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Hasse Diagram: 

 
Pictorial representation of a Poset is called Hasse Diagram. 

 
Example: 

 
If 𝑿 = {𝟐, 𝟑, 𝟔, 𝟏𝟐, 𝟐𝟒, 𝟑𝟔} and the relation R defined on X by 𝑹 = 

 
{〈𝒂, 𝒃〉/𝒂/ 𝒃}. Draw the Hasse diagram for (𝑿, 𝑹). 

Solution: 

The relation 
 
 

𝑅 = {
〈2, 6〉 〈2, 12 〉 〈2, 24〉 〈2, 36〉 〈3, 6〉 〈3, 12〉 〈3, 24〉 〈3, 36〉 〈6, 12〉 

〈6, 24〉 〈6, 36〉 〈12, 24〉 〈2,36〉 
 

The Hasse Diagram for (𝑋, 𝑅) is 

} 
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Special Elements of a Poset: 

 
Let (𝑃, ≤) be a Poset. An element 𝑎 ∈ 𝑃 is called least element in P, if 𝑎 ≤ 𝑥 for 

all 𝑥 ∈ 𝑃. 

An element 𝑏 ∈ 𝑃 is called greatest element in P, if 𝑏 ≥ 𝑥 for all 𝑥 ∈ 𝑃 

 
Note: 

 
The least element is called “0” element and the greatest element is called “1” 

element. 

Example: 

 
Consider the following Hasse Diagram 
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In (i) “a” is the least element and “d” is the greatest element. 

In (ii) “g” is the greatest element and there is no least element. 

In (iii) “1” is the least element and there is no greatest element. 

Definition: 

Let (𝑃, ≤) be a Poset an A be any non - empty subset of P. An element 𝑎 ∈ 𝑃 is an 

upper bound of A, if 𝑎 ≥ 𝑥 for all 𝑥 ∈ 𝐴. 

An element 𝑏 ∈ 𝑃 is said to be lower bound in P, if 𝑏 ≤ 𝑥 for all 𝑥 ∈ 𝐴. 

 
Least Upper Bound: (LUB) 

 
Let (𝑃, ≤)be a Poset and 𝐴 ⊆ 𝑃. An element 𝑎 ∈ 𝑃 is said to be least upper bound 

(LUB) or supremum (sup) of A, if 𝑎 is a upper bound of A. 

𝑎 ≤ 𝑐, where 𝑐 is any other upper bound of A. 

 
Greatest Lower Bound: (GLB) 

 
Let (𝑃, ≤)be a Poset and 𝐴 ⊆ 𝑃. An element 𝑏 ∈ 𝑃 is said to be least upper bound 

(GLB) or infimum (inf) of A, if 𝑏 is a lower bound of A. 

𝑏 ≥ 𝑑, where 𝑑 is any other lower bound of A. 
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Examples: 

 
1. If 𝑿 = {𝟏, 𝟐, 𝟑, 𝟒, 𝟔, 𝟏𝟐} and the relation R defined on X by 𝑹 = 

 
{〈𝒂, 𝒃〉/𝒂/ 𝒃}. Find LUB and GLB for the Poset (𝑿, 𝑹). 

Solution: 

The relation 

 

𝑅 = {〈1, 2〉 〈1, 3 〉 〈1, 4〉 〈1, 6〉 〈1, 12〉 〈2, 4〉 〈2, 6〉 〈2,12〉 〈3, 6〉 〈3, 12〉 〈4, 12〉 } 

 
The Hasse Diagram for (𝑋, 𝑅) is 
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Table for LUB and GLB 
 

 

1 UB{1, 3} = {3, 6, 12} 
 

LUB{1, 3} = 3 

1 LB{1, 3} = {1} 
 

GLB{1, 3} = 1 

2 UB{1, 2, 3} = {6, 12} 
 

LUB{1,2, 3} = 6 

2 LB{1, 2, 3} = {1} 
 

GLB{1,2, 3} = 1 

3 UB{2, 3} = {3, 6, 12} 
 

LUB{2, 3} = 6 

3 LB{2, 3} = {1} 
 

GLB{2, 3} = 1 

4 UB{2, 3, 6} = {6, 12} 
 

LUB{2, 3, 6} = 6 

4 LB{2, 3, 6} = {1} 
 

GLB{2, 3, 6} = 1 

5 UB{4, 6} = {12} 
 

LUB{4, 6} = 12 

5 LB{4, 6} = {1, 2} 
 

GLB{4, 6} = 2 

 

 

 

2. If 𝑿 = {𝟐, 𝟑, 𝟔, 𝟏𝟐, 𝟐𝟒, 𝟑𝟔} and the relation R defined on X by 𝑹 = 
 
{〈𝒂, 𝒃〉/𝒂/ 𝒃}. Draw the Hasse diagram for (𝑿, 𝑹). 

Solution: 

The relation 
 
 

𝑅 = {
〈2, 6〉 〈2, 12 〉 〈2, 24〉 〈2, 36〉 〈3, 6〉 〈3, 12〉 〈3, 24〉 〈3, 36〉 〈6, 12〉 

〈6, 24〉 〈6, 36〉 〈12, 24〉 〈2,36〉 
 

The Hasse Diagram for (𝑋, 𝑅) is 

} 
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Table of LUB and GLB 
 

 

1 UB{2, 3} = {6, 12, 24, 36} 
 

LUB{2, 3} = 6 

1 LB{2, 3} =does not exists 

 

GLB{2, 3} =does not exists 

2 UB{24, 36} = does not exists 2 LB{24, 36} = {2, 3, 6, 12} 

 
LUB{24, 36} = does not exists 

 
GLB{24, 36} = 12 
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Lattice: 

 
A Lattice is a partially ordered set(Poset) (𝐿, ≤) in which for every pair of 

elements 𝑎, 𝑏 𝜖 𝐿, both greatest lower bound (GLB) and least upper bound (LUB) 

exists. 

Note: 

 
(i) GLB {𝑎, 𝑏} = 𝑎 ∗ 𝑏 (𝑜𝑟) 𝑎 ∧ 𝑏 (𝑜𝑟) 𝑎 ⋅ 𝑏 

 
(ii) LUB {𝑎, 𝑏} = 𝑎⨁𝑏 (𝑜𝑟)𝑎 ∨ 𝑏 (𝑜𝑟)𝑎 + 𝑏 

 
Properties of lattice: 

 
Some important laws and its proof: 

 
(i) Idempotent law: 

 
𝑎 ∨ 𝑎 = 𝑎, 𝑎 ∧ 𝑎 = 𝑎 

 
(ii) Commutative law: 

 
𝑎 ∨ 𝑏 = 𝑏 ∨ 𝑎 𝑎𝑛𝑑 𝑎 ∧ 𝑏 = 𝑏 ∧ 𝑎 

 
(iii) Associative law: 

 
𝑎 ∨ (𝑏 ∨ 𝑐) = (𝑎 ∨ 𝑏) ∨ 𝑐 𝑎𝑛𝑑 𝑎 ∧ (𝑏 ∧ 𝑐) = (𝑎 ∧ 𝑏) ∧ 𝑐 

 
(iv) Absorption law: 

 
𝑎 ∨ (𝑎 ∧ 𝑏) = 𝑎 𝑎𝑛𝑑 𝑎 ∧ (𝑎 ∨ 𝑏) = 𝑎 
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(v) Distributive law: 

 
𝑎 ∧ (𝑏 ∨ 𝑐) ≥ (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑐) 

 
𝑎 ∨ (𝑏 ∧ 𝑐) ≤ (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐) 

 
Note: 

 
i) 𝑎 ≤ 𝑎 ∨ 𝑏 𝑎𝑛𝑑 𝑏 ≤ 𝑎 ∨ 𝑏 

 
𝑎 ∨ 𝑏 is the upper bound of a and b. 

If 𝑎 ≤ 𝑐 𝑎𝑛𝑑 𝑏 ≤ 𝑐 then 𝑎 ∨ 𝑏 ≤ 𝑐 

Hence 𝑎 ∨ 𝑏 is the lub of a and b. 

(ii) 𝑎 ∧ 𝑏 ≤ 𝑎 𝑎𝑛𝑑 𝑎 ∧ 𝑏 ≤ 𝑏 

 
𝑎 ∧ 𝑏 is the lower bound of a and b. 

If 𝑐 ≤ 𝑎 𝑎𝑛𝑑 𝑐 ≤ 𝑏 then 𝑐 ≤ 𝑎 ∧ 𝑏 

Hence 𝑎 ∧ 𝑏 is the glb of a and b. 

Note: 

 
If 𝑎 ≤ 𝑏 𝑎𝑛𝑑 𝑎 ≤ 𝑐 then 𝑎 ≤ 𝑏 ∨ 𝑐 

If 𝑎 ≤ 𝑏 𝑎𝑛𝑑 𝑎 ≤ 𝑐 then 𝑎 ≤ 𝑏 ∧ 𝑐 

Problems: 
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1. State and prove Idempotent law: 

 
Let (𝑳, ∧, ∨) be given lattice. Then, for any 𝒂, 𝒃, 𝒄 ∈ 𝑳, 

 
𝒂 ∨ 𝒂 = 𝒂, 𝒂 ∧ 𝒂 = 𝒂. 

Proof: 

Given 𝑎 ∨ 𝑎 = LUB (𝑎, 𝑎) = LUB (𝑎) = 𝑎 

 
Hence 𝑎 ∨ 𝑎 = 𝑎 

 
Now, 𝑎 ∧ 𝑎 = GLB (𝑎, 𝑎) = GLB (𝑎) = 𝑎 

 
Hence 𝑎 ∧ 𝑎 = 𝑎 

 
Hence the proof. 

 
2. State and prove Commutative law: 

 
Let (𝑳, ∧, ∨) be given lattice. Then, for any 𝒂, 𝒃, 𝒄 ∈ 𝑳, 

 
𝒂 ∨ 𝒃 = 𝒃 ∨ 𝒂 𝒂𝒏𝒅 𝒂 ∧ 𝒃 = 𝒃 ∧ 𝒂 

 
Proof: 

 
Given 𝑎 ∨ 𝑏 = LUB (𝑎, 𝑏) = LUB (𝑏, 𝑎) = 𝑏 ∨ 𝑎 

 
Hence 𝑎 ∨ 𝑏 = 𝑏 ∨ 𝑎 

 
Now, 𝑎 ∧ 𝑏 = GLB (𝑎, 𝑏) = GLB (𝑏, 𝑎) = 𝑏 ∧ 𝑎 
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Hence 𝑎 ∧ 𝑏 = 𝑏 ∧ 𝑎 

 
Hence the proof. 

 
3. State and prove Absorption law. 

 

(or) 

 
Prove that 𝒂 ∨ (𝒂 ∧ 𝒃) = 𝒂 𝒂𝒏𝒅 𝒂 ∧ (𝒂 ∨ 𝒃) = 𝒂 

 
Proof: 

 
We have 𝑎 ∧ 𝑏 ≤ 𝑎 𝑎𝑛𝑑 𝑎 ≤ 𝑎 

 
⇒ a is the upper bound of 𝑎 ∧ 𝑏 and a. 

 
⇒ 𝑎 ∨ (𝑎 ∧ 𝑏 ) ≤ 𝑎 . . . (1) 

 
From the definition of lub we have 

 
⇒ 𝑎 ≤ 𝑎 ∨ (𝑎 ∧ 𝑏 ) . . . (2) 

 
From (1) and (2) we have 𝑎 ∨ (𝑎 ∧ 𝑏 ) = 𝑎 

Similarly we can prove that 𝑎 ∧ (𝑎 ∨ 𝑏) = 𝑎 

Hence the proof. 

4. Every finite Lattice is bounded. 

 
Proof: 
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Let (𝐿, ∧, ∨) be a given lattice. 

 
Since L is a Lattice both GLB and LUB exist. 

Let “𝑎” be GLB of L and “𝑏” be LUB of L. 

Then for any 𝑥 ∈ 𝐿, we have 𝑎 ≤ 𝑥 ≤ 𝑏 . . . (1) 

From (1) 

GLB {𝑎, 𝑥} = 𝑎 ∧ 𝑥 = 𝑎 

LUB {𝑎, 𝑥} = 𝑎 ∨ 𝑥 = 𝑥 

And 

GLB {𝑥, 𝑏} = 𝑥 ∧ 𝑏 = 𝑥 

 
LUB {𝑥, 𝑏} = 𝑥 ∨ 𝑏 = 𝑏 

 
Therefore any finite lattice is bounded. 

Hence the proof. 

5. State and prove Isotonicity property. 

 
Let (𝐿, ≤) be a lattice. For any 𝑎, 𝑏, 𝑐 ∈ 𝐿 then 𝑏 ≤ 𝑐 = {

𝑎 ∧ 𝑏 ≤ 𝑎 ∧ 𝑐
 

𝑎 ∨ 𝑏 ≤ 𝑎 ∨ 𝑐 

 
Proof: 

 
By consistency law we have, 𝑎 ≤ 𝑏 ⇔ 𝑎 ∧ 𝑏 = 𝑎 𝑎𝑛𝑑 𝑎 ∨ 𝑏 = 𝑎 
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Let 𝑏 ≤ 𝑐 ⇒ 𝑏 ∧ 𝑐 = 𝑏 and 𝑏 ∨ 𝑐 = 𝑐 

 
Consider (𝑎 ∧ 𝑏) ∧ (𝑎 ∧ 𝑐) = 𝑎 ∧ [(𝑏 ∧ 𝑎) ∧ 𝑐] by Associative law 

 
= 𝑎 ∧ [(𝑎 ∧ 𝑏) ∧ 𝑐] by Commutative law 

 
= (𝑎 ∧ 𝑎) ∧ (𝑏 ∧ 𝑐) by Associative law 

 
= 𝑎 ∧ (𝑏 ∧ 𝑐) by Idempotent law 

 
= 𝑎 ∧ 𝑏 by [𝑏 ∧ 𝑐 = 𝑏] 

 
Hence (𝑎 ∧ 𝑏) ∧ (𝑎 ∧ 𝑐) = 𝑎 ∧ 𝑏 

 
⇒ 𝑎 ∧ 𝑏 ≤ 𝑎 ∧ 𝑐 . . . (1) 

 
Consider (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐) = 𝑎 ∨ [(𝑏 ∨ 𝑎) ∨ 𝑐] by Associative law 

 
= 𝑎 ∨ [(𝑎 ∨ 𝑏) ∨ 𝑐] by Commutative law 

 
= (𝑎 ∨ 𝑎) ∨ (𝑏 ∨ 𝑐) by Associative law 

 
= 𝑎 ∨ (𝑏 ∨ 𝑐) by Idempotent law 

 
= 𝑎 ∨ 𝑏 by [𝑏 ∨ 𝑐 = 𝑏] 

 
Hence (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐) = 𝑎 ∨ 𝑏 

 
⇒ 𝑎 ∨ 𝑏 ≤ 𝑎 ∨ 𝑐 . . . (2) 

Hence the proof. 
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6. State and prove Distributive law. 

 
𝒂 ∧ (𝒃 ∨ 𝒄) ≥ (𝒂 ∧ 𝒃) ∨ (𝒂 ∧ 𝒄) 

 
𝒂 ∨ (𝒃 ∧ 𝒄) ≤ (𝒂 ∨ 𝒃) ∧ (𝒂 ∨ 𝒄) 

 
Proof: 

 
We know that 𝑎 ∧ 𝑏 ≤ 𝑎 and 𝑎 ∧ 𝑏 ≤ 𝑏 

 
Also 𝑏 ≤ 𝑏 ∨ 𝑐 

 
Hence 𝑎 ∧ 𝑏 ≤ 𝑎 and 𝑎 ∧ 𝑏 ≤ 𝑏 ≤ 𝑏 ∨ 𝑐 

 
Hence 𝑎 ∧ 𝑏 is the lower bound of a and 𝑏 ∨ 𝑐. 

 
⇒ 𝑎 ∧ 𝑏 ≤ 𝑎 ∧ (𝑏 ∨ 𝑐) . . . (1) 

Again 𝑎 ∧ 𝑐 ≤ 𝑎 and 𝑎 ∧ 𝑐 ≤ 𝑐 

Also 𝑐 ≤ 𝑏 ∨ 𝑐 

Hence 𝑎 ∧ 𝑐 ≤ 𝑎 and 𝑎 ∧ 𝑐 ≤ 𝑐 ≤ 𝑏 ∨ 𝑐 

 
Hence 𝑎 ∧ 𝑐 is the lower bound of a and 𝑏 ∨ 𝑐. 

 
⇒ 𝑎 ∧ 𝑐 ≤ 𝑎 ∧ (𝑏 ∨ 𝑐) . . . (2) 

From (1) and (2) we have 

𝑎 ∧ (𝑏 ∨ 𝑐) is the upper bound of 𝑎 ∧ 𝑏 and 𝑎 ∧ 𝑐 
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Hence (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑐) ≤ 𝑎 ∧ (𝑏 ∨ 𝑐) 

 
⇒ 𝑎 ∧ (𝑏 ∨ 𝑐) ≥ (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑐) . . . (I) 

We know that 𝑎 ≤ 𝑎 ∨ 𝑏 and 𝑎 ≤ 𝑎 ∨ 𝑏 

Also 𝑏 ∧ 𝑐 ≤ 𝑏 

Hence 𝑎 ≤ 𝑎 ∨ 𝑏 and 𝑏 ∧ 𝑐 ≤ 𝑏 ≤ 𝑎 ∨ 𝑏 

 
Hence 𝑎 ∨ 𝑏 is the lower bound of a and 𝑏 ∧ 𝑐. 

 
⇒ 𝑎 ∨ (𝑏 ∧ 𝑐) ≤ 𝑎 ∨ 𝑏 . . . (3) 

Again 𝑎 ≤ 𝑎 ∨ 𝑎 and 𝑐 ≤ 𝑎 ∨ 𝑐 

Also 𝑏 ∧ 𝑐 ≤ 𝑐 

Hence 𝑎 ≤ 𝑎 ∨ 𝑐 and 𝑏 ∧ 𝑐 ≤ 𝑐 ≤ 𝑎 ∨ 𝑐 

 
Hence 𝑎 ∨ 𝑐 is the upper bound of a and 𝑏 ∧ 𝑐. 

 
⇒ 𝑎 ∨ (𝑏 ∧ 𝑐) ≤ 𝑎 ∨ 𝑐 . . . (4) 

From (3) and (4) we have 

𝑎 ∨ (𝑏 ∧ 𝑐) is the lower bound of 𝑎 ∨ 𝑏 and 𝑎 ∨ 𝑐 

 
⇒ 𝑎 ∨ (𝑏 ∧ 𝑐) ≤ (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐) . . . (II) 

Hence the proof. 
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7. State and prove Cancellation law. 

 
Let (𝑳, ≤) be a distributive lattice. Then 𝒂 ∨ 𝒃 = 𝒂 ∨ 𝒄 and 𝒂 ∧ 𝒃 = 𝒂 ∧ 𝒄 ⇒ 

 
𝒃 = 𝒄 ∀ 𝒂, 𝒃, 𝒄 ∈ 𝑳 

 
Proof: 

 
By absorption law, we have 𝑎 ∨ (𝑎 ∧ 𝑏) = 𝑎 

 
Consider 𝑏 = 𝑏 ∨ (𝑎 ∧ 𝑏) 

 
= 𝑏 ∨ (𝑎 ∧ 𝑐) 

 
= (𝑎 ∨ 𝑏) ∧ (𝑏 ∨ 𝑐) 

 
= (𝑎 ∨ 𝑐) ∧ (𝑏 ∨ 𝑐) 

 
= (𝑎 ∧ 𝑏) ∨ 𝑐 

 
= (𝑎 ∧ 𝑐) ∨ 𝑐 

 
= 𝑐 

 
Hence the proof. 

 
8. State and prove Consistency Law. 

 
Let (𝑳, ≤) be a lattice. Then 𝒂 ≤ 𝒃 ⇔ 𝒂 ∧ 𝒃 = 𝒂 ⟺ 𝒂 ∨ 𝒃 ∀ 𝒂, 𝒃, 𝒄 ∈ 𝑳 

 
Proof: 
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First we prove that 𝒂 ≤ 𝒃 ⇔ 𝒂 ∧ 𝒃 = 𝒂 

 
We assume that 𝑎 ≤ 𝑏 

 
To prove 𝑎 ∧ 𝑏 = 𝑎 

 
We have 𝑎 ≤ 𝑏 and 𝑎 ≤ 𝑎 

 
⇒ a is the lower bound of a and b. 

 
⇒ 𝑎 ≤ 𝑎 ∧ 𝑏 . . . (1) 

 
By the definition of greatest lower bound 

 
⇒ 𝑎 ∧ 𝑏 ≤ 𝑎 . . . (2) 

 
From (1) and (2) we have, 𝑎 = 𝑎 ∧ 𝑏 

Conversely assume that 𝑎 = 𝑎 ∧ 𝑏 

To prove 𝑎 ≤ 𝑏 

This is possible only when 𝑎 ≤ 𝑏 

 
Hence 𝑎 ≤ 𝑏 ⇔ 𝑎 ∧ 𝑏 = 𝑎 

 
Next we prove that 𝒂 ∧ 𝒃 = 𝒂 ⟺ 𝒂 ∨ 𝒃 = 𝒃 

 
Assume that 𝑎 ∧ 𝑏 = 𝑎 

 
To prove 𝑎 ∨ 𝑏 = 𝑏 
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By absorption law 𝑎 ∨ (𝑎 ∧ 𝑏) = 𝑎 𝑎𝑛𝑑 𝑎 ∧ (𝑎 ∨ 𝑏) = 𝑎 

 
Consider 𝑏 = 𝑏 ∨ (𝑎 ∧ 𝑏) 

 
= 𝑏 ∨ 𝑎 

 
Hence 𝑎 ∨ 𝑏 = 𝑏 

 
Conversely assume that 𝑎 ∨ 𝑏 = 𝑏 

 
To prove 𝑎 ∧ 𝑏 = 𝑎 

 
By absorption law 𝑎 ∧ (𝑎 ∨ 𝑏) = 𝑎 

 
Consider 𝑎 = 𝑎 ∧ (𝑎 ∨ 𝑏) 

 
= 𝑎 ∧ 𝑏 

 
Hence 𝑎 ∧ 𝑏 = 𝑎 ⟺ 𝑎 ∨ 𝑏 = 𝑏 

 
9. Show that a chain is a lattice. 

 
Proof: 

 
Let (𝐿, ≤) be a lattice. 

 
If 𝑎, 𝑏 ∈ 𝐿 then 𝑎 ≤ 𝑏 or 𝑏 ≤ 𝑎 

 
If 𝑎 ≤ 𝑏 then 𝑎 ∧ 𝑏 = 𝑎 and 𝑎 ∨ 𝑏 = 𝑏 

 
Therefore GLB and LUB of a and b exists. 

binils.com

binils - Anna University App on Play Store

                    Free PDF Study Materials
binils.com - Anna University, Polytechnic & Schools



 

MA8351 DISCRETE MATHEMATICS 

 

 

If 𝑏 ≤ 𝑎 then 𝑏 ∧ 𝑎 = 𝑏 and 𝑏 ∨ 𝑎 = 𝑎 

 
Therefore GLB and LUB of a and b exists. 

 
Hence every pair of elements has a GLB and LUB. 

Hence chain is lattice. 
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Duality in Lattice: 

 
When " ≤ " is a partial order relation on a set S, then its converse " ≥ " is also a 

partial order relation on S. 

Distributive lattice: 

 
A lattice (𝐿, ∧, ∨) is said to be distributive lattice if ∧ and ∨ satisfies the 

following conditions ∀𝑎, 𝑏, 𝑐 ∈ 𝐿 

𝐷1: 𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐) 

 
𝐷2: 𝑎 ∧ (𝑏 ∨ 𝑐) = (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑐) 

 
Modular Inequality: 

 
If (𝑳, ∧, ∨) is a Lattice, then for any 𝒂, 𝒃, 𝒄 ∈ 𝑳, 𝒂 ≤ 𝒄 ⇔ 𝒂 ∨ (𝒃 ∧ 𝒄) ≤ 

(𝒂 ∨ 𝒃) ∧ 𝒄. 

Proof: 

 
Assume 𝑎 ≤ 𝑐 

 
⇒ 𝑎 ∨ 𝑐 = 𝑐 . . . (1) 

 
By, distributive inequality, we have 

 
𝑎 ∨ (𝑏 ∧ 𝑐) ≤ (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐) 

 
⇒ 𝑎 ∨ (𝑏 ∧ 𝑐) ≤ (𝑎 ∨ 𝑏) ∧ 𝑐 (Using (1)) 
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Therefore, 𝑎 ≤ 𝑐 ⇔ 𝑎 ∨ (𝑏 ∧ 𝑐) ≤ (𝑎 ∨ 𝑏) ∧ 𝑐 .............. (2) 

 
Conversely, assume 𝑎 ∨ (𝑏 ∧ 𝑐) ≤ (𝑎 ∨ 𝑏) ∧ 𝑐 

 
Now, by the definition of LUB and GLB, we have 

 
𝑎 ≤ 𝑎 ∨ (𝑏 ∧ 𝑐) ≤ (𝑎 ∨ 𝑏) ∧ 𝑐 ≤ 𝑐 

 
⇒ 𝑎 ≤ 𝑐 

 
Hence 𝑎 ∨ (𝑏 ∧ 𝑐) ≤ (𝑎 ∨ 𝑏) ∧ 𝑐 ⇒ 𝑎 ≤ 𝑐 ............... (3) 

 
From (2) and (3), we have 𝑎 ≤ 𝑐 ⇔ 𝑎 ∨ (𝑏 ∧ 𝑐) ≤ (𝑎 ∨ 𝑏) ∧ 𝑐. 

Hence the proof. 

Modular Lattice: 

 
A Lattice (𝐿, ∧, ∨) is said to be Modular lattice if it satisfies the following 

condition. 

𝑀1: if 𝑎 ≤ 𝑐 then 𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ 𝑐 

 
Theorem: 1 

 
Every distributive Lattice is Modular, but not conversely. 

Proof: 

Let (𝐿, ∧, ∨) be the given distributive lattice 
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𝐷1: 𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐) . . . (1) 

Now, if 𝑎 ≤ 𝑐 then 𝑎 ∨ 𝑐 = 𝑐 . . . (2) 

(1)(1) ⇒ 𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐) 

= (𝑎 ∨ 𝑏) ∧ 𝑐 (using (2)) 

If 𝑎 ≤ 𝑐 then 𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ 𝑐 

Therefore every distributive lattice is Modular. 

But, converse is not true. 

 
i.e., Every Modular Lattice need not be distributive. 

 
For example, 𝑀5 Lattice is Modular but it is not distributive. 

Hence the proof. 

Theorem: 2 

 
In any distributive lattice (𝑳, ∧, ∨) ∀𝒂, 𝒃, 𝒄 ∈ 𝑳. Prove that 

 
𝒂 ∨ 𝒃 = 𝒂 ∨ 𝒄, 𝒂 ∧ 𝒃 = 𝒂 ∧ 𝒄 ⇒ 𝒃 = 𝒄 

 
Proof: 

 
Consider 𝑏 = 𝑏 ∨ (𝑏 ∧ 𝑎) (Absorption law) 

 
= 𝑏 ∨ (𝑎 ∧ 𝑏) (Commutative law) 
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= 𝑏 ∨ (𝑎 ∧ 𝑐) (Given condition) 

 
= (𝑏 ∨ 𝑎) ∧ (𝑏 ∨ 𝑐) (D1 – Condition) 

 
= (𝑎 ∨ 𝑏) ∧ (𝑏 ∨ 𝑐) (Commutative law) 

 
= (𝑎 ∨ 𝑐) ∧ (𝑏 ∨ 𝑐) (Using given condition) 

 
= (𝑐 ∨ 𝑎) ∧ (𝑐 ∨ 𝑏) (Commutative law) 

 
= 𝑐 ∨ (𝑎 ∧ 𝑏) (By D1- condition) 

 
= 𝑐 ∨ (𝑎 ∧ 𝑐) (Given Condition) 

 
= 𝑐 ∨ (𝑐 ∧ 𝑎) (Commutative law) 

 
= 𝑐 (Absorption law) 

 
Lattice as a Algebraic system 

 
A Lattice is an algebraic system (𝐿, ∧, ∨) with two binary operation ∧ and ∨ on L 

which are both commutative, associative and satisfies absorption laws. 

SubLattice: 

 
Let (𝐿, ∧, ∨) be a lattice and let 𝑆 ⊆ 𝐿 be a subset of L. Then (𝑆, ∧, ∨) is a 

sublattice of (𝐿, ∧, ∨) iff S is closed under both operation ∧ and ∨. 

∀𝑎, 𝑏 ∈ 𝑆 ⇒ 𝑎 ∧ 𝑏 ∈ 𝑆 and 𝑎 ∨ 𝑏 ∈ 𝑆 
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Lattice Homomorphism: 

 
Let (𝐿1, ∧, ∨) and (𝐿2, ∗, ⨁) be two given lattices. 

 
A mapping 𝑓: 𝐿1 → 𝐿2 is called Lattice homomorphism if ∀𝑎, 𝑏 ∈ 𝐿1 

 
𝑓(𝑎 ∧ 𝑏) = 𝑓(𝑎) ∗ 𝑓(𝑏) 

 
𝑓(𝑎 ∨ 𝑏) = 𝑓(𝑎)⨁𝑓(𝑏) 

 
A homomorphism which is also 1 – 1 is called an isomorphism. 

 
Bounded lattice: 

 
Let (𝐿, ∧, ∨) be a given Lattice. If it has both “0” element and “1” element then it 

is said to be bounded Lattice. It is denoted by (𝐿, ∧, ∨, 0, 1) 

Complement: 

 
Let (𝐿, ∧, ∨, 0, 1) be given bounded lattices. Let "𝑎" be any element of L. We say 

that "𝑏" is complement of a, if 𝑎 ∧ 𝑏 = 0 and 𝑎 ∨ 𝑏 = 1 and "𝑏" is denoted by the 

symbol 𝑎′. i.e., (𝑏 = 𝑎′). Therefore 𝑎 ∧ 𝑎′ = 0 and 𝑎 ∨ 𝑎′ = 1. 

Note: An element may have no complement or may have more than 1 

complement. 

Example for a complement. 
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Complement of 𝑎 = 𝑎′ is b and c. 

Complement of 𝑏 = 𝑏′ is a and c. 

Complement of 𝑐 = 𝑐′ is a and b. 

In the example given below: 

binils.com

binils - Anna University App on Play Store

                    Free PDF Study Materials
binils.com - Anna University, Polytechnic & Schools



 

MA8351 DISCRETE MATHEMATICS 

 

 

Complement of does not exist. 

Complement of b does not exist. 

Complement of c does not exist. 

Complemented Lattice: 

A bounded lattice (𝐿, ∧, ∨, 0, 1) is said to be a complemented lattice if every 

element of L has atleast one complement. 

Complete Lattice: 

 
A lattice (𝐿, ∧, ∨) is said to be complete lattice if every non empty subsets of L 

has both glb &lub. 

1. Prove that in a bounded distributive lattice, the complement of any element 

is unique. 

Proof: 

 
Let L be a bounded distributive lattice. 

 
Let 𝑏 and 𝑐 be complements of an element 𝑎 ∈ 𝐿. 

To prove 𝑏 = 𝑐 

Since 𝑏 and 𝑐 are complements of 𝑎 we have 

 
𝑎 ∧ 𝑏 = 0, 𝑎 ∨ 𝑏 = 1, 𝑎 ∧ 𝑐 = 0, 𝑎 ∨ 𝑐 = 1 
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Now 𝑏 = 𝑏 ∧ 1 

 
= 𝑏 ∧ (𝑎 ∨ 𝑐) 

 
= (𝑏 ∧ 𝑎) ∨ (𝑏 ∧ 𝑐) 

 
= (𝑎 ∧ 𝑏) ∨ (𝑏 ∧ 𝑐) 

 
= 0 ∨ (𝑏 ∧ 𝑐) 

 
= (𝑎 ∧ 𝑐) ∨ (𝑏 ∧ 𝑐) 

 
= (𝑎 ∧ 𝑏) ∧ 𝑐 

 
= 1 ∧ 𝑐 

 
= 𝑐 

 
Hence the proof. 

 
2. Prove that every distributive lattice is modular. 

 
Proof: 

 
Let (𝐿, ≤) be a distributive lattice. 

Let 𝑎, 𝑏, 𝑐 ∈ 𝐿 such that 𝑎 ≤ 𝑐 

To prove that 𝑎 ≤ 𝑐 ⇒ 𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ 𝑐 

 
Assume that 𝑎 ≤ 𝑐 
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To prove that 𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ 𝑐 

 
When 𝑎 ≤ 𝑐 ⇒ 𝑎 ∨ 𝑐 = 𝑐 

 
Therefore 𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐) 

 
= (𝑎 ∨ 𝑏) ∧ 𝑐 

Hence 𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ 𝑐 

Hence the proof. 

3. Show that in a complemented distributive lattice, 𝒂 ≤ 𝒃 ⇔ 𝒂 ∗ 𝒃′ = 𝟎 ⇔ 
 
𝒂′⨁𝒃 = 𝟏 ⇔ 𝒃′ ≤ 𝒂′ (or) , 𝒂 ≤ 𝒃 ⇔ 𝒂 ∧ 𝒃′ = 𝟎 ⇔ 𝒂′ ∨ 𝒃 = 𝟏 ⇔ 𝒃′ ≤ 𝒂′ 

 
Proof: 

 
To prove (𝒊) ⇒ (𝒊𝒊) 

We assume that 𝑎 ≤ 𝑏 

To prove that 𝑎 ∧ 𝑏′ = 0 

We know that 𝑎 ≤ 𝑏 ⇒ 𝑎 ∧ 𝑏 = 𝑎 and 𝑎 ∨ 𝑏 = 𝑏 

 
We take 𝑎 ∨ 𝑏 = 𝑏 

 
⇒ (𝑎 ∨ 𝑏) ∧ 𝑏′ = 𝑏 ∧ 𝑏′ = 0 

 
⇒ (𝑎 ∧ 𝑏′) ∨ (𝑏 ∧ 𝑏′) = 0 
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⇒ (𝑎 ∧ 𝑏′) ∨ 0 = 0 

 
⇒ (𝑎 ∧ 𝑏′) = 0 

 
Hence (𝑖) ⇒ (𝑖𝑖) 

 
To prove (𝒊𝒊) ⇒ (𝒊𝒊𝒊) 

 
We assume that 𝑎 ∧ 𝑏′ = 0 

 
To prove that 𝑎′ ∨ 𝑏 = 1 

 
Taking complement on both sides 

 
⇒ (𝑎 ∧ 𝑏′)′ = 0′ 

 
⇒ 𝑎′ ∨ 𝑏 = 1 

 
Therefore 𝑎 ∧ 𝑏′ = 0 ⇒ 𝑎′ ∨ 𝑏 = 1 

 
Hence (𝑖𝑖) ⇒ (𝑖𝑖𝑖) 

 
To prove (𝒊𝒊𝒊) ⇒ (𝒊𝒗) 

Assume that 𝑎′ ∨ 𝑏 = 1 

To prove that 𝑏′ ≤ 𝑎′ 

Now 𝑎′ ∨ 𝑏 = 1 

⇒ (𝑎′ ∨ 𝑏) ∧ 𝑏′ = 1 ⋅ 𝑏′ 
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⇒ (𝑎′ ∨ 𝑏) ∧ 𝑏′ = 𝑏′ 

 
⇒ (𝑎′ ∧ 𝑏′) ∧ (𝑏 ∧ 𝑏′) = 𝑏′ 

 
⇒ (𝑎′ ∧ 𝑏′) ∨ 0 = 𝑏′ 

 
⇒ (𝑎′ ∧ 𝑏′) = 𝑏′ 

 
⇒ (𝑏′ ∧ 𝑎′) = 𝑏′ by Commutative law 

Therefore 𝑎′ ∨ 𝑏 = 1 ⇒ 𝑏′ ≤ 𝑎′ 

Hence (𝑖𝑖𝑖) ⇒ (𝑖𝑣) 

To prove (𝒊𝒗) ⇒ (𝒊) 

Assume that 𝑏′ ≤ 𝑎′ 

To prove that 𝑎 ≤ 𝑏 

We have (𝑏′ ∧ 𝑎′) = 𝑏′ 

 
Taking complement on both sides 

 
⇒ (𝑏′ ∧ 𝑎′)′ = (𝑏′)′ 

 
⇒ 𝑏 ∨ 𝑎 = 𝑏 

 
Therefore 𝑎 ∨ 𝑏 = 𝑏 ⇒ 𝑎 ≤ 𝑏 

 
Hence (𝑖𝑣) ⇒ (𝑖) 
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Hence 𝑎 ≤ 𝑏 ⇔ 𝑎 ∧ 𝑏′ = 0 ⇔ 𝑎′ ∨ 𝑏 = 1 ⇔ 𝑏′ ≤ 𝑎′ 

 
Hence the proof. 

 
4. State and prove DeMorgan’s law of lattice. 

 
(OR) 

 
Let (𝑳, ∧, ∨, 𝟎, 𝟏) is a complemented lattice, then prove that 

 
1. (𝒂 ∧ 𝒃)′ = 𝒂′ ∨ 𝒃′ 

 
2. (𝒂 ∨ 𝒃)′ = 𝒂′ ∧ 𝒃′ 

 
Proof: 

 
1. Claim: (𝒂 ∧ 𝒃)′ = 𝒂′ ∨ 𝒃′ 

 
To prove the above, it is enough to prove that 

 
(i) (𝑎 ∧ 𝑏) ∧ (𝑎′ ∨ 𝑏′) = 0 

 
(ii) (𝑎 ∧ 𝑏) ∨ (𝑎′ ∨ 𝑏′) = 1 

 
(i) Let (𝑎 ∧ 𝑏) ∧ (𝑎′ ∨ 𝑏′) 

 
⇒ ((𝑎 ∧ 𝑏) ∧ 𝑎′) ∨ ((𝑎 ∧ 𝑏) ∧ 𝑏′) (Distributive law) 

 
⇒ (𝑎 ∧ 𝑏 ∧ 𝑎′) ∨ (𝑎 ∧ 𝑏 ∧ 𝑏′) (Associative law) 

 
⇒ (0 ∧ 𝑏) ∨ (𝑎 ∧ 0) (𝑏 ∧ 𝑏′ = 0) 
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⇒ 0 ∨ 0 (𝑎 ∧ 0 = 0) 

 
Hence (𝑎 ∧ 𝑏) ∧ (𝑎′ ∨ 𝑏′) = 0 . . . (1) 

 
(ii) Let (𝑎 ∧ 𝑏) ∧ (𝑎′ ∨ 𝑏′) 

 
⇒ (𝑎 ∨ (𝑎′ ∨ 𝑏′)) ∧ (𝑏 ∨ (𝑎′ ∨ 𝑏′)) (Distributive law) 

 
⇒ (𝑎 ∨ 𝑏 ∨ 𝑎′) ∧ (𝑎 ∨ 𝑏 ∨ 𝑏′) (Associative law) 

 
⇒ (1 ∨ 𝑏) ∧ (𝑎 ∨ 1) (𝑏 ∨ 𝑏′ = 1) 

 
⇒ 1 ∧ 1 = 1 (𝑎 ∧ 0 = 0) 

 
Hence (𝑎 ∧ 𝑏) ∧ (𝑎′ ∨ 𝑏′) = 1 . . . (2) 

From (1) and (2) we have, (𝑎 ∧ 𝑏)′ = 𝑎′ ∨ 𝑏′ 

2. Claim: (𝒂 ∨ 𝒃)′ = 𝒂′ ∧ 𝒃′ 

 
To prove the above, it is enough to prove that 

 
(i) (𝑎 ∨ 𝑏) ∧ (𝑎′ ∧ 𝑏′) = 0 

 
(ii) (𝑎 ∨ 𝑏) ∨ (𝑎′ ∧ 𝑏′) = 1 

 
(i) Let (𝑎 ∨ 𝑏) ∧ (𝑎′ ∧ 𝑏′) 

 
⇒ (𝑎 ∧ (𝑎′ ∧ 𝑏′)) ∨ (𝑏 ∧ (𝑎′ ∧ 𝑏′)) (Distributive law) 

 
⇒ (𝑎 ∧ 𝑎′ ∧ 𝑏′) ∨ (𝑏 ∧ 𝑏′ ∧ 𝑎′) (Associative law) 
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⇒ (0 ∧ 𝑏′) ∨ (0 ∧ 𝑎′) (𝑏 ∧ 𝑏′ = 0) 

 
⇒ 0 ∨ 0 (𝑎 ∧ 0 = 0) 

 
Hence (𝑎 ∨ 𝑏) ∧ (𝑎′ ∧ 𝑏′) = 0 . . . (3) 

 
(ii) Let (𝑎 ∨ 𝑏) ∨ (𝑎′ ∧ 𝑏′) 

 
⇒ ((𝑎 ∨ 𝑏) ∨ 𝑎′) ∧ ((𝑎 ∨ 𝑏) ∨ 𝑏′) (Distributive law) 

 
⇒ (𝑎 ∨ 𝑏 ∨ 𝑎′) ∧ (𝑎 ∨ 𝑏 ∨ 𝑏′) (Associative law) 

 
⇒ (1 ∨ 𝑏) ∧ (𝑎 ∨ 1) (𝑏 ∨ 𝑏′ = 0) 

 
⇒ 1 ∧ 1 = 1 (Idempotent law) 

 
Hence (𝑎 ∨ 𝑏) ∨ (𝑎′ ∧ 𝑏′) = 1 . . . (4) 

From (3) and (4) we have, (𝑎 ∨ 𝑏)′ = 𝑎′ ∧ 𝑏′ 
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Boolean Algebra: 

 
A complemented distributive lattice is called Boolean Algebra. 

 
A Boolean algebra is distributive lattice with “0” element and “1” element in 

which every element has a complement. 

A Boolean algebra is a non empty set with 2 binary operations ∧ and ∨ and is 

satisfied by the following conditions. ∀𝑎, 𝑏, 𝑐 ∈ 𝐿 

1. 𝐿1: 𝑎 ∧ 𝑎 = 𝑎 and 𝑎 ∨ 𝑎 = 𝑎 

 
2. 𝐿2: 𝑎 ∧ 𝑏 = 𝑏 ∧ 𝑎 and 𝑎 ∨ 𝑏 = 𝑏 ∨ 𝑎 

 
3. 𝐿3: 𝑎 ∧ (𝑏 ∧ 𝑐) = (𝑎 ∧ 𝑏) ∧ 𝑐 and 𝑎 ∨ (𝑏 ∨ 𝑐) = (𝑎 ∨ 𝑏) ∨ 𝑐 

 
4. 𝐿4: 𝑎 ∧ (𝑎 ∨ 𝑏) = 𝑎 and 𝑎 ∨ (𝑎 ∧ 𝑏) = 𝑎 

 
5. 𝐷1: 𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐) 

 
6. 𝐷2: 𝑎 ∧ (𝑏 ∨ 𝑐) = (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑐) 

 
7. There exist between “0” and “1” such that 𝑎 ∧ 0 = 0, 𝑎 ∨ 0 = 𝑎, 𝑎 ∧ 1 = 𝑎 and 

 
𝑎 ∨ 1 = 1∀𝑎 

 
8. ∀𝑎 ∈ 𝐿, there exist corresponding element 𝑎′ in L such that 𝑎 ∧ 𝑎′ = 0 and 

 
𝑎 ∨ 𝑎′ = 1 
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Note: 

 
Boolean Sum is defined as 1 + 1 = 1, 1 + 0 = 1, 0 + 1 = 1, 0 + 0 = 0 

 
Boolean Product is defined as 1 ⋅ 1 = 1, 1 ⋅ 0 = 0, 0 ⋅ 1 = 0, 0 ⋅ 0 = 0 

 
Absorption law in Boolean Algebra 

 
1. Prove that 𝒂 + 𝒂𝒃 = 𝒂 

 
Solution: 

 
LHS = 𝑎 + 𝑎𝑏 

 
= 𝑎(1 + 𝑏) (Distributive law) 

 
= 𝑎(1) (1 + 𝑎) = 1 

 
𝑎 + 𝑎𝑏 = 𝑎 (𝑎 ⋅ 1 = 𝑎) 

 
2. Prove that 𝒂 + 𝒂̅𝒃 = 𝒂 + 𝒃 

 
Solution: 

 
LHS = 𝑎 + 𝑎̅𝑏 

 
= 𝑎 + 𝑎𝑏 + 𝑎̅𝑏 (𝑎 = 𝑎 + 𝑎𝑏) 

 
= 𝑎 + 𝑏(𝑎 + 𝑎̅) (Distributive law) 

 
= 𝑎 + 𝑏(1) (𝑎 + 𝑎̅) = 1 (𝑎 ⋅ 1 = 𝑎) 
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= RHS 

 
3. Prove that (𝒂 + 𝒃)(𝒂 + 𝒄) = 𝒂 + 𝒃𝒄 

 
Solution: 

 
LHS = (𝑎 + 𝑏)(𝑎 + 𝑐) 

 
= 𝑎𝑎 + 𝑎𝑐 + 𝑎𝑏 + 𝑏𝑐 (Distributive law) 

 
= 𝑎 + 𝑎𝑐 + 𝑎𝑏 + 𝑏𝑐 (𝑎 ⋅ 𝑎 = 𝑎) 

 
= 𝑎(1 + 𝑐) + 𝑎𝑏 + 𝑏𝑐 (Distributive law) 

 
= 𝑎 + 𝑎𝑏 + 𝑏𝑐 (1 + 𝑎 = 1) 

 
= 𝑎 + 𝑏𝑐 (𝑎 + 𝑎𝑏 = 𝑎) 

 
= RHS 

 
4. In any Boolean Algebra, show that  𝒂 = 𝒃 ⇔ 𝒂𝒃̅ + 𝒂̅𝒃 = 𝟎 

 
Proof: 

 
Let (𝐵,∙, +, 0, 1) be any Boolean Algebra. 

Let 𝑎, 𝑏 ∈ 𝐵 𝑎𝑛 𝑑 𝑎 = 𝑏 . . . (1) 

Claim: 𝑎𝑏̅ + 𝑎̅𝑏 = 0 

Now 𝑎𝑏̅ + 𝑎̅𝑏 = 𝑎 ∙ 𝑏̅ + 𝑎̅. 𝑏 
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= 𝑎 ∙ 𝑎̅ + 𝑎̅. 𝑎 using (1) 

 
= 0 + 0 (since 𝑎 ∙ 𝑎̅ = 0) 

 
= 0 

 
Conversely, assume  𝑎𝑏̅ + 𝑎̅𝑏 = 0 

 
⇒ 𝑎 + 𝑎𝑏̅ + 𝑎̅𝑏 = 𝑎 (Left Cancellation law) 

 
⇒ 𝑎 + 𝑎𝑏̅ = 𝑎 (Absorption law) 

 
⇒ (𝑎 + 𝑎̅) ∙ (𝑎 + 𝑏) = 𝑎 (Distributive law) 

 
⇒ 1 ∙ (𝑎 + 𝑏) = 𝑎 (𝑎 + 𝑎̅ = 1) 

 
⇒ (𝑎 + 𝑏) = 𝑎 (𝑎 ∙ 1 = 𝑎) . . . (a) 

Consider  𝑎𝑏̅ + 𝑎̅𝑏 = 0 

⇒ 𝑎𝑏̅ + 𝑎̅𝑏 + 𝑏 = 𝑏 (Right Cancellation law) 

 
⇒ 𝑎𝑏̅ + 𝑏 = 𝑏 (Absorption law) 

 
⇒ (𝑎 + 𝑏) ∙ (𝑏 + 𝑏̅) = 𝑏 (Distributive law) 

 
⇒ (𝑎 + 𝑏) ∙ 1 = 𝑎 (𝑏 + 𝑏̅ = 1) 

 
⇒ (𝑎 + 𝑏) = 𝑏 (𝑏 ∙ 1 = 𝑏) . . . (b) 

From (a) and (b) we get 𝑎 = 𝑎 + 𝑏 = 𝑏 
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Hence 𝑎 = 𝑏 

 
5. If 𝒂 and 𝒃 are two elements of a Boolean algebra, then prove that 

 
𝒂 + (𝒂 ⋅ 𝒃) = 𝒂, 𝒂 ⋅ (𝒂 + 𝒃) = 𝒂 

 
Proof: 

 
Consider 𝑎 + (𝑎 ⋅ 𝑏) = 𝑎 = 𝑎 ⋅ 1 + (𝑎 ⋅ 𝑏) 

 
= 𝑎 ⋅ (1 + 𝑏) 

 
= 𝑎 ⋅ 1 [𝑎 + 1 = 1, 1 + 𝑎 = 1] 

 
= 𝑎 

 
Consider 𝑎 ⋅ (𝑎 + 𝑏) = 𝑎 = 𝑎 ⋅ 𝑎 + (𝑎 ⋅ 𝑏) 

 
= 𝑎 + (𝑎 ⋅ 𝑏) 

 
= 𝑎 ⋅ 1 + 𝑎 ⋅ 𝑏 

 
= 𝑎 ⋅ (1 + 𝑏) 

 
= 𝑎 ⋅ 1 [𝑎 ⋅ 𝑎 = 𝑎, 𝑎 ⋅ 0 = 0] 

 
= 𝑎 

 
Hence the proof. 

 
6. Prove that in a Boolean algebra, the complement of any element is unique. 
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Proof: 

 
Let b and c be the complements of the element a. 

Then 𝑏 + 𝑎 = 1, 𝑏 ⋅ 𝑎 = 0 

𝑎 + 𝑐 = 1, 𝑎 ⋅ 𝑐 = 0 

 
Consider 𝑏 = 1 ⋅ 𝑏 

 
= (𝑎 + 𝑐) ⋅ 𝑏 

 
= 𝑎 ⋅ 𝑏 + 𝑐 ⋅ 𝑏 

 
= 0 + 𝑐 ⋅ 𝑏 

 
= 𝑎 ⋅ 𝑐 + 𝑐 ⋅ 𝑏 

 
= 𝑐 ⋅ (𝑎 + 𝑏) 

 
= 1 ⋅ 𝑐 

 
= 𝑐 

 
Hence the complement is unique. 

 
7. In a Boolean algebra show that the following statements are equivalent. For 

any a and b (i) 𝒂 + 𝒃 = 𝒃 (ii) 𝒂 ⋅ 𝒃 = 𝒂 (iii) 𝒂′ + 𝒃 = 𝟏 (iv) 𝒂 ⋅ 𝒃′ = 𝟎 (v) 𝒂 ≤ 𝒃 

Proof: 
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To prove (𝒊) ⇒ (𝒊𝒊) 

Assume that 𝑎 + 𝑏 = 𝑏 

To prove that 𝑎 ⋅ 𝑏 = 𝑎 

Now 𝑎 = 𝑎 ⋅ (𝑎 + 𝑏) 

= 𝑎 ⋅ 𝑏 

 
Hence (𝑖) ⇒ (𝑖𝑖) 

 
To prove (𝒊𝒊) ⇒ (𝒊𝒊𝒊) 

Assume that 𝑎 ⋅ 𝑏 = 𝑎 

To prove that 𝑎′ + 𝑏 = 1 

Now 𝑎′ + 𝑏 = (𝑎 ⋅ 𝑏′) + 𝑏 

 
= 𝑎′ + 𝑏′ + 𝑏 

 
= 𝑎′ + 1 

 
= 1 

 
Hence (𝑖𝑖) ⇒ (𝑖𝑖𝑖) 

 
To prove (𝒊𝒊𝒊) ⇒ (𝒊𝒗) 

 
Assume that 𝑎′ + 𝑏 = 1 
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To prove that 𝑎 ⋅ 𝑏′ = 0 

 
Taking complement on both sides 

 
⇒ (𝑎′ + 𝑏)′ = 1′ 

 
⇒ 𝑎 ⋅ 𝑏′ = 0 

 
Hence (𝑖𝑖𝑖)   ⇒ (𝑖𝑣) 

To prove (𝒊𝒗) ⇒ (𝒗) 

Assume that 𝑎 ⋅ 𝑏′ = 0 

To prove that 𝑎 ≤ 𝑏 

Then 𝑎 ⋅ 𝑏 = 𝑎 ⋅ 𝑏 + 0 

= 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑏′ 

 
= 𝑎(𝑏 + 𝑏′) 

 
= 𝑎 ⋅ 1 

 
= 𝑎 

Hence (𝑖𝑣) ⇒ (𝑣) 

To prove (𝒗) ⇒ (𝒊) 

Assume that 𝑎 ≤ 𝑏 
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To prove that 𝑎 + 𝑏 = 𝑏 

 
We have 𝑎 ⋅ 𝑏 = 𝑏 

 
⇒ 𝑎 + 𝑏 = (𝑎 ⋅ 𝑏) + 𝑏 

 
= 𝑎 ⋅ 𝑏 + 1 ⋅ 𝑏 

 
= (𝑎 + 1) ⋅ 𝑏 

 
= 1 ⋅ 𝑏 

 
= 𝑏 

 
Hence the proof. 

 
8. Prove that in a Boolean algebra 

 
(𝒂 + 𝒃) ⋅ (𝒂′ + 𝒄) = 𝒂𝒄 + 𝒂′𝒃 = 𝒂𝒄 + 𝒂′𝒃 + 𝒃𝒄 

 
Proof: 

 
Now, (𝑎 + 𝑏) ⋅ (𝑎′ + 𝑐) = (𝑎 + 𝑏) ⋅ 𝑎′ + (𝑎 + 𝑏) ⋅ 𝑐 

 
= 𝑎′ ⋅ (𝑎 + 𝑏) + (𝑎 + 𝑏) ⋅ 𝑐 

 
= 𝑎𝑎′ + 𝑎′𝑏 + 𝑎𝑐 + 𝑏𝑐 

 
= 0 + 𝑎′𝑏 + 𝑎𝑐 + 𝑏𝑐 

 
= 𝑎′𝑏 + 𝑎𝑐 + 𝑏𝑐 
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= 𝑎𝑐(𝑏 + 𝑏′) + 𝑎′𝑏(𝑐 + 𝑐′) + 𝑏𝑐(𝑎 + 𝑎′) 

 
= 𝑎𝑏𝑐 + 𝑎𝑏′𝑐 + 𝑎′𝑏𝑐 + 𝑎′𝑏𝑐′ + 𝑎𝑏𝑐 + 𝑎′𝑏𝑐 

 
= 𝑎𝑏𝑐 + 𝑎𝑏′𝑐 + 𝑎′𝑏𝑐 + 𝑎′𝑏𝑐′ 

 
= 𝑎𝑏𝑐 + 𝑎𝑏′𝑐 + 𝑎′𝑏(𝑐 + 𝑐′) 

 
= 𝑎𝑐(𝑏 + 𝑏′) + 𝑎′𝑏(𝑐 + 𝑐′) 

 
= 𝑎𝑐(1) + 𝑎′𝑏(1) 

 
= 𝑎𝑐 + 𝑎′𝑏 

 
= RHS 

 
9. Show that in a Boolean algebra the law of the double complement holds. 

(or) Prove the involution law (𝒂′)′ = 𝒂 

Solution: 

 
It is enough to prove that 𝑎′ + 𝑎 = 1 and 𝑎 ⋅ 𝑎′ = 0 

 
By domination laws of Boolean algebra, we get 

 
𝑎′ + 𝑎 = 1 and 𝑎 ⋅ 𝑎′ = 0 

 
By commutative law, we get 𝑎′ + 𝑎 = 1 and 𝑎 ⋅ 𝑎′ = 0 

 
Therefore complement of 𝑎′ is 𝑎 
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′ 

⇒ (𝑎′)′ = 𝑎 
 
 

′ 

⇒ 𝑎 = 𝑎 

 
Hence the proof. 

binils.com

binils - Anna University App on Play Store

                    Free PDF Study Materials
binils.com - Anna University, Polytechnic & Schools



 

MA8351 DISCRETE MATHEMATICS 

 

 

Relation 

 
A relation 𝑅 is a well - defined rule, which tells whether given 2 elements 𝑥 and 𝑦 

 
of 𝐴 are related or not. 

 
If 𝑥 is related to y, we write 𝑥𝑅𝑦, otherwise 𝑥 does not related to 𝑦. 

 
Equivalence Relation 

 
Let 𝑋 be any set. 𝑅 be a relation defined on 𝑋. If 𝑅 satisfies Reflexive, Symmetric 

and Transitive then the relation 𝑅 is said to be an Equivalence relation. 

Partial Order Relation 

 
Let 𝑋 be any set. 𝑅 be a relation defined on 𝑋. Then 𝑅 is said to be a partial order 

relation if it satisfies reflexive, antisymmetric and transitive relation. 

Example: 

 
Subset relation ⊆ is a Partial order relation. 

Solution: 

Consider any three sets A, B, C 

 
Since any set is a subset to itself, 𝐴 ⊆ 𝐴, therefore ⊆ is reflexive. 

If 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴, then 𝐴 = 𝐵, therefore ⊆ is antisymmetric. 

If 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐶, then 𝐴 ⊆ 𝐶 , therefore ⊆ is transitive. 
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Hence ⊆ is a Partial order relation. 

 
Example:2 

 
Divides relation is a Partial order relation. 

Solution: 

For 𝑍+ be the set of positive integer 𝑎, 𝑏, 𝑐 ∈ 𝑍+ 

 
Since 𝑎⁄𝑎 ,∕ is reflexive. 

 
Since 𝑎⁄𝑏 𝑎𝑛𝑑 𝑏⁄𝑎 ⇒ 𝑎 = 𝑏,∕ is antisymmetric. 

Since 𝑎⁄𝑏 𝑎𝑛𝑑 𝑏⁄𝑐 ⇒ 𝑎 ∕ 𝑐 is transitive. 

Therefore, Divides relation " ∕ " is a partial order relation. 

Hence the proof. 

Partially Ordered Set or Poset: 

 
A set together with a partial order relation defined on it is called partially ordered 

set or Poset. 

Usually, a partial order relation is defined by the symbol " ≤ ", this symbol does 

not necessarily mean “less than or equal to” as we use for real numbers. 

For example, 
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Let ℝ be the set of real numbers. The relation “less than or equal to” or " ≤ " is a 

partial order on ℝ. Therefore (ℝ, ≤) is a Poset. 

Comparable Property: 

 
In a Poset for any 2 elements 𝑎, 𝑏 either 𝑎 ≤ 𝑏 or 𝑏 ≤ 𝑎 is called comparable 

property. Otherwise it is called incomparable property. 

Totally Ordered Set or Linearly Ordered Set or Chain: 

 
A partially ordered set (𝜌, ≤) is said to be totally ordered set or linearly ordered set 

or chain if any 2 elements are comparable. 

i.e., given any 2 elements 𝑥 and 𝑦 of a Poset either 𝑥  𝑦 or 𝑦 ≤ 𝑥 

 
Example: 

 
𝑎𝑅𝑏 if 𝑎 ≤ 𝑏 is a total order. 

 
𝑎𝑅𝑏 if 𝑎/𝑏 is not a total order. 

 
For, Given elements 2 and 3 neither 2/3 nor 3/2. 

(i.e., 2 and 3 are not comparable). 

Problems: 

 
1. Show that the “greater than or equal to” relation is a Partial ordering on 

the set of integers. 
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Solution: 

 
Since 𝑎 ≥ 𝑎 for every integer a, ≥ is reflexive. 

 
If 𝑎 ≥ 𝑏 and 𝑏 ≥ 𝑎 then 𝑎 = 𝑏. Hence ≥ is antisymmetric. 

Since 𝑎 ≥ 𝑏 and 𝑏 ≥ 𝑐 imply 𝑎 ≥ 𝑐. Hence ≥ is transitive. 

Therefore, ≥ is a partial order relation on the set of integers. 

2. In the Poset (𝒁+,∕) are the integers 3 and 9 comparable? Are 5 and 7 are 

comparable? 

Solution: 

 
Since 3/9, the integers 3 and 9 are comparable. 

For 5, 7 neither 5/7 nor 7/5 

Therefore, the integers 5 and 7 are not comparable (incomparable). 

 
3. Check the following Posets are totally orders set (or linearly ordered set or 

chain) (i) (𝒁, ≤) (ii) (𝒁+,∕) 

Solution: 

 
(i) Consider, the Poset (𝑍, ≤) 

 
If 𝑎 and 𝑏 are integer then either 𝑎 ≤ 𝑏 or 𝑏 ≤ 𝑎, for all a, b 
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Therefore, the Poset (𝑍, ≤) satisfies comparable property. 

 
(𝑍, ≤) is a totally ordered set. 

 
(ii) Consider, the Poset (𝑍+,∕) 

 
Take 5 and 7. 

 
Since, neither 5/7 nor 7/5 

 
(𝑍+,∕) does not satisfies the comparable property. 

Therefore, (𝑍+,∕) is not a totally ordered set. 

4. Show that (𝑵, ≤) is a partially ordered set where N is set of all positive 

integers and ≤ is defined by 𝒎 ≤ 𝒏 iff 𝒏 − 𝒎 is a non – negative integer. 

Solution: 

 
Give N is the set of all positive integer. 

 
The given relation is 𝑚 ≤ 𝑛 iff 𝑛 − 𝑚 is a non – negative integer. 

 
(i) To prove R is reflexive 

 
Now, ∀𝑥 ∈ 𝑁, 𝑥 − 𝑥 = 0 is a non – negative integer. 

Therefore, 𝑥𝑅𝑥 ∀𝑥 ∈ 𝑁. 

Therefore R is reflexive. 
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(ii) To prove R is Antisymmetric. 

 
Consider 𝑥𝑅𝑦 & 𝑦𝑅𝑥 

 
Since 𝑥𝑅𝑦 ⇒ 𝑥 − 𝑦 is a non – negative integer. 

 
𝑦𝑅𝑥 ⇒ 𝑦 − 𝑥 is a non – negative integer. 

 
⇒ −(𝑥 − 𝑦) is a non – negative integer. 

 
⇒ 𝑥 = 𝑦 

 
Therefore R is Antisymmetric. 

 
(iii) To prove R is Transitive. 

 
Assume 𝑥𝑅𝑦 & 𝑦𝑅𝑧 

 
Since 𝑥𝑅𝑦 ⇒ 𝑥 − 𝑦 is a non – negative integer. 

 
𝑦𝑅𝑧 ⇒ 𝑦 − 𝑧 is a non – negative integer. 

 
⇒ (𝑥 − 𝑦) + (𝑦 − 𝑧) is a non – negative integer. 

 
⇒ 𝑥 − 𝑧 is a non – negative integer. 

 
⇒ 𝑥𝑅𝑧 

 
𝑥𝑅𝑦 & 𝑦𝑅𝑧 ⇒ 𝑥𝑅𝑧 

 
Therefore R is transitive. 
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Hence R is partial order relation. 

 
5. Is the Poset (𝒁+,/) a lattice. 

 
Solution: 

 
Let a and b be any two positive integer. 

Then LUB {𝑎, 𝑏} =LCM {𝑎, 𝑏} 

GLB {𝑎, 𝑏} =GCD {𝑎, 𝑏} 

 
Should exist in 𝑍+. 

 
For, example let 𝑎 = 4, 𝑏 = 20 

 
Then LUB {𝑎, 𝑏} =LCM {4, 20} = 1 

 
GLB {𝑎, 𝑏} =GCD {4, 20} = 4 

 
Hence both GLB and LUB exist. 

Therefore, the Poset (𝑍+,/) a lattice. 
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