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Hasse Diagram:
Pictorial representation of a Poset is called Hasse Diagram.
Example:

If X ={2,3,6,12,24,36} and the relation R defined on X by R =

{(a, b)/a/ b}. Draw the Hasse diagram for (X, R).
Solution:

The relation

{(2 6) (2,12 ) (2,24) (2,36) (3, 6) (3, 12) (3,24) (3, 36) (6, 12)

(6, 24) {6,36) (12, 24) (2,36)
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Special Elements of a Poset:

Let (P, <) be a Poset. An element a € P is called least element in P, if a < x for

all x € P.
Anelement b € P is called greatest element in P, if b > x forall x € P

Note:

The least element is called “0” element and the greatest element is called “1”

element.

Example:

Consider the ft
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In (i) “a” is the least element and “d” is the greatest element.
In (i1) “g” 1s the greatest element and there is no least element.
In (iii) “1” is the least element and there is no greatest element.

Definition:

Let (P, <) be a Poset an A be any non - empty subset of P. An element a € P is an

upper bound of A, if a > x for all x € A.
Anelement b € P is said to be lower bound in P, if b < x for all x € A.
Least Upper Bound: (LUB)

Let (P,<)be a Poset and A € P. An élenmient a/€ P"is said to be least upper bound

(LUB) or supremum (sup) of A, if a is a upper bound of A.
a < c, where c is any other upper bound of A.
Greatest Lower Bound: (GLB)

Let (P,<)be aPosetand A € P. Anelement b € P is said to be least upper bound

(GLB) or infimum (inf) of A, if b is a lower bound of A.

b > d, where d is any other lower bound of A.
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Examples:

1. If X ={1,2,3,4,6,12} and the relation R defined on X by R =

{(a, b)/a/ b}. Find LUB and GLB for the Poset (X, R).
Solution:

The relation

(1,2)(1,3)(1,4)(1,6)(1,12) (2,4) (2,6) (2,12) (3,6) (3,12) (4,12)

R={

The Hasse Diagram for (X, R) is
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Table for LUB and GLB

UB{1,3} = {3, 6,12} LB{1, 3} = {1}

LUB{1,3} = 3 GLB{1,3} = 1

UB{1, 2,3} = {6, 12} LB{1, 2,3} = {1}

LUB{1,.2,3} =6 GLB{1,2, 3} =1

UB{2,3} = {3, 6,12} LB{2,3} = {1}

LUB{2,3} = 6 GLB{2,3} = 1

UB{2, 3, 6} = {6, 12} LB{2, 3, 6} = {1}

LUB{2, 3,6} = 6 GLB{2,3,6} = 1

UB{4, 6}.={12) LB{4,6} = {12}

LUB{4, 6}-= 12 GLB{46} = 2

2. 1f X ={2,3,6,12,24,36} and the relation R defined on X by R =

{(a, b)/a/ b}. Draw the Hasse diagram for (X, R).
Solution:

The relation

R = {<2, 6) (2,12 ) (2,24) (2,36) (3,6) (3,12) (3,24) (3,36) (6, 12)
B (6,24) (6,36) (12, 24) (2,36) }

The Hasse Diagram for (X, R) is
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Table of LUB and GLB

UB{2, 3} = {6,12, 24, 36} LB{2, 3} =does not exists

LUB{2,3} =6 GLB{2, 3} =does not exists

UB{24, 36} = does not exists LB{24,36} = {2,3,6,12}

LUB{24, 36} = does not exists GLB{24,36} = 12
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Lattice:

A Lattice is a partially ordered set(Poset) (L, <) in which for every pair of

elements a, b € L, both greatest lower bound (GLB) and least upper bound (LUB)

exists.

Note:

(i) GLB {a,b} =ax*b (or)aAb(or)a-b
(ii) LUB {a, b} = a®b (or)a Vv b (or)a + b
Properties of lattice:

Some importantiaws andits proof:

(i) Idempotent law:

ava=aaha=a

(i) Commutative law:

aVb=bVaand aANb=bAa

(iii) Associative law:
aV(bvc)=(@@vb)vVcandaA(bAc)=(aAb)Ac
(iv) Absorption law:

aV(aAnb)=aandaA(aVb)=a
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(v) Distributive law:
aN(bVvc)=(aAb)V(aAc)
avV(bAc)<(avb)A(aVc)
Note:

la<aVvband b<aVb

a V b is the upper bound of a and b.
Ifa<candb<cthenavb<c

Hence a V b is the lub of a and b.

(iaAnb<aandaAb<bh

a A b is the lower bound of a and b.

Ifc<aandc<bthenc<aAb

Hence a A b is the glb of a and b.

Note:

Ifa<banda<cthena<bVc

Ifa<banda<cthena<bAc

Problems:
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1. State and prove Ildempotent law:

Let (L, A, V) be given lattice. Then, for any a, b,c € L,
ava=aala=a.

Proof:

GivenaVa =LUB (a,a) =LUB (a) = a
Henceava=a

Now, a Aa = GLB (a,a) =GLB (a) = a

HenceaAa =a

Hence the proof.

2. State and prove Commutative law:

Let (L, A, V) be given lattice. Then, for any a,b,c € L,

avb=bVvVaand aNb=bAa

Proof:

GivenaVv b =LUB (a,b) =LUB (b,a) =bVa
Henceavb =bVa

Now,aAb =GLB (a,b) =GLB (b,a) =bAa
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HenceaAb =bAa
Hence the proof.
3. State and prove Absorption law.

(or)
ProvethataVv (aAnb) =aandaA(aVvhb) =a
Proof:
WehaveaAb <aanda<a
= a is the upper bound of a A b and a.
>aV(@aAb)<a...(1)
From the definition of lub we have
>a<aV(aAb)...(2
From (1) and (2) we haveaVv (aAb) =a
Similarly we can provethata A (aV b) = a

Hence the proof.

4. Every finite Lattice is bounded.
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Let (L, A, V) be aqgiven lattice.

Since L is a Lattice both GLB and LUB exist.
Let “a” be GLB of L and “b” be LUB of L.
Thenforany x e L, wehavea <x <b
From (1)

GLB{a,x} =a Ax =a

LUB{a, x} =aVx =x

And

GLB {x,b} =xA b =x

LUB {x,b} =xV b = b

Therefore any finite lattice is bounded.

Hence the proof.

5. State and prove Isotonicity property.

aNb<aAlc
avb<avVvc

Let (L, <) be a lattice. Forany a,b,c € Lthen b < ¢ = {

Proof:

By consistency law we have,a < b < aAb=aandaVb =a
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Letb<c=>bAc=bandbVc=c

Consider (aAb)A(anc)=aA[(bAa)Ac]

by Associative law
=aA[(anb)Ac] by Commutative law
=(@ana)A(bAc) by Associative law
=aA(bAc) by Idempotent law

=aAb by [b Ac = b]

Hence (aAb)A(aAc)=aAb

>aAb<aAc .. (1)

Consider (avb) A(avec) =aVi|(bVva)Vc| by Assaociative law

=aV[(avb)Vc] by Commutative law
=(@ava)Vv(bVc) by Associative law
=aV(bVc) by Idempotent law

=aVb by [bVc = b]

Hence (avb)A(aVc)=aVb
aVb<aVc .. (2

Hence the proof.
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6. State and prove Distributive law.
aN(bvc)=(anb)V(aAc)
avV(bAnc)<(avb)A(aVc)
Proof:

We know thataAb <aandaAb <b
Alsob<bvVvc

HenceaAb <aandaAb<b<bVc
Hence a A b is the lower bound ofaand b V c.
=>aAb<aA(bVc)... (1)
AgainaAc<aandaAc<c
Alsoc<bvc
HenceaAc<aandaAc<c<bVc

Hence a A c is the lower bound ofaand b V c.

>aAc<aA(bVc)...(2

From (1) and (2) we have

a A (bVc)isthe upperboundofaAband a Ac
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Hence (aAb)V(aAc)<aA(bVc)
=>aA(bVvc)=(aAnb)Vv(anc) ...()
We knowthata<avbanda <aVvb
AlsobAc<bh
Hencea<avbandbAc<b<aVb
Hence a Vv b is the lower bound of aand b A c.
>aVbAc)<aVvb...(3
Againa<aVaandc<aVc
AlsobAnc<c¢
Hencea<aVvVcandbAc<c<aVc
Hence a Vv c is the upper bound of aand b A c.
>aV(bAc)<avc...(4)

From (3) and (4) we have

aV (b Ac)isthe lower boundofavbandaVvc

>aVbAc)<(avb)A(avc) ...(I)

Hence the proof.
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7. State and prove Cancellation law.

Let (L, <) be a distributive lattice. Thenavb =avcandaAb=aAc =

b=cVabhbrc€eL

Proof:

By absorption law, we have aVv (a Ab) = a

Considerb = bV (aADb)
=bVv(aAc)
=(avb)AN(bVc)
=@Vve)A(bVe
=(aAb)Vc

=(aAc)Vc

Hence the proof.

8. State and prove Consistency Law.

Let (L, <) be a lattice. Thena<b e aAb=a< aVvh Vab,c€L

Proof:

MAB8351 DISCRETE MATHEMATICS

OIS - Anna University App on Play store




binils.com - Anna University, Polytechnic & Schools

Firstwe provethata < b aAb=a
We assume that a < b

ToproveaAb =a

Wehavea <banda <a

= a is the lower bound of a and b.
s>a<aAb .. ()

By the definition of greatest lower bound
>aAb<a ... (2)

From (1) and (2) we have, a=a A b
Conversely assume thata =aAb

Toprovea <b

This is possible onlywhen a < b

Hencea<b &S aAb=a
Next we provethataAb=a < avb=D>b
AssumethataAb =a

ToproveaVvb=5»b
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By absorptionlaw aVv (aAb) =aand aA(aVb) =a

Consider b = bV (a A b)

=bVa
HenceaVvb =b
Conversely assumethatav b = b
ToproveaAb =a
By absorptionlaw aA(aVv b) = a
Considera =a A (aV b)

=aAb
HenceaAb=a< aVvb=0>
9. Show that a chain is a lattice.
Proof:
Let (L, <) be a lattice.
Ifa,b € Lthena<borb<a
Ifa <bthenaAb=aandaVvb=>b

Therefore GLB and LUB of a and b exists.
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Ifb<athenbAa=bandbVa=a

Therefore GLB and LUB of a and b exists.

Hence every pair of elements has a GLB and LUB.

Hence chain is lattice.
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Duality in Lattice:

When " < " is a partial order relation on a set S, then its converse " > " is also a

partial order relation on S.
Distributive lattice:

A lattice (L, A, V) is said to be distributive lattice if A and V satisfies the

following conditions Va, b,c € L
Di:av(bAc)=(aVb)A(aVc)
Dy:an(bVvc)=(aAb)V(aAc)

Modular Inequality:

If (L, A, V) is a Lattice, then forany a,b,c e L,a<c < aV (bAc) <

(avb)Ac.

Proof:

Assume a < ¢

>aVc=c .. (1)

By, distributive inequality, we have
aV(bAc)<(avb)A(aVc)
>aVbAc)<(avb)Ac (Using (1))
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Therefore,a<coav(bAc)<(aVb)Ac

Conversely, assumea Vv (bAc) < (aVb)Ac

Now, by the definition of LUB and GLB, we have
a<aV((bAc)<(avVb)Ac<c

>asc

HenceaVv (bAc)<(aVb)Ac>a<c

From (2) and (3), wehavea <c e aV (bAc)<(aVb)Ac.
Hence the proof.

Modular Lattice:

A Lattice (L, A, V) is said to be Modular lattice if it satisfies the following

condition.

My:ifa<cthenav(bAc)=(aVb)Ac

Theorem: 1

Every distributive Lattice is Modular, but not conversely.

Proof:

Let (L, A, V) be the given distributive lattice
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Di:av(bAc)y=(@Vvb)A(avec)...(1)

Now, ifa < cthenavc=c ...(2)

(1) =>avbArc)=(aVvb)A(aVc)

= (aV b) Ac (using(2))
Ifa<cthenav(bAc)=(aVb)Ac
Therefore every distributive lattice is Modular.
But, converse is not true.
I.e., Every Modular Lattice need not be distributive.
For example, M Lattice Is Modular butit is nat distributive.
Hence the proof.
Theorem: 2
In any distributive lattice (L, A, V) Va, b,c € L. Prove that
avb=aVvVcaNnb=aNc=>b=c
Proof:
Considerb =bV (b Aa) (Absorption law)

=bV(aAb) (Commutative law)
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=bV(aAc) (Given condition)
=(bva)A(bVc) (D1 - Condition)
=(avb)A(bVc) (Commutative law)
=(aVvc)A(bVc) (Using given condition)
=(cva)A(cVb) (Commutative law)
=cV(aAb) (By D1- condition)
=cV(aAc) (Given Condition)
=cV(cAa) (Commutative law)
(Absorption law)
Lattice as a Algebraic system

A Lattice is an algebraic system (L, A, V) with two binary operation A and v on L

which are both commutative, associative and satisfies absorption laws.

SubL attice:

Let (L, A, V) be a lattice and let S € L be a subset of L. Then (S, A, V) isa

sublattice of (L, A, V) iff S is closed under both operation A and V.

YabeES>aAbeSandaVvbeEeS
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Lattice Homomorphism:

Let (L1, A, V) and (L2, *, @) be two given lattices.

A mapping f: Ly = L, is called Lattice homomorphism if Va, b € L,
flaAb) = f(a) * f(b)

flavb) = f(a)®f(b)

A homomorphism which is also 1 — 1 is called an isomorphism.
Bounded lattice:

Let (L, A, V) be a given Lattice. If it has both “0” element and “1” element then it

is said to be bounded Lattice. It is denoted by (L, A, , 0, 1)
Complement:

Let (L, A, V,0,1) be given bounded lattices. Let "a" be any element of L. We say

that "b" is complement of a, ifaAb=0and aVv b =1 and "b" is denoted by the

symbol a'.i.e., (b =a’). ThereforeaAna =0andaVva =1.

Note: An element may have no complement or may have more than 1

complement.

Example for a complement.

MAB8351 DISCRETE MATHEMATICS

OIS - Anna University App on Play store




binils.com - Anna University, Polytechnic & Schools

Complement of a = a’ isband c.

wndD IS . COIM

Complement of ¢ = ¢" isaand b.

In the example given below:
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Complement of does not exist.
Complement of b does not exist.
Complement of ¢ does not exist.
Complemented Lattice:

A bounded lattice (L, A, V, 0, 1) is said to be a complemented lattice if every

element of L has atleast one complement.
Complete Lattice:

A lattice (L, A, V) is said to be complete lattice if every non empty subsets of L

has both glb &lub:

1. Prove that in a bounded distributive lattice, the complement of any element

IS unique.

Proof:

Let L be a bounded distributive lattice.

Let b and c be complements of an element a € L.

Toprove b =c

Since b and c are complements of a we have

aANb=0avb=1laAc=0,avc=1
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Nowb =bA1
=bA(aVc)
=MbAa)Vv(bAc)
=(@aAb)Vv(bAc)
=0V(bAc)
=(@anc)V(bAc)
=(aAb)Ac

=1Ac

Hence the proof.

2. Prove that every distributive lattice is modular.
Proof:

Let (L, <) be a distributive lattice.

Leta,b,c € L suchthata < ¢

Toprovethata<c=aVvV(bAc)=(aVb)Ac

Assume that a < ¢
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Toprovethatav (bAc) =(aVb)Ac

Whena<c=aVc=c

ThereforeaVv (bAc)=(aVvb)A(aVc)
=(aVb)Ac

HenceaVv (bAc)=(aVb)Ac

Hence the proof.

3. Show that in a complemented distributive lattice, a< b a*bh' =0

abb=1<b <a (or),a<bearb =0savb=1b <a
Proof:

To prove (i) = (ii)

We assume thata < b

Toprovethata Ab' =0

We knowthata <b=>aAb=aandaVvb=>»b

WetakeaVvhb =b

=>(aVvb)Ab =bAb =0

= (anb)V(bADb)=0
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= (aAb)v0=0
=>(anb)=0

Hence (i) = (ii)

To prove (ii) = (iii)

We assumethataAb =0
Toprovethata vb =1

Taking complement on both sides

= (anb) =0

=>aVvb=1

ThereforeaAb' =0=>a vb=1
Hence (ii) = (iii)

To prove (iii) = (iv)
Assumethata' vb =1
Toprovethatbh' < a’

Nowa vb =1

=>(@Vvb)Ab =1-b
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=>(@Vvb)Ab =D
=>@Ab)ANbAD)=Db

= (@Ab)v0=D>b

=> (@ Ab)=Db

= (b’ Aa’) = b’ by Commutative law
Thereforea’' vb=1=b" <da
Hence (iii) = (iv)

To prove (iv) = (i)

Assume that b' < a’
Toprovethata < b

We have (b'Aa) = b

Taking complement on both sides

= (b Aa) = (b)

=>bVa=>»

Thereforeavb=b=>a<b

Hence (iv) = (i)
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Hencea<beoaAb =0 aVvb=1eb <d
Hence the proof.
4. State and prove DeMorgan’s law of lattice.
(OR)
Let (L, A, V,0,1) is a complemented lattice, then prove that
1.(anb) =a' Vb
2.(avb) =a Ab

Proof:

1.Claim: (aAb) =a Vb

To prove the above, it is enough to prove that

() (anb)A(avb)=0

(ii) (anb)v(dvb)=1

(i) Let (aAb) A(a' VD)

= ((anb)Aa)V ((aAb)AD) (Distributive law)
=>((aAbAra)V(aAbAD) (Associative law)
= 0Ab)V(an0) (bADb =0)
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=0vO0

Hence (aAb)A(a' VD) =0

(i Let(aAb)A(a' VD)

= (aVv(@vb))A(V(aVbh)) (Distributive law)
=>(avbva)An(avbVvbh) (Associative law)
=>(Avb)A(aVvl) (bvb =1)
>1A1=1 (an0=0)

Hence (aAb)A(a' ¥ b) =1 ...(2)

From (1) and (2) we have, (a Ab) =a VDb

2.Claim: (avb) =a A Db

To prove the above, it is enough to prove that

(i) (avb)A(a Ab)=0

(i) (avb)v(d Ab) =1

(YLet(avb)A(a AD)

= (@aA(aAnb))V(bA(a AD)) (Distributive law)

=>(anaAb)v(bAb ANa) (Associative law)
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= (0ADL)V(OAQ)

=>0vO0

Hence (avb)A(a AD) =0

(iLet(avb)Vv(a AD)

= ((avb)va)A((aVvb)Vhb) (Distributive law)

=>(avbva)An(avbVvbh) (Associative law)

=>(Avb)A(aVvl) (bvb =0)

=>1A1=1 (Idempotent law)

Hence (avb)V (a Ab) =1 (D)

From (3) and (4) we have, (aVb) =da A Db
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Boolean Algebra:
A complemented distributive lattice is called Boolean Algebra.

A Boolean algebra is distributive lattice with “0” element and “1”” element in

which every element has a complement.

A Boolean algebra is a non empty set with 2 binary operations A and Vv and is

satisfied by the following conditions. Va, b,c € L

l.L:tahNa=a andaVa=a

2.Lanb=bAaandaVb=bVa

3. Lz:aA(bAe)y= (anbyn cand av(b V c)=yaVvbh) Ve

4. Lyzan(avb)=aandaVv(aAb)=a

5. Di:av(bAc)=(avb)A(aVrc)

6. Drran(bVvc)=(anb)V(aAc)

7. There exist between “0” and “1” suchthata A0 =0,av0 =a,a A1 = a and
aVl1l=1Va

8. Ya € L, there exist corresponding element a’ in L such thata Aa’ = 0 and

ava =1
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Note:
Boolean Sumis definedas1+1=1,14+0=1,0+1=1,04+0=0
Boolean Product is definedas1-1=1,1-0=0,0-1=0,0-0=0
Absorption law in Boolean Algebra
1. Provethata+ab =a
Solution:
LHS=a+ab
=a(1+ b) (Distributive law)
=a(l) 1+a)=1
a+ab=a (a-1=a)
2. Provethata+ad=a+b
Solution:
LHS=a+d
=a+ab+d (a =a+ ab)

=a+bla+9 (Distributive law)

=a+b(1) (a+9=1 (a-1=a)
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=RHS

3. Prove that (a + b)(a+c) = a + bc

Solution:

LHS = (a + b)(a + ¢)
=aa + ac + ab + bc (Distributive law)
=a+ac+ab+ bc (a-a=a)
=a(l+c)+ab+ bc (Distributive law)
=a+ab+ bc 1+a=1)
=a+ bc (a +ab = a)

=RHS

4. In any Boolean Algebra, showthat a =b < abrd =0

Proof:

Let (B,-,+,0,1) be any Boolean Algebra.
Leta,be Banda=>b ... (D)
Claim: ab+d =0

Now ab+®d = a - b+ ab
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=a-a+aa using (1)

=0+0 (since a “a= 0)

=0
Conversely, assume abtd = 0
Sat+abtd=a (Left Cancellation law)
Sa+ab=a (Absorption law)
=>(@a+9g-(a+b)=a (Distributive law)
=>1-(a+b)=a (a +a=1)
= (a+b)=a (a-1=a)
Consider ab+d = 0
Sabtd+b=0>b (Right Cancellation law)

=abt+tb=0>b (Absorption law)

>(a+b)-(b+h=0b (Distributive law)

=>(a+b)'1=a (b +b=1)
~ (a+b)=bh (b-1=bh)

From (a) and (b)) wegeta=a+b =»b
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Hencea = b
5. If a and b are two elements of a Boolean algebra, then prove that
a+(a-b)=a,a-(a+b)=a
Proof:
Considera+ (a-b)=a=a-1+(a-b)
=a-(1+b)

[a+1=1,1+4+a=1]

Considera - (a+bh) =a=a:-a+_(a“b)
=a+ (a-b)
=a-1+a-b
=a-(1+b)

[a-a=aa-0=0]

Hence the proof.

6. Prove that in a Boolean algebra, the complement of any element is unique.
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Proof:
Let b and ¢ be the complements of the element a.
Thenb+a=1,b-a=0
a+c=1,a-c=0
Considerb =1-b
=(a+c)b
=a-b+c-b
=0+4+c-b
=a-c+c:b
=c-(a+b)

=1-c

Hence the complement is unique.

7. In a Boolean algebra show that the following statements are equivalent. For

anyaandb(la+b=>b(ila-b=a(iil)a+b=1(iVia-b=0V)a<bhb

Proof:
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To prove (i) = (ii)
Assume thata +b =b
To provethata - b =a

Nowa =a- (a+b)

Hence (i) = (ii)
To prove (ii) = (iii)

Assumethata-b = a

Toprovethata +b = 1

Nowa +b=(a-b)+b
=a+b +b
=a+1
=1

Hence (ii) = (iii)

To prove (iii) = (iv)

Assumethata + b =1
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Toprovethata-b' =0

Taking complement on both sides

=>(a+b)=1

=>a-b=0

Hence (iii) = (iv)

To prove (iv) = (v)

Assume thata-b =0

To provethata<b

Thena-b=a-b+0
=a-b+a-b

=a(b +b)

Hence (iv) = (v)
To prove (v) = (i)

Assume thata < b

MAB8351 DISCRETE MATHEMATICS

OIS - Anna University App on Play store




binils.com - Anna University, Polytechnic & Schools

Toprovethata+ b =»b

Wehavea-b=b

>a+b=(a-b)+b
=a-b+1-b

=(a+1)-b

Hence the proof.

8. Prove that in a Boolean algebra

(a+b)-(a+c)=ac+ab=ac+ab+ bc

Proof:

Now,(a+b)-(a+c)=(@a+b)-a+(a+b)-c
=a - -(a+b)+(a+b)-c
=aa +ab+ac+ bc
=0+ab+ac+bc

=ab+ ac + bc

MAB8351 DISCRETE MATHEMATICS

OIS - Anna University App on Play store




binils.com - Anna University, Polytechnic & Schools

=ac(b+b)+ab(c+c)+ bcla+a)

= abc +ab'c+abc+ abc +abc + a'bc
= abc + ab'c + abc + a'bc

= abc + ab'c +ab(c+ )
=ac(b+b)+ab(c+c)

= ac(1) + ab(1)

=ac+ab

= RHS

9. Show that in a Boolean algebra the'law of the double complement holds.

(or) Prove the involution law (a) = a

Solution:

It is enough to provethata’ +a=1anda-a =0
By domination laws of Boolean algebra, we get
a+a=1anda-a =0

By commutative law, we geta’'+a=1anda-a =0

Therefore complement of a’ is a
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Hence the proof.
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Relation

A relation R is a well - defined rule, which tells whether given 2 elements x and y

of A are related or not.
If x is related to y, we write xRy, otherwise x does not related to y.
Equivalence Relation

Let X be any set. R be a relation defined on X. If R satisfies Reflexive, Symmetric

and Transitive then the relation R is said to be an Equivalence relation.
Partial Order Relation

Let X be any set"R be a relation definedwon X. Then Rissaidtobe apartial order

relation if it satisfies reflexive, antisymmetric and-transitive relation.

Example:

Subset relation < is a Partial order relation.

Solution:

Consider any three sets A, B, C

Since any set is a subset to itself, A € A, therefore € is reflexive.
If A € Band B € A, then A = B, therefore C is antisymmetric.

IfA < Band B € C,then A < C , therefore C is transitive.
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Hence C is a Partial order relation.

Example:2

Divides relation is a Partial order relation.

Solution:

For Z, be the set of positive integer a,b,c € Z

Since a/a,/ is reflexive.

Since a/band b/a = a = b,/ is antisymmetric.

Since a/band b/c = a / c is transitive.

Therefore, Divides relation " / " is a partial order relation.
Hence the proof.

Partially Ordered Set or Poset:

A set together with a partial order relation defined on it is called partially ordered

set or Poset.

Usually, a partial order relation is defined by the symbol " <", this symbol does

not necessarily mean “less than or equal to” as we use for real numbers.

For example,

MAB8351 DISCRETE MATHEMATICS

OIS - Anna University App on Play store




binils.com - Anna University, Polytechnic & Schools

Let R be the set of real numbers. The relation “less than or equal to” or " < "isa

partial order on R. Therefore (R, <) is a Poset.

Comparable Property:

In a Poset for any 2 elements a, b either a < b or b < a is called comparable

property. Otherwise it is called incomparable property.
Totally Ordered Set or Linearly Ordered Set or Chain:

A partially ordered set (p, <) is said to be totally ordered set or linearly ordered set

or chain if any 2 elements are comparable.

I.e., given any 2 elements x and y of a Poset either x y ory < x
Example:

aRb if a < b is a total order.

aRb if a/b is not a total order.

For, Given elements 2 and 3 neither 2/3 nor 3/2.

(i.e., 2 and 3 are not comparable).

Problems:

1. Show that the “greater than or equal to” relation is a Partial ordering on

the set of integers.
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Solution:

Since a > a for every integer a, = is reflexive.

If a > b and b = athen a = b. Hence > is antisymmetric.
Sincea = b and b = c imply a = c. Hence > is transitive.
Therefore, > is a partial order relation on the set of integers.

2. In the Poset (Z+,/) are the integers 3 and 9 comparable? Are 5 and 7 are

comparable?

Solution:

Since 3/9, the integers 3 and 9 are comparable.

For 5, 7 neither 5/7 nor 7/5

Therefore, the integers 5 and 7 are not comparable (incomparable).

3. Check the following Posets are totally orders set (or linearly ordered set or
chain) (i) (Z, <) (i) (Z+,/)

Solution:

(i) Consider, the Poset (Z, <)

If a and b are integer then eithera < b orb < a, foralla, b

MAB8351 DISCRETE MATHEMATICS

OIS - Anna University App on Play store




binils.com - Anna University, Polytechnic & Schools

Therefore, the Poset (Z, <) satisfies comparable property.
(Z,<) is a totally ordered set.

(if) Consider, the Poset (Z+,/)

Take 5and 7.

Since, neither 5/7 nor 7/5

(Z+,/) does not satisfies the comparable property.

Therefore, (Z+,/) is not a totally ordered set.

4. Show that (N, <) is a partially ordered set where N is set of all positive

integers and < is defined by m < niff n — m is a non — negative integer.
Solution:

Give N is the set of all positive integer.

The given relation is m < n iff n — m is a non — negative integer.

(i) To prove R is reflexive

Now, Vx € N, x — x = 0 is a non — negative integer.

Therefore, xRx Vx € N.

Therefore R is reflexive.
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(i1) To prove R is Antisymmetric.

Consider xRy & yRx

Since xRy = x — y is a non — negative integer.
YRx = y — x is a hon — negative integer.

= —(x — y) is anon — negative integer.

Therefore R is Antisymmetric.
(iii) To prove R is Transitive.

Assume xRy & yRz

Since xRy = x — y is a hon — negative integer.

yRz = y — z IS a non — negative integer.

= (x —y) + (y — z) is anon — negative integer.
= x — z IS a non — negative integer.

= xRz

XRy & YRz = xRz

Therefore R is transitive.
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Hence R is partial order relation.

5. Is the Poset (Z+,/) a lattice.
Solution:

Let a and b be any two positive integer.
Then LUB {a, b} =LCM {a, b}

GLB {a, b} =GCD {a, b}

Should exist in Z+.

For, example leta = 4,b = 20

Then LUB {a, b} =LCM {4,20} = 1

GLB {a, b} =GCD {4, 20} = 4
Hence both GLB and LUB exist.

Therefore, the Poset (Z+,/) a lattice.
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