5) = -17(1,-2,-3) - 11(-2,3,-4)(5,1,-5) = (5,1,95), which is false

 $\therefore v$ is not a linear combination of v_1 and v_2

In R^3 , determine whether (1, 7, -4) is expressed as a linear ;ombination of u = (1, -3, 2) and v = (2, -1, 1) in R^3 .

Sol: We wish to write

$$(1,7,-4) = \alpha_1 u + \alpha_2 v$$

$$= \alpha_1(1, -3, 2) + \alpha_2(2, -1, 1) \dots (1)$$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$= (\alpha_1 + 2\alpha_2, -3\alpha_1 - \alpha_2, 2\alpha_1 + \alpha_2)$$

From the equivalent system of equations by setting corresponding component equal to each other, and then reduce to echelon form

$$\alpha_1 + 2\alpha_2 = 1 \dots (2)$$

 $-3\alpha_1 - \alpha_2 = 7 \dots (3)$
 $2\alpha_1 + \alpha_2 = -4 \dots (4)$

Verify $2x^3 - 2x^2 + 12x - 6$ is a linear combination of $x^3 - 2x^2 - 5x - 3$ and $3x^3 - 5x^2 - 4x - 9$ in $P_3(R)$. Sol: $P(x) = 2x^3 - 2x^2 + 12x - 6$, $Q(x) = x^3 - 2x^2 - 5x - 3$ and $R(x) = 3x^3 - 5x^2 - 4x - 9$

$$2x^{3} - 2x^{2} + 12x - 6$$

= $a_{1}(x^{3} - 2x^{2} - 5x - 3) + a_{2}(3x^{3} - 5x^{2} - 4x - 9) \dots (1)$

 $2x^3 - 2x^2 + 12x - 6$

$$= (\alpha_1 + 3a_2)x^3 + (-2\alpha_1 - 5\alpha_2)x^2 + (-5\alpha_1 - 4\alpha_2)x + (-3a_1 - 9\alpha_2)$$

Equating the co-efficient on both sides, we get

$$a_1 + 3a_2 = 2 \dots (2)$$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$-2a_1 - 5\alpha_2 = -2 \dots (3)$$
$$-5\alpha_1 - 4\alpha_2 = 12 \dots (4)$$
$$-3\alpha_1 - 9\alpha_2 = -6 \dots (5)$$

Solve (2) and (3)

Adding

$$(2) \times 2 \Rightarrow 2\alpha_1 + 6\alpha_2 = 4$$

$$(3) \Rightarrow \frac{-2\alpha_1 - 5\alpha_2 = -2}{\alpha_2 = 2}$$

From (2), we get $\alpha_1 + 3(2) = 2$

$$a_1 = 2 - 6$$

From (4), $-5\alpha_1 - 4\alpha_2 = 12$ -5(-4) - 4(2) = 1220-8=1212=12

(4) holds good.

From (5), $-3\alpha_1 - 9\alpha_2 = -6$

$$-3(-4) - 9(2) = -6$$

MA8451-PROBABILITY AND RANDOM PROCESSES

(5) holds good.

 \therefore P(x) is a linear combination of Q(x) and R(x).

Seample (44) Verify $3x^3 - 2x^2 + 7x + 8$ is a linear combination of $x^3 - 2x^2 - 5x - 3$ and $3x^3 - 5x^2 - 4x - 9$ in $P_3(R)$ Sol: $P(x) = 3x^3 - 2x^2 + 7x + 8$, $Q(x) = x^3 - 2x^2 - 5x - 3$ and $R(x) = 3x^3 - 5x^2 - 4x - 9$ We wish to write $P(x) = \alpha_1 Q(x) + \alpha_2 R(x)$, with α_1 and α_2 as unknown

scalars. Thus

$$3x^{3} - 2x^{2} + 7x + 8$$

$$= \alpha_{1}(x^{3} - 2x^{2} - 5x - 3) + \alpha_{2}(3x^{3} - 5x^{2} - 4x - 9) \dots (1)$$

$$3x^3 - 2x^2 + 7x + 8$$

$$= (\alpha_1 + 3\alpha_2)x^3 + (-2\alpha_1 - 5\alpha_2)x^2 + (-5\alpha_1 - 4\alpha_2)x + (-5\alpha_1$$

 $(-3\alpha_1 - 9\alpha_2)$

Equating the co-efficient on both sides, we get

$$\alpha_1 + 3\alpha_2 = 3 \dots (2)$$
$$-2\alpha_1 - 5\alpha_2 = -2 \dots (3)$$
$$-5\alpha_1 - 4\alpha_2 = 7 \dots (4)$$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$-3\alpha_1 - 9\alpha_2 = 8\dots(5)$$

Solve (2) and (3)

 $(2) \times 2 \Rightarrow 2\alpha_1 + 6\alpha_2 = 6$

$$(3) \Rightarrow -2\alpha_1 - 5\alpha_2 = -2$$

Adding

$$\alpha_2 = 4$$

From (2), we get $\alpha_1 + 3(4) = 3$

$$\alpha_1 = 3 - 12$$

$$\therefore \alpha_1 = -9$$

From (4), $-5\alpha_1 - 4\alpha_2 = 7$
(-9) $- 4(4) = 7$
 $45 - 16 = 7$

$$29 = 7$$

(4) does not holds good.

 \therefore P(x) cannot be written as a linear combination of Q(x) and R(x).

MA8451-PROBABILITY AND RANDOM PROCESSES

LINEAR SPAN

Definition:

Let *V* be a vector space over *F* and *S* be a non-empty subset of *V*. Then the set of all linear combination of the finite subset of *S* is called the linear span of set of and is denoted by L(S).

i.e.,
$$L(S) = \{\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n / \alpha_i \in F, v_i \in S\}$$

Note:

- $L(S) \subseteq V$
- If $S = \emptyset$, then L(S) = 0.

Definition:

A subset S of a vector space V generates (or span) V, if L(S) = VTheorem 1.13: Let S be a nonempty subset of a vector space V(F).

i) L(S) is a subspace of V and $S \subseteq L(S)$

ii) if W is a subspace of V such that $S \subseteq W$, then $L(S) \subseteq W$ Proof:

i) Let *S* be a nonempty subset of a vector space V(F).

Let $u, v \in L(S)$ and $\alpha, \beta \in F$.

Then
$$u = \alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_m u_m$$
 and $v = \beta_1 v_1 + \beta_2 v_2 + \dots + \beta_n v_n$
where $\alpha_1, \alpha_2, \dots, \alpha_m, \beta_1, \beta_2, \dots, \beta_n \in F$ and

 $u_1, u_2, \dots, u_m, v_1, v_2 \dots, v_n \in S$ and also *m* and *n* are finite.

 $u + \beta v = \alpha(\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_m u_m) + \beta(\beta_1 v_1 + \beta_2 v_2 + \dots + \beta_n v_n)$ $\alpha \alpha_1 u_1 + \alpha \alpha_2 u_2 + \dots + \alpha \alpha_m u_m + \beta \beta_1 v_1 + \beta \beta_2 v_2 + \dots + \beta \beta_n v_n \dots (1)$ assume $\alpha \alpha_i = \gamma_i; \beta \beta_i = \gamma_{m+i}$ and $v_i = u_{m+i}$ in (1), we get $u + \beta v$

$$\gamma_1 u_1 + \gamma_2 u_2 + \dots + \gamma_m u_m + \gamma_{m+1} u_{m+1} + \gamma_{m+1} u_{m+1} + \dots + \gamma_{m+n} u_{m+n}$$

$$\in L(S)$$

MA8451-PROBABILITY AND RANDOM PROCESSES

 $u + \beta v \in L(S)$

hence L(S) is a subspace of V.

Let *W* be a subspace of *V* such that $S \subseteq W$

have to prove $L(S) \subseteq W$

v $\mathcal{E}L(S)$. Then $v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$ where the $\alpha_i \in F$ and $v_i \in S$ Since $S \subseteq W, v_1, v_2, \dots, v_n \in W$

Since W is a subspace of V, m

 $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n \in W$

$$\Rightarrow v \in W$$

 $\therefore v \in L(T)$

 $\therefore L(S) \subseteq W$

Theorem 1.14: Let V be a vector space over a field F.

Let
$$S, T \subseteq V$$
. Then
(a) $S \subseteq T \Rightarrow L(S) \subseteq L(T)$
(b) $L(S \cup T) = L(S) + L(T)$
(C) $L(S) = S$ if and only if S is a subspace of V.
Proof:
(a) Let $S \subseteq T$ and $v \in L(S)$,
Then $v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$ where $v_i \in S$ and $\alpha_i \in F$.
Now, since $S \subseteq T, v_1, v_2, \dots, v_n \in T$
 $\therefore \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n \in L(T)$

MA8451-PROBABILITY AND RANDOM PROCESSES

 $v \in L(S) \Rightarrow v \in L(T)$

 $\Rightarrow L(S) \subseteq L(T)$

(ii) Let $v \in L(S \cup T)$

Then $v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$ where $v_1, v_2, \dots, v_n \in S \cup T$ and $\alpha_1, \alpha_2, \dots, \alpha_n \in F$. Without loss of generality, we shall assume that $v_1, v_2, \dots, v_m \in S$ and $v_{m+1}, v_{m+2}, \dots v_n \in T$

Hence

 $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_m v_m \in L(S)$ and $\alpha_{m+1} v_{m+1} + \alpha_{m+2} v_{m+2} + \dots + \alpha_n v_n \in L(T)$.

 $v = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n$

 $= \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_m v_m + \alpha_{m+1} v_{m+1} + \alpha_{m+2} v_{m+2} + \dots + \alpha_n v_n$

$$v \in L(S) + L(T)$$

$$v \in L(S \cup T) \Rightarrow v \in L(S) + L(T)$$

$$\therefore L(S \cup T) \subseteq L(S) + L(T) \dots (1)$$
Since $S \subseteq S \cup T$ and $T \subseteq S \cup T$, we have $L(S) \subseteq L(S \cup T)$ and $L(T) \subseteq L(S \cup T)$.

: their linear sum $L(S) + L(T) \subseteq L(S \cup T)$... (2) From (1) and (2),

$$L(S \cup T) = L(S) + L(T)$$

(C) Let L(S) = S.

Since L(S) is a subspace of V. we get S is a subspace V(F).

Conversely let S is a subspace V(F).

We know that $S \subseteq L(S)$... (3).

MA8451-PROBABILITY AND RANDOM PROCESSES

Let $v \in L(S)$. Then $v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$ where $v_1, v_2, \dots, v_n \in S$ and

 $\alpha_1, \alpha_2, \dots, \alpha_n \in F$

Since *S* is a subspace of *V*, $\alpha_1 v_1 + \alpha_2 v_2 + \cdots$, $+\alpha_n v_n \in S$

i.e.,
$$v \in S$$

 $v \in L(S) \Rightarrow v \in S$
 $\therefore L(S) \subseteq S \dots (4)$

From (3) and (4), we get

Hence L(S) = S.

Corollary 1.15: L[L(S)] = L(S)

Proof: If *S* is a subspace of *V*, then $L(S) = S \dots (1)$

Since
$$L(S)$$
 is a subspace of V, then $L[L(S)] = L(S) = S[$ From (1) $]$
 $\therefore L[L(S)] = L(S)$

-

Example 46. Let $S = \{(1,2), (2,1)\}; V = R^2$. Prove that V is a linear span of S.

Sol: We know that $L(S) \subseteq V...(1)$

Let us consider $(x, y) \in V$

$$(x, y) = \alpha_1(1,2) + \alpha_2(2,1) \dots (2)$$
$$= (\alpha_1, 2\alpha_1) + (2\alpha_2, \alpha_2)$$
$$(x, y) = (\alpha_1 + 2\alpha_2, 2\alpha_1 + \alpha_2)$$
$$\alpha_1 + 2\alpha_2 = x \dots (3)$$
$$2\alpha_1 + \alpha_2 = y \dots (4)$$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$(3) \times 2 => \qquad 2a_1 + 4a_2 = 2x$$

 $(4) \implies 2a_1 + a_2 = y$ $3a_2 = 2x - y$ $a_2 = \frac{2x - y}{3}$

From equation (4)

$$2a_{1} = y - a_{2}$$

$$2a_{1} = y - \left(\frac{2x - y}{3}\right)$$

$$= \frac{3y - 2x + y}{3}$$

$$2a_{1} = \frac{4y - 2x}{3}$$

$$a_{1} = \frac{2y - x}{3}$$

Sabtitute the values of a_4 and a_2 in (2), we get

$$x(x,y) = (\frac{2y-x}{3})(1,2) + (\frac{2x-y}{3})(2,1)$$

Hence (x, y) is a linear combination of S

$$s(x, y) \in L(S)$$

We have $(x, y) \in V \Rightarrow (x, y) \in L(S)$

$$\therefore V \subset L(S) - (5)$$

From (1) and (5), we get

MA8451-PROBABILITY AND RANDOM PROCESSES

L(S) = V

Therefore *S* gonerates *V*.

Example 47. Prove that in $V_2(R)$, (3,7) belongs to the linear space ((1,2), (0,1)) sol: Let S = ((1,2), (0,1))

 $v_1 = (1,2), v_2 = (0,1)$

Lat $v = (x, y) \in L(S)$

$$v = a_1 v_1 + a_z v_2$$

(x, y) = $\alpha_1(1,2) + a_2(0,1) \dots (1)$

 $=(a_1, 2a_2 + a_2)$

$$a_1 = x$$

$$2a_1 + a_2 = y$$
DISCOM

$$2x + a_2 = y$$

$$a_2 = y - 2x$$

$$(1) \Rightarrow (x, y) = x(1, 2) + (y - 2x)(0, 1)$$

we check $(3,7) \in L(S)$

Here x = 3, y = 7(1) \Rightarrow (3,7) = 3(1,2) + (7 - 6)(0,1) = (3,6) + (0,1)

which is true.

MA8451-PROBABILITY AND RANDOM PROCESSES

 $(3,7) \in L(Sam)$

Example 48. Prove that the vectors (1,1,0), (1,0,1), (0,1,1) generates R^3 .

MA8451-PROBABILITY AND RANDOM PROCESSES

$$-\alpha_2 = b - a - \alpha_3$$

$$= b - a - \frac{1}{2}(b - a + c)$$

$$= \frac{1}{2}(2b - 2a - b + a - c)$$

$$= \frac{1}{2}(b - a + c)$$

$$\alpha_2 = \frac{1}{2}(a - b + c)$$

$$\alpha_1 + \alpha_2 = a$$

$$\alpha_1 = a - \alpha_2$$

$$\alpha_1 = a - \frac{1}{2}(a - b + c)$$

$$=\frac{1}{2}(2a - a + b - c)$$

= $\frac{1}{2}(a + b - c)$ **S COM**

Substitute the values of $\alpha_1, \alpha_2, \alpha_3$ in (1), we get

$$v = \frac{1}{2}(a+b-c)(1,1,0) + \frac{1}{2}(a-b+c)(1,0,1) + \frac{1}{2}(b-a+b)(1,0,1) +$$

c)(0,1,1)

 $\therefore v \in L(S)$ $\therefore R^3 \subseteq L(S) \dots (5)$

From (1) and (5), we get

$$L(S) = R^3$$

Therefore S generates R^3 .

Example 49. Prove that the polynomials $x^2 + 3x - 2,2x^2 + 5x - 3$ and $-x^2 - 3$

MA8451-PROBABILITY AND RANDOM PROCESSES

4x + 4 generates $P_2(R)$ Let $p(x) = x^2 + 3x - 2$, $q(x) = 2x^2 + 5x - 3$ and $r(x) = -x^2 - 4x + 4$ Let $S = \{p(x), q(x), r(x)\}$. Then

$$L(S) \subseteq P_2(R) \dots (1)$$

Let $t(x) \in P_2(R)$. Then

$$t(x) = ax^2 + bx + c; a, b, c \in R$$

Let $t(x) = \alpha_1 p(x) + \alpha_2 q(x) + \alpha_3 r(x)$

$$= \alpha_1(x^3 + 3x - 2) + \alpha_2(2x^2 + 5x - 3) + \alpha_3(-x^2 - 4x + 4) \dots (1)$$

 $ax^2 + bx + c$

$$= (\alpha_{1} + 2\alpha_{2} - \alpha_{3})x^{2} + (3\alpha_{1} + 5\alpha_{2} - 4\alpha_{3})x + (-2\alpha_{1} - 3\alpha_{2} + 4\alpha_{3})$$

$$\alpha_{1} + 2\alpha_{2} - \alpha_{3} = a \dots (2) \text{ COM}$$

$$3\alpha_{1} + 5\alpha_{2} - 4\alpha_{3} = b \dots (3)$$

$$-2\alpha_{1} - 3\alpha_{2} + 4\alpha_{3} = c \dots (4)$$

$$(A, B) \sim \begin{pmatrix} 1 & 2 & -1 & a \\ 3 & 5 & -4 & b \\ -2 & -3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & -1 & a \\ -2 & -3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & -1 & a \\ -2 & -3 & 4 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & -1 & a \\ 0 & 1 & 2 & c + 2a \end{pmatrix} R_{2} \rightarrow R_{2} - 3R_{1}, R_{3} \rightarrow R_{3} + 2R_{1}$$

$$\begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 2 & c + 2a \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & -1 \\ 0 & -1 & -1 & b - 3a \end{pmatrix} R_{3} \rightarrow R_{3} + R_{2}$$

$$c + b - a$$

$$\alpha_{3} = c + b - a$$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$-\alpha_{2} - \alpha_{3} = b - 3a$$

$$-\alpha_{2} = b - 3a + \alpha_{3}$$

$$= b - 3a + c + b - a$$

$$= 2b - 4a + c$$

$$\alpha_{2} = 4a - 2b - c$$

$$\alpha_{1} + 2\alpha_{2} - \alpha_{3} = a$$

$$\alpha_{1} = a - 2\alpha_{2} + \alpha_{3}$$

$$= a - 2(4a - 2b - c) + (c + b - a)$$

$$= -8a + 5b + 3c$$
Substitute the values of $\alpha_{1}, \alpha_{2}, \alpha_{3}$ in (1), we get
$$t(\alpha) = (-8a + 5b + 3c)(\alpha_{3} + 2\alpha_{3}) + (\alpha_{3} - 2b)(\alpha_{3} + 5c)$$

$$t(x) = (-8a + 5b + 3c)(x^3 + 3x - 2) + (4a - 2b - c)(2x^2 + 5x - 3)$$
$$+(c + b - a)(-x^2 - 4x + 4) \in L(S)$$
$$\therefore P_2(R) \subseteq L(S) \dots (5)$$

From (1) and (5), we get

$$L(S) = P_2(R)$$

MA8451-PROBABILITY AND RANDOM PROCESSES

1.6.1. PROBLEMS UNDER BASIS

Let *V* be a vector space with $\dim(V) = n$. Then any basis of *V* contains *n* elements.

Let β be a set with cardinality(number of elements) $|\beta|$.

- If $|\beta| < n$ or $|\beta| > n$, then *S* does not form a basis of *V*.
- If β is a linearly independent set in V with |β| = n, then β forms a basis in V.

Example. Determine whether (1,1,1), (1,0,1) forms a basis of R^3

Sol: Since dim(R^3) = 3, any basis of R^3 contains three elements. Let $\beta = \{(1,1,1), (1,0,1)\}$. Since β contains two elements, β does not form a basis of R^3 .

Example 80. Show that the sets of vectors

{(1,2,1), (3,1,5), (-1,0,1), (1, -1,2)} do not form a basis for $V_3(R)$. Sol: Since dim($V_3(R)$) = 3, any basis of $V_3(R)$ contains three elements. Let $\beta = \{(1,2,1), (3,1,5), (-1,0,1), (1, -1,2)\}$. Since β contains four elements, does not form a basis of $V_3(R)$.

Example Verify the vectors (1, -1, 2), (1, -2, 1), (1, 1, 4) in R° forms a basis of R^{3} .

Sol: Let $\beta = \{(1, -1, 2), (1, -2, 1), (1, 1, 4)\}$

 $\dim(R^3) = 3$, which is finite.

In R^3 , any independent set with three elements is a basis of R^3 .

MA8451-PROBABILITY AND RANDOM PROCESSES

$$|A| = \begin{vmatrix} 1 & -1 & 2 \\ |1 & -2 & 1| \\ 1 & 1 & 4 \end{vmatrix}$$

= 1(-8 - 1) + 1(4 - 1) + 2(1 + 2) = 0
 $\therefore \beta$ is a linearly dependent set in R^3 .
 $\therefore \beta$ does not form a basis of R^3 .
Example. Verify the vectors (1,2,0), (2,3,0), (8,13,0) of R^3 is a basis of \mathbf{R}^3
Sol: Let $\beta = \{(1,2,0), (2,3,0), (8,13,0)\}$
dim $(R^3) = 3$, which is finite.

In \mathbb{R}^3 , any independent set with three elements is a basis of \mathbb{R}^3 .

Let
$$A = \begin{bmatrix} 2 & 3 & 0 \end{bmatrix}$$

 $B = \begin{bmatrix} 2 & 3 & 0 \end{bmatrix}$
 $A = \begin{bmatrix} 2 & 3 & 0 \end{bmatrix} = 0$
 $B = \begin{bmatrix} 3 & 0 \end{bmatrix} = 0$
 $B = \begin{bmatrix} 3 & 0 \end{bmatrix} = 0$
 β is a linearly dependent set in R^3 . COM

Example Verify the vectors (2,1,0), (-3, -3, 1), (-2, 1, -1) in \mathbb{R}^3 basis of \mathbb{R}^3

Sol: Let $\beta = \{(2,1,0), (-3, -3,1), (-2,1, -1)\}.$ dim(R^3) = 3, which is finite.

In R^3 , any independent set with three elements is a basis of R^3 .

$$Let A = \begin{bmatrix} 2 & 1 & 0 \\ -3 & -3 & 1 \end{bmatrix}$$
$$\begin{array}{c} -2 & 1 & -1 \\ 2 & 1 & 0 \\ |A| = \begin{vmatrix} -3 & -3 & 1 \\ -2 & 1 & -1 \end{vmatrix} = -1 \neq 0$$
$$\begin{array}{c} -2 & 1 & -1 \\ \end{array}$$

 $\therefore \beta$ is a linearly independent set in R^3 .

MA8451-PROBABILITY AND RANDOM PROCESSES

 $\therefore \beta$ is a basis of R^3 .

Example. Check whether the following are basis for the space R^3

(a)
$$\{(1,1,-1), (2,3,4), (4,1,-1), (0,1,-1)\}$$

(b) $\{(1,1,-1), (0,3,4), (0,0,-1)\}$
(C) $\{(1,2,0), (0,1,-1)\}$
Sol:

 $\dim(R^3) = 3$, which is finite.

In R^3 , any independent set with three elements is a basis for R^3 .

(a) $\beta = \{(1,1,-1), (2,3,4), (4,1,-1), (0,1,-1)\}$

Since β is contains four elements, it is not a basis for R^3 .

(b) $\beta = \{(1,1,-1), (0,3,4), (0,0,-1)\}$

The set contains three elements

Let
$$v_1 = (1,1,-1)$$
, $v_2 = (0,3,4)$, $v_3 = (0,0,-1)$
To prove *S* is a basis we have to prove *S* is a linearly independent.

$$1 \quad 1 \quad -1$$

Let $A = \begin{bmatrix} 0 & 3 & 4 \end{bmatrix}$
 $0 \quad 0 \quad -1$
 $|A| = \begin{bmatrix} 0 & 3 & 4 \end{bmatrix} = -3 \neq 0$
 $0 \quad 0 \quad -1$
 $\therefore \beta$ is linearly independent in R^3

 $\Rightarrow \beta$ is a basis in R^3

(C) $\beta = \{(1,2,0), (0,1,-1)\}$

Since the set contains two elements, it does not form a basis in R^3 .

Example 85. Determine $\{1 + 2x + x^2, 3 + x^2, x + x^2\}$ is a basis for $P_2(R)$. Sol: dim $P_2(R) = 3$, which is finite. In $P_2(R)$, any independent set with three elements is a basis.

MA8451-PROBABILITY AND RANDOM PROCESSES

Given $v_1 = 1 + 2x + x^2$, $v_2 = 3 + x^2$, $v_3 = x + x^2$ The vector equation is

$$\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = 0$$

$$\alpha_1 (1 + 2x + x^2) + \alpha_2 (3 + x^2) + \alpha_3 (x + x^2) = 0$$

$$(\alpha_1 + 3\alpha_2) + (2\alpha_1 + \alpha_3)x + (\alpha_1 + \alpha_2 + \alpha_3)x^2 = 0$$

Equating the like terms, we get

$$\alpha_1 + 3\alpha_2 = 0$$
$$2\alpha_1 + \alpha_3 = 0$$
$$a_1 + \alpha_2 + \alpha_3 = 0$$

Let A be the coefficients matrix,

$$\therefore A = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

$$|A| = \begin{bmatrix} 1 & 3 & 0 \\ 1 & 1 & 1 \end{bmatrix} = -4 \neq 0$$

$$1 = \begin{bmatrix} 1 & 3 & 0 \\ 1 & 1 & 1 \end{bmatrix} = -4 \neq 0$$

the system of homogenous equations have only the trivial solution

 $\alpha_1 = 0, \alpha_2 = 0, \alpha_3 = 0$ $\therefore v_1, v_2, v_3$ are linearly independent Hence v_1, v_2, v_3 is a basis of $P_2(R)$ Therefore $\{1 + 2x + x^2, 3 + x^2, x + x^2\}$ is a basis over *R*. Example 86. Let $V = P_2(R)$ and $\beta = \{1, 1 + x, 1 + x + x^2\}$. Check whether *S* forms a basis in *V*.

MA8451-PROBABILITY AND RANDOM PROCESSES
Sol: dim $P_2(R) = 3$, which is finite.

In $P_2(R)$, any independent set with three elements is a basis.

Given $v_1 = 1$, $v_2 = 1 + x$, $v_3 = 1 + x + x^2$

The vector equation is

$$\alpha_{1}v_{1} + \alpha_{2}v_{2} + \alpha_{3}v_{3} = 0$$

$$\alpha_{1}(1) + \alpha_{2}(1 + x) + \alpha_{3}(1 + x + x^{2}) = 0$$

$$\alpha_{3} + \alpha_{1} + \alpha_{2} + \alpha_{2}x + \alpha_{3}x + \alpha_{3}x^{2} = 0x^{2} + 0x + 0$$

$$(\alpha_{3} + \alpha_{1} + \alpha_{2}) + (\alpha_{2} + \alpha_{3})x + \alpha_{3}x^{2} = 0x^{2} + 0x + 0$$

Equating the like terms, we get

$$\alpha_{3} + \alpha_{1} + \alpha_{2} = 0 \dots (1)$$

$$\alpha_{2} + \alpha_{3} = 0 \dots (2)$$

$$\alpha_3 = 0$$
 DINIS.COM

$$(2) \Rightarrow \alpha_2 = 0$$

$$(1) \Rightarrow \alpha_1 = 0$$

 $\therefore \beta$ is linearly independent set in $P_2(R)$,

Therefore β is a basis in $P_2(R)$,

Example 87. If the vectors $\{u, v, w\}$ form a basis for R^3 , show that the vectors $\{u, u - w, u + v - 2w\}$ also forms a basis for R^3 .

Sol: $\dim(R^3) = 3$, which is finite.

In R^3 , any independent set with three elements is a basis for R^3 .

Let $\beta = \{u, v, w\}$ and $\beta_1 = \{uu - w, u + v - 2w\}$

Given β forms a basic for R^3 .

 $\therefore \beta$ is a linearly independent set in R^3 .

MA8451-PROBABILITY AND RANDOM PROCESSES

In a finite dimensional vector space, any two bases has same number of elements.

Also in a finite dimensional vector space, any independent set with number elements $\dim(V)$ is a basis.

To prove β_1 is a basis for R^3 , it is enough to prove β_1 is a linearly independent set. The vector equation is

$$\alpha_1 u + \alpha_2 (u - w) + \alpha_3 (u + v - 2w) = 0$$

$$\alpha_1 u + \alpha_2 u - \alpha_2 w + \alpha_3 u + \alpha_3 v - 2\alpha_3 w = 0$$

$$(\alpha_1 + \alpha_2 + \alpha_3)u + \alpha_3 v + (-\alpha_2 - 2\alpha_3)w = 0$$

Since *u*, *v* and *w* are linearly independent,

$$\alpha_{1} + \alpha_{2} + \alpha_{3} = 0 \dots \dots \dots (1)$$

$$\alpha_{3} = 0$$

$$\alpha_{2} - 2\alpha_{3} = 0 \dots \dots \dots (2)$$

$$(2) \Rightarrow -\alpha_{2} - 2(0) = 0$$

$$\alpha_{2} = 0$$

$$(1) \Rightarrow \alpha_{1} = 0$$

$$\therefore \alpha_{1}u + \alpha_{2}(u - w) + \alpha_{3}(u + v - 2w) = 0 \Rightarrow \alpha_{1} = 0, \alpha_{2} = 0, \alpha_{3} = 0$$

$$\therefore \beta_{1} \text{ is a linearly independent set.}$$
Hence β_{1} is a basis of R^{3} .
$$\alpha_{1} \quad \alpha_{2}$$

$$=\begin{bmatrix} \alpha_1 & \alpha_2 \\ \alpha_3 & \alpha_4 \end{bmatrix}$$

Equating the like terms, we get

MA8451-PROBABILITY AND RANDOM PROCESSES

- $\alpha_1 = 2$
- $\alpha_2 = 3$
- $\alpha_3 = 4$
- $\alpha_4 = -7$

The coordinate of A relative to the usual basis is (2,3,4,-7).

1.6.2. PROBLEMS UNDER BASIS AND DIMENSION OF A SUBSPACE

Let *W* be a subspace of a vector space *V* over *F*. To find the basis dimension of :

- From W, find linear span of W. Let it be β .
- Check β is linearly independent or not.
- If β is linearly independent set, then β forms a basis in W.
- $\dim(W) = |\beta|$

Example 91. Find the dimension of the subspace W of the vector space R^3 over R if $W = \{(a, 0, 0) | a \in R\}$

Sol: Let $v \in W$. Then

v = (a, 0, 0) = a(1, 0, 0)

$$\therefore \beta = \{(1,0,0)\} \text{ spans } \underline{W}.$$

Any set with one element is linearly independent

 \therefore *B* is a linearly independent set in *W*.

 $: B = \{(1,0,0)\}$ is a basis of *W*.

 $\therefore \dim(W) = 1$

Example 92. Find the dimension of the subspace W of the vector space R^3 over

MA8451-PROBABILITY AND RANDOM PROCESSES

 $R, \text{ if } W = \{(a_1, a_2, a_3)/(2a_1 - 7a_2 + a_3 = 0)\}$ Sol: $W = \{(a_1, a_2, a_3)/(2a_1 - 7a_2 + a_3 = 0)\}$ Given $2a_1 - 7a_2 + a_3 = 0$ $\Rightarrow a_3 = -2a_1 + 7a_2$ Let $v \in W$. Then $v = (a_1, a_2, a_3)$ $(a_1, a_2, a_3) = a_1(1,0,0) + a_2(0,1,0) + a_3(0,0,1)$ $= a_1(1,0,0) + a_2(0,1,0) + (-2a_1 + 7a_2)(0,0,1)$ $= a_1(1,0,0) + a_2(0,1,0) - 2a_1(0,0,1) + 7a_2(0,0,1)$ $= (a_1, 0,0) + (0, a_2, 0) + (0,0, -2a_1) + (0,0,7a_2)$ $= (a_1, 0, -2a_1) + (0, a_2, 7a_2)$ $= a_1(1,0,-2) + a_2(0,1,7)$ $\therefore \beta = \{(1,0,-2), (0,1,7)\}$ spans W i.e., $L(\beta) = W$

Next we prove that B is a linearly independent set in W.

Consider the vector equation

- $a_1v_1 + a_2v_2 = 0$
- $a_1(1,0,-2) + a_2(0,1,7) = 0$

$$(a_1, a_2, -2a_1 + 7a_2) = 0$$

$$\Rightarrow a_1 = a_2 = 0$$

 $\therefore \beta$ is a linearly independent set in *W*.

MA8451-PROBABILITY AND RANDOM PROCESSES

 $\therefore \beta = \{(1,0,-2), (0,1,7)\}$ is a basis of W

Since the basis contains two elements, $\dim(W) = 2$

Example 93. Find the dimension of the subspace W of the vector space $F^!$ over

F, if $W = \{(a_1, a_2, a_3, a_4, a_5)/a_1 - a_3 + a_4 = 0\}$ Sol: $W = \{(a_1, a_2, a_3, a_4, a_5)/a_1 - a_3 + a_4 = 0\}$ Given $a_1 - a_3 + a_4 = 0$

$$\Rightarrow a_4 = a_3 - a_1$$

Let $v \in W$. Then $v = (a_1, a_2, a_3, a_4, a_5)$ $(a_1, a_2, a_3, a_4, a_5)$ $= a_1(1,0,0,0,0) + a_2(0,1,0,0,0) + a_3(0,0,1,0,0) + a_4(0,0,0,1,0)$ $= a_1(1,0,0,0,0) + a_2(0,1,0,0,0) + a_3(0,0,1,0,0) + (a_3 - a_1)(0,0,0,1,0) + a_5(0,0,0,0,1)$

$$= a_1(1,0,0,0,0) + a_2(0,1,0,0,0) + a_3(0,0,1,0,0) + a_3(0,0,0,1,0) - a_1(0,0,0,1,0)$$

 $+a_5(0,0,0,0,1)$

 $= a_1(1,0,0,-1,0) + a_2(0,1,0,0,0) + a_3(0,0,1,1,0) + a_5(0,0,0,0,1)$

MA8451-PROBABILITY AND RANDOM PROCESSES

 $\therefore \beta = a_1(1,0,0,-1,0), (0,0,-1,0), (0,1,0,0,0), (0,0,1,1,0), (0,0,0,0,1) \}$ spans W

i.e., $L(\beta) = W$

Next we prove that β is a linearly independent set in W.

Consider the vector equation

 $a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4 = 0$ $a_1(1,0,0,-1,0) + a_2(0,1,0,0,0) + a_3(0,0,1,1,0) + a_4(0,0,0,0,1) = 0$ $(a_1, a_2, a_3, -a_1 + a_3, a_4) = 0$ $\Rightarrow a_1 = a_2 = a_3 = a_4 = 0$ $\therefore \beta \text{ is a linearly independent set in } W.$

 $\beta = \{(1,0,0,-1,0), (0,1,0,0,0), (0,0,1,1,0), (0,0,0,0,1)\} \text{ is a basis of } W.$ Since the basis contains four elements, dim(W) = 4. Example 94. Find the dimension of the subspace W of the vector space F^5

over R, if $W = \{(a_1, a_2, a_3, a_4, a_5)/a_2 = a_3 = a_4, a_1 + a_5 = 0\}$ Sol: $W = \{(a_1, a_2, a_3, a_4, a_5)/a_2 = a_3 = a_4 = 0, a_1 + a_5 = 0\}$ Given $a_1 + a_5 = 0$ $\Rightarrow a_5 = -a_1$ Also given $a_2 = a_3 = a_4$ $\therefore a_3 = a_2$ and $a_4 = a_2$ Let $v \in W$. Then $v = (a_1, a_2, a_3, a_4, a_5)$ $(a_1, a_2, a_3, a_4, a_5)$ $= a_1(1,0,0,0,0) + a_2(0,1,0,0,0) + a_3(0,0,1,0,0) + a_3(0,0,0,1,0) + a_5(0,0,0,0,1)$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$= a_1(1,0,0,0,0) + a_2(0,1,0,0,0) + a_2(0,0,1,0,0) + a_2(0,0,0,1,0) - a_1(0,0,0,0,1) = a_1(1,0,0,0,-1) + a_2(0,1,1,1,0) \beta = \{(1,0,0,0,-1), (0,1,1,1,0)\} \text{ spans } W i.e., $L(\beta) = W$$$

Next we prove that β is a linearly independent set in W.

Consider the vector equation

$$a_1v_1 + a_2v_2 = 0$$

 $a_1(1,0,0,0,-1) + a_2(0,1,1,1,0) = 0$
 $(a_1, a_2, a_2, a_2, -a_1) = 0$
 $\Rightarrow a_1 = a_2 = 0$
 $\therefore \beta$ is a linearly independent set in *W*
 $\therefore \beta = \{(1,0,0,0,-1), (0,1,1,1,0)\}$ is a basis of *W*. Since the basis contains two
elements, dim(*W*) = 2
Example 95. Find the dimension of the subspace *W* of the vector space R^3 over
R, if $W = \{(a, b, c): 2a + 3b = c; 7c + 9b = a\}$
Sol:
W

 $W = \{(a, b, c): 2a + 3b = c; 7c + 9b = a\}$

Given

2a + 3b = c

2a + 3b - c = 0

Also given

7c + 9b = a

MA8451-PROBABILITY AND RANDOM PROCESSES

$$a-9b-7c=0\dots(2)$$

Solve (1) and (2)

 $\begin{bmatrix} 2 & 3 & -1 \\ 1 & -9 & -7 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 0$ Let $A = \begin{bmatrix} 2 & 3 & -1 \\ 1 & -9 & -7 \end{bmatrix}$ $\sim \begin{bmatrix} 2 & 3 & -1 \\ 0 & -21 & -12 \end{bmatrix} R_2 \rightarrow R_2 - R_1$ $\begin{vmatrix} 2 & 3 \\ 0 & -21 \end{vmatrix} = -42 \neq 0$ R(A) = 2 < the number of unknowns = 3Therefore the system has an infinite number of solutions.

From the last row, we get

-21b - 12c **Dinis.com**

- -21b = 12c
- $b = -\frac{4}{7}c$

Let c = k

$$\therefore b = -\frac{4}{7}k$$

From the first equation, we get

2a + 3b - c = 0

$$2a - \frac{12}{7}k - k = 0$$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$2a = \frac{19}{7}k$$
$$a = \frac{19}{14}k$$

where *k* is a parameter

$$W = \{ (\frac{19}{14}k, -\frac{4}{7}k, k) \} : k \in R \}$$
$$= \{ (\frac{19}{14}, -\frac{4}{7}, 1) k \} : k \in R \}$$
$$\therefore \beta = \{ (\frac{19}{14}, -\frac{4}{7}, 1) \} \text{ spans } W.$$
$$\text{i.e., } L(\beta) = W$$

Any set with one non vector is linearly independent

: β is a linearly independent set in W. : $\beta = \{(\frac{19}{14}, -\frac{4}{7}, 1)\}$ is a basis of W. Since the basis contains one element, $\dim(W) = 1$

Example(96) Find the dimension of the subspace W of the vector space $M_{2\times 2}(R) \text{ over } R, \text{ if } W = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a + b + c + d \} = \mathbf{0} \}$ Sol: $W = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a + b + c + d \}$ Given

a+b+c+d=0

$$d = -a - b - c \dots (1)$$

Let $v \in W$. Then

$$v = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

MA8451-PROBABILITY AND RANDOM PROCESSES

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
$$= a \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}$$
$$\Rightarrow \beta = \{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \} \text{ spans } W.$$

i.e.,
$$L(\beta) = W$$

Next we prove that β is a linearly independent set in W.

Consider the vector equation

$$a_{1}\begin{bmatrix}1 & 0\\ 0 & -1\end{bmatrix} + a_{2}\begin{bmatrix}0 & 1\\ 0 & -1\end{bmatrix} + a_{3}\begin{bmatrix}0 & 0\\ 1 & -1\end{bmatrix} = 0$$
$$\begin{bmatrix}a_{1} & a_{2}\\ a_{3} & -a_{1} - a_{2} & -a_{3}\end{bmatrix} = 0$$
$$\Rightarrow a_{1} = a_{2} = a_{3} = 0$$

 $\therefore \beta \text{ is a a linearly independent set in } W.$ $\therefore \beta = \{ \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix} \} \text{ is a basis of } W.$

Since the basis contains three elements, $\dim(W) = 3$

MA8451-PROBABILITY AND RANDOM PROCESSES

binils.com

MA8451-PROBABILITY AND RANDOM PROCESSES