Hasse Diagram:

Pictorial representation of a Poset is called Hasse Diagram.

Example:

If $X=\{2,3,6,12,24,36\}$ and the relation R defined on X by $R=$
$\{\langle a, b\rangle / a / b\}$. Draw the Hasse diagram for (X, R).

Solution:

The relation

$$
R=\left\{\begin{array}{c}
\langle 2,6\rangle\langle 2,12\rangle\langle 2,24\rangle\langle 2,36\rangle\langle 3,6\rangle\langle 3,12\rangle\langle 3,24\rangle\langle 3,36\rangle\langle 6,12\rangle \\
-\langle 6,24\rangle\langle 6,36\rangle\langle 12,24\rangle\langle 2,36\rangle
\end{array}\right\}
$$

The Hasse Diagram for (X, R) is

Special Elements of a Poset:

Let (P, \leq) be a Poset. An element $a \in P$ is called least element in P , if $a \leq x$ for all $x \in P$.

An element $b \in P$ is called greatest element in P , if $b \geq x$ for all $x \in P$

Note:

The least element is called " 0 " element and the greatest element is called " 1 " element.

Example:

Consider the following Hasse Diagram

(ii)

(iii)

In (i) " a " is the least element and " d " is the greatest element.

In (ii) " g " is the greatest element and there is no least element.

In (iii) " 1 " is the least element and there is no greatest element.

Definition:

Let (P, \leq) be a Poset an A be any non - empty subset of P . An element $a \in P$ is an upper bound of A, if $a \geq x$ for all $x \in A$.

An element $b \in P$ is said to be lower bound in P , if $b \leq x$ for all $x \in A$.

Least Upper Bound: (LUB)

Let (P, \leq) be a Poset and $A \subseteq P$. An element $a \in P$ is said to be least upper bound (LUB) or supremum (sup) of A, if a is a upper bound of A.
$a \leq c$, where c is any other upper bound of A.

Greatest Lower Bound: (GLB)

Let (P, \leq) be a Poset and $A \subseteq P$. An element $b \in P$ is said to be least upper bound
(GLB) or infimum (inf) of A, if b is a lower bound of A.
$b \geq d$, where d is any other lower bound of A.

Examples:

1. If $X=\{1,2,3,4,6,12\}$ and the relation R defined on X by $R=$
$\{\langle a, b\rangle / a / b\}$. Find LUB and GLB for the $\operatorname{Poset}(X, R)$.

Solution:

The relation

$$
R=\{\langle 1,2\rangle\langle 1,3\rangle\langle 1,4\rangle\langle 1,6\rangle\langle 1,12\rangle\langle 2,4\rangle\langle 2,6\rangle\langle 2,12\rangle\langle 3,6\rangle\langle 3,12\rangle\langle 4,12\rangle\}
$$

The Hasse Diagram for (X, R) is

Table for LUB and GLB

1	$\begin{aligned} & \mathrm{UB}\{1,3\}=\{3,6,12\} \\ & \operatorname{LUB}\{1,3\}=3 \end{aligned}$	1	$\begin{aligned} & \operatorname{LB}\{1,3\}=\{1\} \\ & \operatorname{GLB}\{1,3\}=1 \end{aligned}$
2	$\begin{aligned} & \mathrm{UB}\{1,2,3\}=\{6,12\} \\ & \operatorname{LUB}\{1,2,3\}=6 \end{aligned}$	2	$\begin{aligned} & \operatorname{LB}\{1,2,3\}=\{1\} \\ & \operatorname{GLB}\{1,2,3\}=1 \end{aligned}$
3	$\begin{aligned} & \mathrm{UB}\{2,3\}=\{3,6,12\} \\ & \operatorname{LUB}\{2,3\}=6 \end{aligned}$	3	$\begin{aligned} & \operatorname{LB}\{2,3\}=\{1\} \\ & \operatorname{GLB}\{2,3\}=1 \end{aligned}$
4	$\begin{aligned} & \mathrm{UB}\{2,3,6\}=\{6,12\} \\ & \operatorname{LUB}\{2,3,6\}=6 \end{aligned}$	4	$\begin{aligned} & \operatorname{LB}\{2,3,6\}=\{1\} \\ & \operatorname{GLB}\{2,3,6\}=1 \end{aligned}$
5	$\begin{aligned} & \operatorname{UB}\{4,6\}=\{12\} \\ & \operatorname{LUB}\{4,6\}=12 \end{aligned}$	5	$\begin{aligned} & \operatorname{LB}\{4,6\}=\{1,2\} \\ & \operatorname{GLB}\{4,6\}=2 \end{aligned}$

2. If $X=\{2,3,6,12,24,36\}$ and the relation R defined on X by $R=$ $\{\langle a, b\rangle / a / b\}$. Draw the Hasse diagram for (X, R).

Solution:

The relation

$$
R=\left\{\begin{array}{c}
\langle 2,6\rangle\langle 2,12\rangle\langle 2,24\rangle\langle 2,36\rangle\langle 3,6\rangle\langle 3,12\rangle\langle 3,24\rangle\langle 3,36\rangle\langle 6,12\rangle \\
\langle 6,24\rangle\langle 6,36\rangle\langle 12,24\rangle\langle 2,36\rangle
\end{array}\right\}
$$

The Hasse Diagram for (X, R) is

Table of LUB and GLB

1	$\begin{aligned} & \operatorname{UB}\{2,3\}=\{6,12,24,36\} \\ & \operatorname{LUB}\{2,3\}=6 \end{aligned}$	1	$\operatorname{LB}\{2,3\}=$ does not exists $\operatorname{GLB}\{2,3\}=$ does not exists
2	$\begin{aligned} & \mathrm{UB}\{24,36\}=\text { does not exists } \\ & \operatorname{LUB}\{24,36\}=\text { does not exists } \end{aligned}$	2	$\begin{aligned} & \operatorname{LB}\{24,36\}=\{2,3,6,12\} \\ & \operatorname{GLB}\{24,36\}=12 \end{aligned}$

Lattice:

A Lattice is a partially ordered set(Poset) (L, \leq) in which for every pair of elements $a, b \in L$, both greatest lower bound (GLB) and least upper bound (LUB) exists.

Note:
(i) GLB $\{a, b\}=a * b$ (or) $a \wedge b$ (or) $a \cdot b$
(ii) LUB $\{a, b\}=a \oplus b(o r) a \vee b(o r) a+b$

Properties of lattice:

Some important laws and its proof:
(i) Idempotent law:
$a \vee a=a, a \wedge a=a$
(ii) Commutative law:
$a \vee b=b \vee a$ and $a \wedge b=b \wedge a$
(iii) Associative law:
$a \vee(b \vee c)=(a \vee b) \vee c$ and $a \wedge(b \wedge c)=(a \wedge b) \wedge c$
(iv) Absorption law:
$a \vee(a \wedge b)=a$ and $a \wedge(a \vee b)=a$
(v) Distributive law:

$$
\begin{aligned}
& a \wedge(b \vee c) \geq(a \wedge b) \vee(a \wedge c) \\
& a \vee(b \wedge c) \leq(a \vee b) \wedge(a \vee c)
\end{aligned}
$$

Note:

i) $a \leq a \vee b$ and $b \leq a \vee b$
$a \vee b$ is the upper bound of a and b .

If $a \leq c$ and $b \leq c$ then $a \vee b \leq c$

Hence $a \vee b$ is the lub of a and b .
(ii) $a \wedge b \leq a$ and $a \wedge b \leq b$
$a \wedge b$ is the lower bound of a and b.

If $c \leq a$ and $c \leq b$ then $c \leq a \wedge b$

Hence $a \wedge b$ is the glb of a and b.

Note:

If $a \leq b$ and $a \leq c$ then $a \leq b \vee c$

If $a \leq b$ and $a \leq c$ then $a \leq b \wedge c$

Problems:

1. State and prove Idempotent law:

Let (L, \wedge, \vee) be given lattice. Then, for any $a, b, c \in L$, $a \vee a=a, a \wedge a=a$.

Proof:

Given $a \vee a=\operatorname{LUB}(a, a)=\operatorname{LUB}(a)=a$

Hence $a \vee a=a$

Now, $a \wedge a=\operatorname{GLB}(a, a)=\operatorname{GLB}(a)=a$

Hence $a \wedge a=a$

Hence the proof.

2. State and prove Commutative law:

Let (L, \wedge, \vee) be given lattice. Then, for any $a, b, c \in L$,
$a \vee b=b \vee a$ and $a \wedge b=b \wedge a$

Proof:

Given $a \vee b=\operatorname{LUB}(a, b)=\operatorname{LUB}(b, a)=b \vee a$

Hence $a \vee b=b \vee a$

Now, $a \wedge b=\operatorname{GLB}(a, b)=\operatorname{GLB}(b, a)=b \wedge a$

Hence $a \wedge b=b \wedge a$

Hence the proof.

3. State and prove Absorption law.

> (or)

Prove that $a \vee(a \wedge b)=a$ and $a \wedge(a \vee b)=a$

Proof:

We have $a \wedge b \leq a$ and $a \leq a$
$\Rightarrow \mathrm{a}$ is the upper bound of $a \wedge b$ and a .
$\Rightarrow a \vee(a \wedge b) \leq a \ldots$ (1)

From the definition of lub we have
$\Rightarrow a \leq a \vee(a \wedge b) \ldots$

From (1) and (2) we have $a \vee(a \wedge b)=a$

Similarly we can prove that $a \wedge(a \vee b)=a$

Hence the proof.
4. Every finite Lattice is bounded.

Proof:

Let (L, \wedge, \vee) be a given lattice.

Since L is a Lattice both GLB and LUB exist.

Let " a " be GLB of L and " b " be LUB of L.

Then for any $x \in L$, we have $a \leq x \leq b$

From (1)
$\operatorname{GLB}\{a, x\}=a \wedge x=a$
$\operatorname{LUB}\{a, x\}=a \vee x=x$

And
$\operatorname{GLB}\{x, b\}=x \wedge b=x$ ■
$\operatorname{LUB}\{x, b\}=x \vee b=b$

Therefore any finite lattice is bounded.

Hence the proof.

5. State and prove Isotonicity property.

Let (L, \leq) be a lattice. For any $a, b, c \in L$ then $b \leq c=\left\{\begin{array}{l}a \wedge b \leq a \wedge c \\ a \vee b \leq a \vee c\end{array}\right.$

Proof:

By consistency law we have, $a \leq b \Leftrightarrow a \wedge b=a$ and $a \vee b=a$

Let $b \leq c \Rightarrow b \wedge c=b$ and $b \vee c=c$

Consider $(a \wedge b) \wedge(a \wedge c)=a \wedge[(b \wedge a) \wedge c] \quad$ by Associative law

$$
\begin{array}{lr}
=a \wedge[(a \wedge b) \wedge c] & \\
=(a \wedge a) \wedge(b \wedge c) & \text { by Commutative law } \\
=a \wedge(b \wedge c) & \text { by Idempociative law } \\
=a \wedge b & \text { by }[b \wedge c=b]
\end{array}
$$

Hence $(a \wedge b) \wedge(a \wedge c)=a \wedge b$
$\Rightarrow a \wedge b \leq a \wedge c$
Consider $(a \vee b) \wedge(a \vee c)=a \vee[(b \vee a) \vee c] \quad$ by Associative law

$$
\begin{array}{ll}
=a \vee[(a \vee b) \vee c] & \text { by Commutative law } \\
=(a \vee a) \vee(b \vee c) & \text { by Associative law } \\
=a \vee(b \vee c) & \text { by Idempotent law } \\
=a \vee b & \text { by }[b \vee c=b]
\end{array}
$$

Hence $(a \vee b) \wedge(a \vee c)=a \vee b$
$\Rightarrow a \vee b \leq a \vee c$

Hence the proof.

6. State and prove Distributive law.

$\boldsymbol{a} \wedge(\boldsymbol{b} \vee \boldsymbol{c}) \geq(\boldsymbol{a} \wedge \boldsymbol{b}) \vee(\boldsymbol{a} \wedge \boldsymbol{c})$
$\boldsymbol{a} \vee(\boldsymbol{b} \wedge \boldsymbol{c}) \leq(\boldsymbol{a} \vee \boldsymbol{b}) \wedge(\boldsymbol{a} \vee \boldsymbol{c})$

Proof:

We know that $a \wedge b \leq a$ and $a \wedge b \leq b$

Also $b \leq b \vee c$

Hence $a \wedge b \leq a$ and $a \wedge b \leq b \leq b \vee c$

Hence $a \wedge b$ is the lower bound of a and $b \vee c$.
$\Rightarrow a \wedge b \leq a \wedge(b \vee c)$

Again $a \wedge c \leq a$ and $a \wedge c \leq c$

Also $c \leq b \vee c$

Hence $a \wedge c \leq a$ and $a \wedge c \leq c \leq b \vee c$

Hence $a \wedge c$ is the lower bound of a and $b \vee c$.
$\Rightarrow a \wedge c \leq a \wedge(b \vee c) \ldots$

From (1) and (2) we have
$a \wedge(b \vee c)$ is the upper bound of $a \wedge b$ and $a \wedge c$

Hence $(a \wedge b) \vee(a \wedge c) \leq a \wedge(b \vee c)$
$\Rightarrow a \wedge(b \vee c) \geq(a \wedge b) \vee(a \wedge c) \ldots(\mathrm{I})$

We know that $a \leq a \vee b$ and $a \leq a \vee b$

Also $b \wedge c \leq b$

Hence $a \leq a \vee b$ and $b \wedge c \leq b \leq a \vee b$

Hence $a \vee b$ is the lower bound of a and $b \wedge c$.
$\Rightarrow a \vee(b \wedge c) \leq a \vee b \ldots$ (3)

Again $a \leq a \vee a$ and $c \leq a \vee c$

Also $b \wedge c \leq c$

Hence $a \leq a \vee c$ and $b \wedge c \leq c \leq a \vee c$

Hence $a \vee c$ is the upper bound of a and $b \wedge c$.
$\Rightarrow a \vee(b \wedge c) \leq a \vee c \ldots$

From (3) and (4) we have
$a \vee(b \wedge c)$ is the lower bound of $a \vee b$ and $a \vee c$
$\Rightarrow a \vee(b \wedge c) \leq(a \vee b) \wedge(a \vee c) \ldots($ II $)$

Hence the proof.

7. State and prove Cancellation law.

Let (L, \leq) be a distributive lattice. Then $a \vee b=a \vee c$ and $a \wedge b=a \wedge c \Rightarrow$ $b=c \forall a, b, c \in L$

Proof:

By absorption law, we have $a \vee(a \wedge b)=a$

Consider $b=b \vee(a \wedge b)$

$$
\begin{aligned}
& =b \vee(a \wedge c) \\
& =(a \vee b) \wedge(b \vee c) \\
& =(a \vee c) \wedge(b \vee c) \\
& =(a \wedge b) \vee c \\
& =(a \wedge c) \vee c \\
& =c
\end{aligned}
$$

Hence the proof.

8. State and prove Consistency Law.

Let (L, \leq) be a lattice. Then $a \leq b \Leftrightarrow a \wedge b=a \Leftrightarrow a \vee b \forall a, b, c \in L$

Proof:

First we prove that $a \leq b \Leftrightarrow a \wedge b=a$

We assume that $a \leq b$

To prove $a \wedge b=a$

We have $a \leq b$ and $a \leq a$
$\Rightarrow a$ is the lower bound of a and b.

$$
\begin{equation*}
\Rightarrow a \leq a \wedge b \tag{1}
\end{equation*}
$$

By the definition of greatest lower bound
$\Rightarrow a \wedge b \leq a$

From (1) and (2) we have, $a=a \wedge b$

Conversely assume that $a=a \wedge b$

To prove $a \leq b$

This is possible only when $a \leq b$

Hence $a \leq b \Leftrightarrow a \wedge b=a$

Next we prove that $a \wedge b=a \Leftrightarrow a \vee b=b$

Assume that $a \wedge b=a$

To prove $a \vee b=b$

By absorption law $a \vee(a \wedge b)=a$ and $a \wedge(a \vee b)=a$

Consider $b=b \vee(a \wedge b)$

$$
=b \vee a
$$

Hence $a \vee b=b$

Conversely assume that $a \vee b=b$

To prove $a \wedge b=a$

By absorption law $a \wedge(a \vee b)=a$

Consider $a=a \wedge(a \vee b)$

$$
=a \wedge b
$$

Hence $a \wedge b=a \Leftrightarrow a \vee b=b$

9. Show that a chain is a lattice.

Proof:

Let (L, \leq) be a lattice.

If $a, b \in L$ then $a \leq b$ or $b \leq a$

If $a \leq b$ then $a \wedge b=a$ and $a \vee b=b$

Therefore GLB and LUB of a and b exists.

If $b \leq a$ then $b \wedge a=b$ and $b \vee a=a$

Therefore GLB and LUB of a and b exists.

Hence every pair of elements has a GLB and LUB.

Hence chain is lattice.

Duality in Lattice:

When " \leq " is a partial order relation on a set S, then its converse " \geq " is also a partial order relation on S .

Distributive lattice:

A lattice (L, \wedge, \vee) is said to be distributive lattice if \wedge and \vee satisfies the following conditions $\forall a, b, c \in L$
$D_{1}: a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$
$D_{2}: a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$

Modular Inequality:

If (L, \wedge, \vee) is a Lattice, then for any $a, b, c \in L, a \leq c \Leftrightarrow a \vee(b \wedge c) \leq$ $(a \vee b) \wedge c$.

Proof:

Assume $a \leq c$
$\Rightarrow a \vee c=c$

By, distributive inequality, we have

$$
\begin{align*}
& a \vee(b \wedge c) \leq(a \vee b) \wedge(a \vee c) \\
& \Rightarrow a \vee(b \wedge c) \leq(a \vee b) \wedge c \tag{1}
\end{align*}
$$

Therefore, $a \leq c \Leftrightarrow a \vee(b \wedge c) \leq(a \vee b) \wedge c$.

Conversely, assume $a \vee(b \wedge c) \leq(a \vee b) \wedge c$

Now, by the definition of LUB and GLB, we have

$$
\begin{aligned}
& a \leq a \vee(b \wedge c) \leq(a \vee b) \wedge c \leq c \\
& \Rightarrow a \leq c
\end{aligned}
$$

Hence $a \vee(b \wedge c) \leq(a \vee b) \wedge c \Rightarrow a \leq c$.

From (2) and (3), we have $a \leq c \Leftrightarrow a \vee(b \wedge c) \leq(a \vee b) \wedge c$.

Hence the proof.

Modular Lattice:

A Lattice (L, \wedge, \vee) is said to be Modular lattice if it satisfies the following condition.
M_{1} : if $a \leq c$ then $a \vee(b \wedge c)=(a \vee b) \wedge c$

Theorem: 1

Every distributive Lattice is Modular, but not conversely.

Proof:

Let (L, \wedge, \vee) be the given distributive lattice

$$
\begin{equation*}
D_{1}: a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c) \ldots \tag{1}
\end{equation*}
$$

Now, if $a \leq c$ then $a \vee c=c$
(1) $(1) \Rightarrow a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$

$$
=(a \vee b) \wedge c \quad(\operatorname{using}(2))
$$

If $a \leq c$ then $a \vee(b \wedge c)=(a \vee b) \wedge c$

Therefore every distributive lattice is Modular.

But, converse is not true.
i.e., Every Modular Lattice need not be distributive.

For example, M_{5} Lattice is Modular but it is not distributive.

Hence the proof.

Theorem: 2

In any distributive lattice $(L, \wedge, \vee) \forall a, b, c \in L$. Prove that
$a \vee b=a \vee c, a \wedge b=a \wedge c \Rightarrow b=c$

Proof:

Consider $b=b \vee(b \wedge a) \quad$ (Absorption law)

$$
=b \vee(a \wedge b) \quad \text { (Commutative law) }
$$

$$
\begin{array}{rlrl}
& =b \vee(a \wedge c) & & \text { (Given condition) } \\
& =(b \vee a) \wedge(b \vee c) & & \text { (D1 - Condition) } \\
=(a \vee b) \wedge(b \vee c) & & \text { (Commutative law) } \\
& =(a \vee c) \wedge(b \vee c) & & \text { (Using given condition) } \\
& =(c \vee a) \wedge(c \vee b) & & \text { (Commutative law) } \\
& =c \vee(a \wedge b) & & \text { (By D1- condition) } \\
& =c \vee(a \wedge c) & & \text { (Given Condition) } \\
& =c \vee(c \wedge a) & & \text { (Commutative law) } \\
& =c) & & \text { (Absorption law) }
\end{array}
$$

Lattice as a Algebraic system

A Lattice is an algebraic system (L, \wedge, \vee) with two binary operation \wedge and \vee on L which are both commutative, associative and satisfies absorption laws.

SubLattice:

Let (L, \wedge, \vee) be a lattice and let $S \subseteq L$ be a subset of L . Then (S, \wedge, \vee) is a sublattice of (L, \wedge, \vee) iff S is closed under both operation \wedge and \vee.

$$
\forall a, b \in S \Rightarrow a \wedge b \in S \text { and } a \vee b \in S
$$

Lattice Homomorphism:

Let $\left(L_{1}, \Lambda, \vee\right)$ and $\left(L_{2}, *, \oplus\right)$ be two given lattices.

A mapping $f: L_{1} \rightarrow L_{2}$ is called Lattice homomorphism if $\forall a, b \in L_{1}$
$f(a \wedge b)=f(a) * f(b)$
$f(a \vee b)=f(a) \oplus f(b)$

A homomorphism which is also $1-1$ is called an isomorphism.

Bounded lattice:

Let (L, Λ, \vee) be a given Lattice. If it has both " 0 " element and " 1 " element then it is said to be bounded Lattice. It is denoted by $(L, \wedge, ~ \vee, 0,1)$

Complement:

Let $(L, \wedge, \vee, 0,1)$ be given bounded lattices. Let " a " be any element of L. We say that " b " is complement of a , if $a \wedge b=0$ and $a \vee b=1$ and " b " is denoted by the symbol a^{\prime}. i.e., $\left(b=a^{\prime}\right)$. Therefore $a \wedge a^{\prime}=0$ and $a \vee a^{\prime}=1$.

Note: An element may have no complement or may have more than 1 complement.

Example for a complement.

Complement of $a=a^{\prime}$ is b and c.

Complement of $b=b^{\prime}$ is a and c.

Complement of $c=c^{\prime}$ is a and b.

In the example given below:

Complement of does not exist.

Complement of b does not exist.

Complement of c does not exist.

Complemented Lattice:

A bounded lattice $(L, \wedge, \vee, 0,1)$ is said to be a complemented lattice if every element of L has atleast one complement.

Complete Lattice:

A lattice (L, \wedge, \vee) is said to be complete lattice if every non empty subsets of L has both glb \&lub.

1. Prove that in a bounded distributive lattice, the complement of any element

 is unique.
Proof:

Let L be a bounded distributive lattice.

Let b and c be complements of an element $a \in L$.

To prove $b=c$

Since b and c are complements of a we have
$a \wedge b=0, a \vee b=1, a \wedge c=0, a \vee c=1$

Now $b=b \wedge 1$

$$
\begin{aligned}
& =b \wedge(a \vee c) \\
& =(b \wedge a) \vee(b \wedge c) \\
& =(a \wedge b) \vee(b \wedge c) \\
& =0 \vee(b \wedge c) \\
& =(a \wedge c) \vee(b \wedge c) \\
& =(a \wedge b) \wedge c \\
& =1 \wedge c \\
& =c
\end{aligned}
$$

Hence the proof.

2. Prove that every distributive lattice is modular.

Proof:

Let (L, \leq) be a distributive lattice.

Let $a, b, c \in L$ such that $a \leq c$

To prove that $a \leq c \Rightarrow a \vee(b \wedge c)=(a \vee b) \wedge c$

Assume that $a \leq c$

To prove that $a \vee(b \wedge c)=(a \vee b) \wedge c$

When $a \leq c \Rightarrow a \vee c=c$

Therefore $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$

$$
=(a \vee b) \wedge c
$$

Hence $a \vee(b \wedge c)=(a \vee b) \wedge c$

Hence the proof.
3. Show that in a complemented distributive lattice, $\boldsymbol{a} \leq \boldsymbol{b} \Leftrightarrow \boldsymbol{a} * \boldsymbol{b}^{\prime}=\mathbf{0} \Leftrightarrow$ $a^{\prime} \oplus b=\mathbf{1} \Leftrightarrow \boldsymbol{b}^{\prime} \leq \boldsymbol{a}^{\prime}$ (or), $\boldsymbol{a} \leq \boldsymbol{b} \Leftrightarrow \boldsymbol{a} \wedge \boldsymbol{b}^{\prime}=\mathbf{0} \Leftrightarrow \boldsymbol{a}^{\prime} \vee \boldsymbol{b}=\mathbf{1} \Leftrightarrow \boldsymbol{b}^{\prime} \leq \boldsymbol{a}^{\prime}$

Proof:

To prove (i) \Rightarrow (ii)

We assume that $a \leq b$

To prove that $a \wedge b^{\prime}=0$

We know that $a \leq b \Rightarrow a \wedge b=a$ and $a \vee b=b$

We take $a \vee b=b$
$\Rightarrow(a \vee b) \wedge b^{\prime}=b \wedge b^{\prime}=0$
$\Rightarrow\left(a \wedge b^{\prime}\right) \vee\left(b \wedge b^{\prime}\right)=0$

$$
\Rightarrow\left(a \wedge b^{\prime}\right) \vee 0=0
$$

$$
\Rightarrow\left(a \wedge b^{\prime}\right)=0
$$

Hence $(i) \Rightarrow(i i)$

To prove (ii) \Rightarrow (iii)

We assume that $a \wedge b^{\prime}=0$

To prove that $a^{\prime} \vee b=1$

Taking complement on both sides
$\Rightarrow\left(a \wedge b^{\prime}\right)^{\prime}=0^{\prime}$
$\Rightarrow a^{\prime} \vee b=1$

Therefore $a \wedge b^{\prime}=0 \Rightarrow a^{\prime} \vee b=1$

Hence $(i i) \Rightarrow(i i i)$

To prove (iii) \Rightarrow (iv)

Assume that $a^{\prime} \vee b=1$

To prove that $b^{\prime} \leq a^{\prime}$

Now $a^{\prime} \vee b=1$
$\Rightarrow\left(a^{\prime} \vee b\right) \wedge b^{\prime}=1 \cdot b^{\prime}$
$\Rightarrow\left(a^{\prime} \vee b\right) \wedge b^{\prime}=b^{\prime}$
$\Rightarrow\left(a^{\prime} \wedge b^{\prime}\right) \wedge\left(b \wedge b^{\prime}\right)=b^{\prime}$
$\Rightarrow\left(a^{\prime} \wedge b^{\prime}\right) \vee 0=b^{\prime}$
$\Rightarrow\left(a^{\prime} \wedge b^{\prime}\right)=b^{\prime}$
$\Rightarrow\left(b^{\prime} \wedge a^{\prime}\right)=b^{\prime}$ by Commutative law

Therefore $a^{\prime} \vee b=1 \Rightarrow b^{\prime} \leq a^{\prime}$

Hence $(i i i) \Rightarrow(i v)$

To prove (iv) $\Rightarrow(i)$

Assume that $b^{\prime} \leq a^{\prime}$ ロ com

To prove that $a \leq b$

We have $\left(b^{\prime} \wedge a^{\prime}\right)=b^{\prime}$

Taking complement on both sides
$\Rightarrow\left(b^{\prime} \wedge a^{\prime}\right)^{\prime}=\left(b^{\prime}\right)^{\prime}$
$\Rightarrow b \vee a=b$

Therefore $a \vee b=b \Rightarrow a \leq b$

Hence $(i v) \Rightarrow(i)$

Hence $a \leq b \Leftrightarrow a \wedge b^{\prime}=0 \Leftrightarrow a^{\prime} \vee b=1 \Leftrightarrow b^{\prime} \leq a^{\prime}$

Hence the proof.

4. State and prove DeMorgan's law of lattice.

(OR)

Let $(L, \wedge, \vee, 0,1)$ is a complemented lattice, then prove that

1. $(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}$
2. $(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime}$

Proof:

1. Claim: $(a \wedge b)=a^{\prime} \vee b^{\prime}$

To prove the above, it is enough to prove that
(i) $(a \wedge b) \wedge\left(a^{\prime} \vee b^{\prime}\right)=0$
(ii) $(a \wedge b) \vee\left(a^{\prime} \vee b^{\prime}\right)=1$
(i) Let $(a \wedge b) \wedge\left(a^{\prime} \vee b^{\prime}\right)$
$\Rightarrow\left((a \wedge b) \wedge a^{\prime}\right) \vee\left((a \wedge b) \wedge b^{\prime}\right) \quad$ (Distributive law)
$\Rightarrow\left(a \wedge b \wedge a^{\prime}\right) \vee\left(a \wedge b \wedge b^{\prime}\right) \quad$ (Associative law)
$\Rightarrow(0 \wedge b) \vee(a \wedge 0)$
$\left(b \wedge b^{\prime}=0\right)$
$\Rightarrow 0 \vee 0$
$(a \wedge 0=0)$

Hence $(a \wedge b) \wedge\left(a^{\prime} \vee b^{\prime}\right)=0$
(ii) Let $(a \wedge b) \wedge\left(a^{\prime} \vee b^{\prime}\right)$

$$
\begin{array}{ll}
\Rightarrow\left(a \vee\left(a^{\prime} \vee b^{\prime}\right)\right) \wedge\left(b \vee\left(a^{\prime} \vee b^{\prime}\right)\right) & (\text { Distributive law) } \\
\Rightarrow\left(a \vee b \vee a^{\prime}\right) \wedge\left(a \vee b \vee b^{\prime}\right) & (\text { Associative law) } \\
\Rightarrow(1 \vee b) \wedge(a \vee 1) & \left(b \vee b^{\prime}=1\right) \\
\Rightarrow 1 \wedge 1=1 & (a \wedge 0=0)
\end{array}
$$

Hence $(a \wedge b) \wedge\left(a^{\prime} \vee b^{\prime}\right)=1$

From (1) and (2) we have, $(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}$
2. Claim: $(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime}$

To prove the above, it is enough to prove that
(i) $(a \vee b) \wedge\left(a^{\prime} \wedge b^{\prime}\right)=0$
(ii) $(a \vee b) \vee\left(a^{\prime} \wedge b^{\prime}\right)=1$
(i) Let $(a \vee b) \wedge\left(a^{\prime} \wedge b^{\prime}\right)$
$\Rightarrow\left(a \wedge\left(a^{\prime} \wedge b^{\prime}\right)\right) \vee\left(b \wedge\left(a^{\prime} \wedge b^{\prime}\right)\right) \quad($ Distributive law)
$\Rightarrow\left(a \wedge a^{\prime} \wedge b^{\prime}\right) \vee\left(b \wedge b^{\prime} \wedge a^{\prime}\right) \quad$ (Associative law)

$$
\begin{array}{ll}
\Rightarrow\left(0 \wedge b^{\prime}\right) \vee\left(0 \wedge a^{\prime}\right) & \left(b \wedge b^{\prime}=0\right) \\
\Rightarrow 0 \vee 0 & (a \wedge 0=0) \\
\text { Hence }(a \vee b) \wedge\left(a^{\prime} \wedge b^{\prime}\right)=0 & \ldots(3)
\end{array}
$$

(ii) Let $(a \vee b) \vee\left(a^{\prime} \wedge b^{\prime}\right)$
$\Rightarrow\left((a \vee b) \vee a^{\prime}\right) \wedge\left((a \vee b) \vee b^{\prime}\right) \quad$ (Distributive law)
$\Rightarrow\left(a \vee b \vee a^{\prime}\right) \wedge\left(a \vee b \vee b^{\prime}\right) \quad$ (Associative law)
$\Rightarrow(1 \vee b) \wedge(a \vee 1) \quad\left(b \vee b^{\prime}=0\right)$
$\Rightarrow 1 \wedge 1=1$
Hence $(a \vee b) \vee\left(a^{\prime} \wedge b^{\prime}\right)=1 \quad \ldots(4)$

From (3) and (4) we have, $(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime}$

Boolean Algebra:

A complemented distributive lattice is called Boolean Algebra.

A Boolean algebra is distributive lattice with " 0 " element and " 1 " element in which every element has a complement.

A Boolean algebra is a non empty set with 2 binary operations \wedge and \vee and is satisfied by the following conditions. $\forall a, b, c \in L$

1. $L_{1}: a \wedge a=a$ and $a \vee a=a$
2. $L_{2}: a \wedge b=b \wedge a$ and $a \vee b=b \vee a$

3. $L_{4}: a \wedge(a \vee b)=a$ and $a \vee(a \wedge b)=a$
4. $D_{1}: a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$
5. $D_{2}: a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$
6. There exist between " 0 " and " 1 " such that $a \wedge 0=0, a \vee 0=a, a \wedge 1=a$ and

$$
a \vee 1=1 \forall a
$$

8. $\forall a \in L$, there exist corresponding element a^{\prime} in L such that $a \wedge a^{\prime}=0$ and

$$
a \vee a^{\prime}=1
$$

Note:

Boolean Sum is defined as $1+1=1,1+0=1,0+1=1,0+0=0$

Boolean Product is defined as $1 \cdot 1=1,1 \cdot 0=0,0 \cdot 1=0,0 \cdot 0=0$

Absorption law in Boolean Algebra

1. Prove that $a+a b=a$

Solution:

$$
\text { LHS }=a+a b
$$

$$
\begin{aligned}
& =a(1+b) \quad \text { (Distributive law) } \\
& =a(1) \quad(1+a)=1
\end{aligned}
$$

$$
a+a b=a \quad(a \cdot 1=a)
$$

2. Prove that $a+\boldsymbol{b}=\boldsymbol{a}+\boldsymbol{b}$

Solution:

$$
\mathrm{LHS}=a+-\downarrow 0
$$

$$
\begin{array}{ll}
=a+a b+d & (a=a+a b) \\
=a+b(a+d & (\text { Distributive law }) \\
=a+b(1) & (a+-d=1 \quad(a \cdot 1=a)
\end{array}
$$

= RHS
3. Prove that $(a+b)(a+c)=a+b c$

Solution:

$$
\begin{array}{rlr}
\text { LHS } & =(a+b)(a+c) & \\
& =a a+a c+a b+b c & \\
& =a+a c+a b+b c & \\
& (a \cdot a=a) \\
& =a(1+c)+a b+b c & \\
& (\text { Distributive law) } \\
& =a+a b+b c & (1+a=1) \\
& =a+b c \\
& =\text { RHS }
\end{array}
$$

4. In any Boolean Algebra, show that $\boldsymbol{a}=\boldsymbol{b} \Leftrightarrow \overline{\boldsymbol{a}} \boldsymbol{b}+\boldsymbol{b}=\mathbf{0}$

Proof:

Let $(B, \cdot,+, 0,1)$ be any Boolean Algebra.

Let $a, b \in B$ and $a=b$

Claim: $\bar{a} b+\overline{-} \bar{b}=0$

Now $\bar{a} b+{ }^{-} b=a \cdot \bar{b}+{ }^{-} a b$

$$
\begin{aligned}
& =a \cdot \cdot^{-} a+-a a \quad \text { using (1) } \\
& =0+0 \quad(\text { since } a \cdot-a=0) \\
& =0
\end{aligned}
$$

Conversely, assume $\overline{a b}+{ }^{-} \not b=0$

$$
\Rightarrow a+\bar{a} b+\bar{d} b=a \quad \text { (Left Cancellation law) }
$$

$$
\Rightarrow a+\bar{a} b=a
$$

(Absorption law)
$\Rightarrow(a+-\dot{q} \cdot(a+b)=a \quad$ (Distributive law)
$\Rightarrow 1 \cdot(a+b)=a \quad(a+a=1)$
$\Rightarrow(a+b)=a \quad(a \cdot 1=a)$

(a)

Consider $\bar{a} b+\bar{b} \bar{b}=0$

$$
\Rightarrow \bar{a} b+\bar{b}+b=b \quad \text { (Right Cancellation law) }
$$

$$
\Rightarrow \bar{a} b+b=b
$$

(Absorption law)
$\Rightarrow(a+b) \cdot(b+\bar{b}=b \quad$ (Distributive law)
$\Rightarrow(a+b) \cdot 1=a \quad(b+\bar{b}=1)$
$\Rightarrow(a+b)=b \quad(b \cdot 1=b)$

From (a) and (b) we get $a=a+b=b$

Hence $a=b$
5. If \boldsymbol{a} and \boldsymbol{b} are two elements of a Boolean algebra, then prove that

$$
a+(a \cdot b)=a, a \cdot(a+b)=a
$$

Proof:

Consider $a+(a \cdot b)=a=a \cdot 1+(a \cdot b)$

$$
\begin{aligned}
& =a \cdot(1+b) \\
& =a \cdot 1 \quad[a+1=1,1+a=1]
\end{aligned}
$$

$$
=a
$$

Consider $a \cdot(a+b)=a=a \cdot a+(a \cdot b)$

$$
\begin{aligned}
& =a+(a \cdot b) \\
& =a \cdot 1+a \cdot b \\
& =a \cdot(1+b)
\end{aligned}
$$

$$
=a \cdot 1 \quad[a \cdot a=a, a \cdot 0=0]
$$

$$
=a
$$

Hence the proof.
6. Prove that in a Boolean algebra, the complement of any element is unique.

Proof:

Let b and c be the complements of the element a .

Then $b+a=1, b \cdot a=0$

$$
a+c=1, a \cdot c=0
$$

Consider $b=1 \cdot b$

$$
\begin{aligned}
& =(a+c) \cdot b \\
& =a \cdot b+c \cdot b \\
& =0+c \cdot b \\
& =a \cdot c+c \cdot b \\
& =c \cdot(a+b) \\
& =1 \cdot c \\
& =c
\end{aligned}
$$

Hence the complement is unique.
7. In a Boolean algebra show that the following statements are equivalent. For any a and b (i) $a+b=b$ (ii) $a \cdot b=a$ (iii) $a^{\prime}+b=1$ (iv) $a \cdot b^{\prime}=0$ (v) $a \leq b$

Proof:

To prove $(i) \Rightarrow(i i)$

Assume that $a+b=b$

To prove that $a \cdot b=a$

Now $a=a \cdot(a+b)$

$$
=a \cdot b
$$

Hence $(i) \Rightarrow(i i)$

To prove $(i i) \Rightarrow(i i i)$

Assume that $a \cdot b=a$
To prove that $a^{\prime}+b=1$
Now $a^{\prime}+b=\left(a \cdot b^{\prime}\right)+b$

$$
\begin{aligned}
& =a^{\prime}+b^{\prime}+b \\
& =a^{\prime}+1 \\
& =1
\end{aligned}
$$

Hence $(i i) \Rightarrow(i i i)$

To prove (iii) $\Rightarrow(i v)$

Assume that $a^{\prime}+b=1$

To prove that $a \cdot b^{\prime}=0$

Taking complement on both sides
$\Rightarrow\left(a^{\prime}+b\right)^{\prime}=1^{\prime}$
$\Rightarrow a \cdot b^{\prime}=0$

Hence (iii) \Rightarrow (iv)

To prove (iv) $\Rightarrow(v)$

Assume that $a \cdot b^{\prime}=0$

To prove that $a \leq b$
Then $a \cdot b=a \cdot b+0$ \square

$$
=a \cdot b+a \cdot b^{\prime}
$$

$$
=a\left(b+b^{\prime}\right)
$$

$$
=a \cdot 1
$$

$$
=a
$$

Hence $(i v) \Rightarrow(v)$

To prove $(v) \Rightarrow(i)$

Assume that $a \leq b$

To prove that $a+b=b$

We have $a \cdot b=b$

$$
\Rightarrow a+b=(a \cdot b)+b
$$

$$
=a \cdot b+1 \cdot b
$$

$$
=(a+1) \cdot b
$$

$$
=1 \cdot b
$$

$$
=b
$$

Hence the proof.

8. Prove that in a Boolean algebra

$$
(a+b) \cdot\left(a^{\prime}+c\right)=a c+a^{\prime} b=a c+a^{\prime} b+b c
$$

Proof:

Now, $(a+b) \cdot\left(a^{\prime}+c\right)=(a+b) \cdot a^{\prime}+(a+b) \cdot c$

$$
\begin{aligned}
& =a^{\prime} \cdot(a+b)+(a+b) \cdot c \\
& =a a^{\prime}+a^{\prime} b+a c+b c \\
& =0+a^{\prime} b+a c+b c \\
& =a^{\prime} b+a c+b c
\end{aligned}
$$

$$
\begin{aligned}
& =a c\left(b+b^{\prime}\right)+a^{\prime} b\left(c+c^{\prime}\right)+b c\left(a+a^{\prime}\right) \\
& =a b c+a b^{\prime} c+a^{\prime} b c+a^{\prime} b c^{\prime}+a b c+a^{\prime} b c \\
& =a b c+a b^{\prime} c+a^{\prime} b c+a^{\prime} b c^{\prime} \\
& =a b c+a b^{\prime} c+a^{\prime} b\left(c+c^{\prime}\right) \\
& =a c\left(b+b^{\prime}\right)+a^{\prime} b\left(c+c^{\prime}\right) \\
& =a c(1)+a^{\prime} b(1) \\
& =a c+a^{\prime} b
\end{aligned}
$$

$$
=\text { RHS }
$$

9. Show that in a Boolean algebra the law of the double complement holds. (or) Prove the involution law $\left(a^{\prime}\right)^{\prime}=a$

Solution:

It is enough to prove that $a^{\prime}+a=1$ and $a \cdot a^{\prime}=0$

By domination laws of Boolean algebra, we get
$a^{\prime}+a=1$ and $a \cdot a^{\prime}=0$

By commutative law, we get $a^{\prime}+a=1$ and $a \cdot a^{\prime}=0$

Therefore complement of a^{\prime} is a

$$
\begin{aligned}
& \Rightarrow\left(a^{\prime}\right)^{\prime}=a \\
& \Rightarrow a^{\prime}=a
\end{aligned}
$$

Hence the proof.

Relation

A relation R is a well - defined rule, which tells whether given 2 elements x and y of A are related or not.

If x is related to y, we write $x R y$, otherwise x does not related to y.

Equivalence Relation

Let X be any set. R be a relation defined on X. If R satisfies Reflexive, Symmetric and Transitive then the relation R is said to be an Equivalence relation.

Partial Order Relation

Let X be any set. R be a relation defined on X. Then R is said to be a partial order relation if it satisfies reflexive, antisymmetric and transitive relation.

Example:

Subset relation \subseteq is a Partial order relation.

Solution:

Consider any three sets A, B, C

Since any set is a subset to itself, $A \subseteq A$, therefore \subseteq is reflexive.

If $A \subseteq B$ and $B \subseteq A$, then $A=B$, therefore \subseteq is antisymmetric.

If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$, therefore \subseteq is transitive.

Hence \subseteq is a Partial order relation.

Example: 2

Divides relation is a Partial order relation.

Solution:

For Z_{+}be the set of positive integer $a, b, c \in Z_{+}$

Since a / a,/ is reflexive.

Since a / b and $b / a \Rightarrow a=b$,/ is antisymmetric.

Since a / b and $b / c \Rightarrow a / c$ is transitive.

Therefore, Divides relation " / " is a partial order relation.

Hence the proof.

Partially Ordered Set or Poset:

A set together with a partial order relation defined on it is called partially ordered set or Poset.

Usually, a partial order relation is defined by the symbol " \leq ", this symbol does not necessarily mean "less than or equal to" as we use for real numbers.

For example,

Let \mathbb{R} be the set of real numbers. The relation "less than or equal to" or " \leq " is a partial order on \mathbb{R}. Therefore (\mathbb{R}, \leq) is a Poset.

Comparable Property:

In a Poset for any 2 elements a, b either $a \leq b$ or $b \leq a$ is called comparable property. Otherwise it is called incomparable property.

Totally Ordered Set or Linearly Ordered Set or Chain:

A partially ordered set (ρ, \leq) is said to be totally ordered set or linearly ordered set or chain if any 2 elements are comparable.
i.e., given any 2 elements x and y of a Poset either $x y$ or $y \leq x$ Example:
$a R b$ if $a \leq b$ is a total order.
$a R b$ if a / b is not a total order.

For, Given elements 2 and 3 neither $2 / 3$ nor $3 / 2$.
(i.e., 2 and 3 are not comparable).

Problems:

1. Show that the "greater than or equal to" relation is a Partial ordering on

 the set of integers.
Solution:

Since $a \geq a$ for every integer a, \geq is reflexive.

If $a \geq b$ and $b \geq a$ then $a=b$. Hence \geq is antisymmetric.

Since $a \geq b$ and $b \geq c$ imply $a \geq c$. Hence \geq is transitive.

Therefore, \geq is a partial order relation on the set of integers.
2. In the Poset $\left(Z^{+}, /\right)$are the integers 3 and 9 comparable? Are 5 and 7 are comparable?

Solution:

Since $3 / 9$, the integers 3 and 9 are comparable.

For 5, 7 neither $5 / 7$ nor $7 / 5$

Therefore, the integers 5 and 7 are not comparable (incomparable).
3. Check the following Posets are totally orders set (or linearly ordered set or chain) (i) $(Z, \leq)\left(\right.$ ii) $\left(Z^{+}, /\right)$

Solution:

(i) Consider, the Poset (Z, \leq)

If a and b are integer then either $a \leq b$ or $b \leq a$, for all a, b

Therefore, the Poset (Z, \leq) satisfies comparable property.
(Z, \leq) is a totally ordered set.
(ii) Consider, the Poset $\left(Z^{+}, /\right)$

Take 5 and 7.

Since, neither 5/7 nor 7/5
$\left(Z^{+}, /\right)$does not satisfies the comparable property.

Therefore, $\left(Z^{+}, /\right)$is not a totally ordered set.
4. Show that (N, \leq) is a partially ordered set where N is set of all positive integers and \leq is defined by $m \leq n$ iff $n-m$ is a non-negative integer.

Solution:

Give N is the set of all positive integer.

The given relation is $m \leq n$ iff $n-m$ is a non - negative integer.

(i) To prove R is reflexive

Now, $\forall x \in N, x-x=0$ is a non - negative integer.

Therefore, $x R x \forall x \in N$.

Therefore R is reflexive.
(ii) To prove \mathbf{R} is Antisymmetric.

Consider $x R y \& y R x$

Since $x R y \Rightarrow x-y$ is a non - negative integer.
$y R x \Rightarrow y-x$ is a non - negative integer.
$\Rightarrow-(x-y)$ is a non - negative integer.
$\Rightarrow x=y$

Therefore R is Antisymmetric.
(iii) To prove \mathbf{R} is Transitive.

Assume $x R y \& y R z$

Since $x R y \Rightarrow x-y$ is a non - negative integer.
$y R z \Rightarrow y-z$ is a non - negative integer.
$\Rightarrow(x-y)+(y-z)$ is a non - negative integer.
$\Rightarrow x-z$ is a non - negative integer.
$\Rightarrow x R z$
$x R y \& y R z \Rightarrow x R z$

Therefore R is transitive.

Hence R is partial order relation.

5. Is the Poset $\left(Z^{+}, /\right)$a lattice.

Solution:

Let a and b be any two positive integer.

Then LUB $\{a, b\}=\operatorname{LCM}\{a, b\}$
$\operatorname{GLB}\{a, b\}=\operatorname{GCD}\{a, b\}$

Should exist in Z^{+}.

For, example let $a=4, b=20$
Then LUB $\{a, b\}=\operatorname{LCM}\{4,20\}=1$
$\operatorname{GLB}\{a, b\}=\operatorname{GCD}\{4,20\}=4$

Hence both GLB and LUB exist.

Therefore, the Poset $\left(Z^{+}, /\right)$a lattice.

