4.1 Semigroups and Monoids

Define Algebraic System:

- A non empty set G together with one or more n ary operations say *
 (binary) is called an Algebraic System or Algebraic Structure or Algebra.
- We denoted it by [*G*, *].
- Note: $+, -, \cdot, \times, *, \cup, \cap$ etc are some of binary operations.

Properties of Binary Operations

Let the binary operation be $*: G \times G \rightarrow G$.

Then we have the following properties:

Closure Property: $a * b = x \in G$, for all $a, b \in G$.

Commutativity Property:

a * b = b * a, for all $a, b \in G$.

Associativity:

(a * b) * c = a * (b * c), for all $a, b, c \in G$.

Identity Element:

a * e = e * a = a, for all $a \in G$.

'e' is called the identity element.

MA8351 DISCRETE MATHEMATICS

Inverse Element:

If a * b = b * a = e (identity), then b is called the inverse of a and it is

denoted by $b = a^{-1}$.

Left Cancellation law:

 $a * b = a * c \Rightarrow b = c$

Right Cancellation law:

 $b * a = c * a \Rightarrow b = c$

If the binary operation defined on G is + and X, then we have the following table.

For all a, b, c ε	(G, +)	(G,×)
G D	INIIS.	com
Commutativity	$\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$	$a \times b = b \times a$
Associativity	(a + b) + c = a + (b + c)	$(a \times b) \times c = a \times (b \times c)$
Identity element	a + 0 = 0 + a = a	$a \times 1 = 1 \times a = a$
	$(0 \rightarrow \text{identity})$	$(1 \rightarrow identity)$
Inverse element	a + (-a) = 0	$a \times \frac{1}{a} = \frac{1}{a} \times a = 1$
	$(-a \rightarrow additive inverse)$	$(\stackrel{1}{a} \rightarrow \text{multiplicative})$
		inverse)

MA8351 DISCRETE MATHEMATICS

NOTATIONS:

- Z the set of all integers.
- Q the set of all rational numbers.
- R the set of all real numbers.
- C the set of all complex numbers.
- R^+ the set of all positive real numbers.
- Q^+ the set of all positive rational numbers.

Semigroups and Monoids:

Define semigroup If a non – empty set S together with the binary operation * satisfying the following

properties

Closure Property:

a * b = b * a, for all $a, b \in S$.

Associativity:

(a * b) * c = a * (b * c), for all $a, b, c \in S$.

Then (*S*,*) is called a semigroup.

Monoid:

A semigroup (S,*) with an identity element with respect to * is called Monoid. It is denoted by (M,*).

MA8351 DISCRETE MATHEMATICS

In other words, a non – empty set 'M' with respect to * is said to be a monoid, if * satisfies the following properties

For $a, b \in M$

Closure Property:

a * b = b * a, for all a, b ε M.

Associativity:

(a * b) * c = a * (b * c), for all a, b, c ε M.

Identity Element:

a * e = e * a = a, for all a ε M.

'e' is called the identity element. **SCOM**

MA8351 DISCRETE MATHEMATICS

4.2 Groups

Define Group

A non-empty set G together with the binary operation *, i.e., (G, *) is called a group if * satisfies the following conditions.

(i) Closure Property: $a * b = x \in G$, for all $a, b \in G$.

(ii) Associativity: (a * b) * c = a * (b * c) for all $a, b, c \in G$.

(iii) Identity: There exists an element $e \in G$ called the identity element such that

a * e = e * a = a, for all a ε G.

(iv) Inverse: There exists an element $a^{-1}\varepsilon$ G called the inverse of 'a' such that

$$a * a^{-1} = a^{-1} * a = a$$
, for all a ε G.
Define Abelian Group

In a group (G, *), if a * b = b * a, for all a, b ε G, then the group (G, *) is

called an Abelian group.

Example:(Z, +) is an Abelian group.

Define an Order of a Group

The number of elements in a group G is called the order of the group and

is denoted by O(G).

It is denoted by O(G) or |G|.

Define Finite and Infinite Group

(i) If O(G) is finite, then G is said to be a finite group.

MA8351 DISCRETE MATHEMATICS

(ii) If O(G) is infinite, then G is said to be a infinite group.

Theorems on Abelian Groups

Theorem: 1

If every element of a group G has its own inverse, then G is abelian.

(**OR**)

For any group G, if $a^2 = e$ with $a \neq e$, then G is abelian.

Proof:

Let (G, *) be a group.

For a, b ε G, we have a * b ε G Given $a = a^{-1}$ and $b = b^{-1}$ S COM $(a * b) = (a * b)^{-1}$ $= b^{-1} * a^{-1} = b * a(\because a = a^{-1} \& b = b^{-1})$ $\Rightarrow a * b = b * a$

 \therefore *G* is abelian.

Hence the proof.

Theorem: 2

Prove that a group (G, *) is abelian iff $(a * b)^2 = a^2 * b^2$ for all a, $b \in G$

Proof:

MA8351 DISCRETE MATHEMATICS

Assume that *G* is abelian.

 $a * b = b * a, a, b \in G \rightarrow (1)$ Let $a^2 * b^2 = (a * a) * (b * b)$ $= a * [a * (b * b)] \because (* \text{ is Associative})$ $= a * [(a * b) * b] \because (* \text{ is Associative})$ $= a * [(b * a) * b] \because (By (1))$ $= (a * b) * (a * b) \because (* \text{ is Associative})$ $= (a * b)^2$ $\therefore (a * b)^2 = a^2 * b^2$

Conversely assume that $(a * b)^2 = a^2 * b^2$

To prove G is abelian.

$$\Rightarrow (a * b) * (a * b) = (a * a) * (b * b)$$

$$\Rightarrow a * [b * (a * b)] = a * [a * (b * b)] \quad \because (* \text{ is Associative})$$

$$\Rightarrow b * (a * b) = a * (b * b) \qquad (\text{Left Cancellation law})$$

$$\Rightarrow (b * a) * b = (a * b) * b \qquad (\text{Right Cancellation law})$$

$$\Rightarrow (b * a) = (a * b)$$

 \therefore G is abelian.

MA8351 DISCRETE MATHEMATICS

Hence the proof.

Theorem: 3

If (G, *) is an abelian group, then for all a, b ε G then $(a * b)^n = a^n * b^n$

Proof:

Let (G, *) be an abelian group and a, b εG . Then for all n εZ ,

$$(a * b)^n = a^n * b^n$$

Case (i) Let n = 0

Then $a^0 = e$, $b^0 = e$, $(a * b)^0 = e$

Case (ii) let n = 1

Let n be a positive integer

$$(a * b)^1 = a^1 * b^1$$

The result is true for n = 1

Assume that it is true for n = k, so that

$$(a*b)^k = a^k*b^k \to (1)$$

To prove it is true for n = k + 1

Now $(a * b)^{k+1} = (a * b)^k * (a * b)$

$$= a^k * b^k * a * b$$

MA8351 DISCRETE MATHEMATICS

$$= a^{k} * (b^{k} * a) * b$$

= $a^{k} * (a * b^{k}) * b$
= $(a^{k} * a) * (b * b^{k})$
= $a^{k+1} * b^{k+1}$

Hence the result is true for n = k + 1.

Hence by induction, the result is true for positive integer values of n.

Hence the proof.

Problems on Groups:

1. Show that set $\mathbb R$ with the usual addition as a binary operation is an abelian group.

Solution: Let $a, b, c \in \mathbb{R}$

- (i) Closure property: Clearly $a + b \in \mathbb{R}$
- (ii) Associative property: a + (b + c) = (a + b) + c
- (iii) Identity element: Since $0\in\mathbb{R}$, we have

 $\Rightarrow a + 0 = 0 + a = a$

(iv) Additive Inverse: For $a \in \mathbb{R}$, we have $-a \in \mathbb{R}$, such that

MA8351 DISCRETE MATHEMATICS

a + (-a) = 0 = (-a) + a

 \therefore The inverse of *a* is -a.

(v) Commutative property: a + b = b + a for all $a, b \in \mathbb{R}$

 \therefore (\mathbb{R} , +) is an abelian group.

Since \mathbb{R} contains infinite number of elements, $(\mathbb{R}, +)$ is an infinite abelian group

2. Show that $(\mathbb{R} - \{1\}, *)$ is an abelian group, where * is defined by

a * b = a + b + ab, for all $a, b \in \mathbb{R}$.

Solution: Here $\mathbb{R} - \{1\}$ means the set or real numbers except 1.

(i) Closure property:

Clearly $a * b = a + b + ab \in (\mathbb{R} - \{1\})$ $[a \neq -1, b \neq -1]$

(ii) Associative property:

(a * b) * c = (a + b + ab) * c= a + b + ab + c + (a + b + ab)c= a + b + ab + c + ac + bc + abc(A)

MA8351 DISCRETE MATHEMATICS

$$a * (b * c) = a * (b + c + bc)$$

$$= a + b + c + bc + a(b + c + bc)$$

 $= a + b + c + bc + ab + ac + abc \qquad \dots (B)$

From (A) and (B), we get

(a * b) * c = a * (b * c), for all $a, b \in (\mathbb{R} - \{1\})$

(iii) Identity element:

Let '*e*' be the identity element.

Then,
$$a * e = a$$

 $\Rightarrow a + e + ae = a$
 $\Rightarrow e(1 + a) = 0$

 $\Rightarrow e = 0$

Here '0' is the identity element and $0 \in (\mathbb{R} - \{1\})$

(iv) Inverse:

Let the inverse of *a* be a^{-1}

Then, $a * a^{-1} = 0$ (identity)

MA8351 DISCRETE MATHEMATICS

$$\Rightarrow a + a^{-1} + aa^{-1} = 0$$

$$\Rightarrow a^{-1}(1+a) = -a$$

$$\Rightarrow a^{-1} = -\frac{a}{1+a} \in (\mathbb{R} - \{1\})$$

 \therefore Inverse element is $-\frac{a}{1+a}$

(v) Commutative:

$$\Rightarrow a * b = a + b + ab$$

$$= b + a + ba$$
$$= bb * a \text{ for all } a, b \in (\mathbb{R} - \{1\})$$

 \therefore ($\mathbb{R} - \{1\}$) is an abelian group.

3. Show that $(\mathbb{Q}^+,*)$ is an abelian group where * is defined by

$$a * b = \frac{ab}{2}$$
, for all $a, b \in \mathbb{Q}^+$

Solution:

Let \mathbb{Q}^+ be the set of all positive rational numbers.

(i) Closure property:

MA8351 DISCRETE MATHEMATICS

Clearly
$$a * b = \frac{ab}{2} \in \mathbb{Q}^+$$

(ii) Associative property:

$$(a * b) * c = \frac{ab}{2} * c = \frac{\frac{abc}{2}}{2} = \frac{abc}{4} \dots (1)$$

$$a * (b * c) = a * \frac{bc}{2} = \frac{\frac{abc}{2}}{2} = \frac{abc}{4} \dots (2)$$

From (1) and (2) we get,

$$(a * b) * c = a * (b * c), for all a, b \in \mathbb{Q}^+$$

(iii) Identity element: **SCOM**

Then, a * e = a

$$\Rightarrow \frac{ae}{2} = a \Rightarrow e = 2$$

Here '2' is the identity element and $2 \in \mathbb{Q}^+$

iv) Inverse:

Let the inverse of *a* be a^{-1}

Then, $a * a^{-1} = 2$ (identity)

MA8351 DISCRETE MATHEMATICS

$$\Rightarrow \frac{aa^{-1}}{2} = 2$$
$$\Rightarrow a^{-1} = \frac{4}{a}$$

 \therefore Inverse element is $\frac{4}{a} \in \mathbb{Q}^+$

v) Commutative:

- Now $a * b = \frac{ab}{2}$
- $\therefore b * a = \frac{ba}{2} = \frac{ab}{2}$ $\therefore a * b = b * a, \text{ for all } a, b \in \mathbb{Q}^+ \text{ S COM}$ Hence $(\mathbb{Q}^+, *)$ is an abelian group.

4. Let $G = \{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \}$ Show that G is a group

under the operation of matrix multiplication.

Solution:

Let
$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $A = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $C = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

 \therefore *G* = {*I*, *A*, *B*, *C*}. Since it is finite set we shall form Cayley table and verify the axioms of a Group.

MA8351 DISCRETE MATHEMATICS

I is the identity element.

$$A \cdot I = I \cdot A = A, B \cdot I = I \cdot B = B, C \cdot I = I \cdot C = C$$

$$i^{2} = A \cdot A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$AB = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = C$$

$$AC = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = B$$

$$B^{2} = B \cdot B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$C^{2} = C \cdot C = \begin{bmatrix} -1 & 0 & -1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$BC = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = A$$

$$CA = \begin{bmatrix} -1 & 0 & -1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = B$$

Similarly BA = C, CB = A

Cayley table:

-	Ι	А	В	С
Ι	Ι	A	В	С

MA8351 DISCRETE MATHEMATICS

A	А	Ι	С	В
В	В	С	Ι	А
С	С	В	А	Ι

(i) Closure property:

The first line of the table contains only all the elements of G. So G is closed under matrix multiplication.

(ii) Associative property:Since matrix multiplication is associative it is true for G also. So Associative is satisfied.

(iii) Identity element:

I is the identity element.

(iv) Inverse:

Inverse of A is A, B is B and C is C.

So (G, \cdot) is a group under matrix multiplication.

MA8351 DISCRETE MATHEMATICS

5. Check whether $H_1 = \{0, 5, 10\}$ and $H_2 = \{0, 4, 8, 12\}$ are subgroups of

 Z_{15} with respect to $+_{15}$.

Solution:

The addition tables (mod 15) for the sets H_1 and H_2 is given below:

For H_1

For H_2

+15	0	4	8	12
0	0	4	8	12
4	4	8	12	1
8	8	12	1	5
12	12	1	5	9

MA8351 DISCRETE MATHEMATICS

Here all the entries in the addition table for H_1 are the elements of H_1 .

 \therefore H_1 is a subgroup of Z_{15} .

Also all the entries in the addition table for H_2 are not the elements of H_2 .

- \therefore *H*² is not closed under addition.
- \therefore H_2 is not a subgroup of Z_{15} .

binils.com

MA8351 DISCRETE MATHEMATICS

4.3 Subgroups

Define Subgroups

- Let (G, *) be a group. Then (H, *) is said to be subgroup of (G, *) if $H \subseteq G$ and
- (H, *) itself is a group under the operation *
- i.e., (H, *) is said to be a subgroup of (G, *) if
 - $e \in H$, where e is the identity in G.
 - For any $a \in H$, $a^{-1} \in H$
 - For $a, b \in H$, $a * b \in H$

Define Trivial and Proper Subgroups

- $(\{e\}, *)$ and (G, *) are trivial subgroups of (G, *).
- All other subgroups of (G, *) are called proper subgroups.

Examples of Subgroups:

- (Z, +) is a Subgroup of (Q, +)
- (Q, +) is a Subgroup of (R, +)
- (R, +) is a Subgroup of(C,+)

MA8351 DISCRETE MATHEMATICS

com

Example of Subgroups

Find all the subgroups $(z_{12},+12)$

Solution:

 $z_{12} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$

- Let $S_1 = \{0, 6\}$
- $S_2 = \{0, 4, 8\}$
- $S_3 = \{0, 3, 6, 9\}$
- S4 = {0, 2, 4, 6, 8}
 S1, S2, S3, S4 are proper subgroups of (z12, +12)
- $(\{0\}, +12)$ and $(z_{12}, +12)$ are its trivial subgroup

Theorems on Subgroups:

Theorem: 1

State and prove the necessary and sufficient condition for a subset of a

group to be subgroup.

Statement:

Let (G, *) be a group. H is a nonempty subset of G, then H is a subgroup of G

MA8351 DISCRETE MATHEMATICS

if and only if whenever $a, b \in H \Rightarrow a * b^{-1} \in H$ for all

a, *b* ∈*H*

(Definition: (G, *) be a group, H nonempty subset of G. H is a subgroup of G if

H itself is a group under the same binary operation *)

Proof:

Necessary Part

Let (G, *) be a group. H is a nonempty subset of G.

Assume that H is a subgroup of G.

By definition, (H, *) is a group. So $a, b \in H \Rightarrow b^{-1} \in H$ by inverse property

 $\Rightarrow a * b^{-1} \in H$ by closure property

Sufficient Part

Let (G, *) be a group. H is a nonempty subset of G.

Assume $a, b \in H \Rightarrow a * b^{-1} \in H \rightarrow$ (1)

Claim: H is a subgroup of

G i.e., (H, *) is a group.

H is nonempty so let $a \in H$

MA8351 DISCRETE MATHEMATICS

(iii) Identity

Now $a, a \in H$ by (1)

 $a * a^{-1} \in H$

i.e., $e \in H$

Identity exists

(iv)Inverse

Let $a \in H$. Now by previous step $e \in H$

Now $e, a \in H$ by (1)

$\Rightarrow e * a^{-1} \in H$ $\Rightarrow e \in H$

Hence Inverse exists.

(i) Closure

Let $a, b \in H$ by previous step $b^{-1} \in H$

Now $a, b^{-1} \in H$ by(1)

 $\Rightarrow a * (b^{-1})^{-1} \in H$

 $\Rightarrow a * b \in H$

MA8351 DISCRETE MATHEMATICS

Closure is verified.

(ii) Associative

 $a,\,b,\,c\in H$, $\pmb{H}\subseteq\pmb{G}$, $a,\,b,\,c\in G$

In G (a * b) * c = a * (b * c)

 $\therefore \text{ In H} (a * b) * c = a * (b * c)$

Associative is verified.

(H, *) be a group.

Hence H is a subgroup of G. Hence the proof.

Theorem: 2

Prove that intersection of two subgroups of a group (G, *) is a subgroup of

(G, *). Also, prove that union of subgroups need not be a group.

Proof:

Let (G, *) be a group. H and K are non – empty subgroups of (G, *). Both

H and K satisfying the following necessary conditions

Let $a, b \in H \Rightarrow a * b^{-1} \in H$

Let $a, b \in K \Rightarrow a * b^{-1} \in K$... (1)

MA8351 DISCRETE MATHEMATICS

Consider the subset $H \cap K$ of G

(i) Since H is a subgroup of G, $e \in H$

Since K is a subgroup of G, $e \in K$

 $\div e \in H \cap K$

so, $H \cap K$ is a non – empty subset of G.

(ii) Let a, $b \in H \cap K$

By Sufficient condition for aSubgroup

We need to prove $a * b^{-1} \in H \cap K$ $a, b \in H$ and $a, b \in K$

By (1) $a * b^{-1} \in H \cap K$

 \therefore *H* \cap *K* is a subgroup of (G, *)

Hence the proof.

Now we are going to Prove that Union of two Subgroups of a group need

not be a Subgroup.

Let us prove the above fact by giving counter examples

Consider G = set of integers under addition (Z, +)

$$= \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

MA8351 DISCRETE MATHEMATICS

- $H = 2Z = \{\ldots, -6, -4, -2, 0, 2, 4, 6, \ldots\}$
- $K = 3Z = \{\ldots, -9, -6, -3, 0, 3, 6, 9, \ldots\}$

H and K are subgroups of (Z, +)

 $H \cup K = \{\ldots, -9, -6, -4, -3, -2, 0, 2, 3, 4, 6, 9, \ldots\}$

 $H \cup K$ is not closed under addition.

As $2,3 \in H \cup K$ but $2 + 3 = 5 \notin H \cup K$

So $H \cup K$ is not a subgroup of (Z, +).

Cyclic Group: OID IS COM

Define Cyclic Groups

A group (G, *) is said to be cyclic if there exists an element $a \in G$ such that every

element of G can be written as some power of "a".

i.e., *a*ⁿ for some integer n.

G is said to be generated by "a" (or) "a" is a generator ofG.

We write $G = \prec a \succ$

MA8351 DISCRETE MATHEMATICS

Examples:

The set of complex numbers $\{1, -1, i, -i\}$ under multiplication operation is a cyclic group.

There are two generators -i and i as $i^1 = 1$, $i^2 = -1$, $i^3 = -i$, $i^4 = 1$ and also

 $(-i)^{1} = -i$, $(-i)^{2} = -1$, $(-i)^{3} = i$, $(-i)^{4} = 1$ which covers all the elements of the

group.

Hence it is a Cyclic Group.

However -1 is not a generator.

Theorem: 1 binis com Every Subgroup of a Cyclic group is Cyclic.

Proof:

Let H be a cyclic group generated by an element $a \in G$.

: Every element in G can be expressed as a power of the element "a".

Let H be a subgroup of G.

If $H = \{e\}$, then H is a subgroup of G and it is cyclic.

 \therefore The result is trivial.

Suppose $H \neq \{e\}$ then there exists an element $x \in H$ with $x \neq e$.

MA8351 DISCRETE MATHEMATICS

 $\therefore x = a^k$ for some integer k.

Let m be the least positive integer such that $a^m \epsilon H$.

Let $b \in H$ then $b = a^n$ for some integer n.

Let n = mq + r where $0 \le r < m$

 $\Rightarrow b = a^n$

 $\Rightarrow b = a^{mq+r}$

 $\Rightarrow b = a^{mq} * a^r$

$$\Rightarrow b = (a^m)^q * a^r$$
$$\Rightarrow a^r = \frac{b}{(a^m)^q}$$

$$\Rightarrow a^r = b * (a^m)^{-q}$$

Now $b \in H$, $(a^m)^q \in H$ and H is closed in *.

 \therefore we have $b * (a^m)^{-q} \in H$

This shows that there exists an integer "r" such that $o \le r < m$ with $a^r \in H$.

Since m is the least positive integer for which $a^m \epsilon H$, $a^r \epsilon H$ with $o \le r < m$ is not possible.

 $\therefore r = 0$ so $b = a^{mq}$

MA8351 DISCRETE MATHEMATICS

 $\Rightarrow b = (a^m)^q$

Every element $b \in H$ is expressed as a power of a^m .

i.e., H is generated by the element $a^m \epsilon H$

H is a cyclic group generated by a^m .

Hence, every subgroup of a cyclic group is

cyclic.

Hence the proof.

binils.com

MA8351 DISCRETE MATHEMATICS

4.4 Cosets

Define Left Coset and Right Coset of H in G.

Let (H, *) be a subgroup of (G, *).

For any $a \in G$, the left coset of H, denoted by a * H, is the set

 $a * H = \{a * h: h \in H\}$ for all $a \in G$

For any $a \in G$, the right coset of H, denoted by H * a, is the set

 $H * a = \{h * a: h \in H\}$ for all $a \in G$

Theorem: 1 Let (H, *) be a subgroup of (G, *). Then any two left Cosets (right Cosets) of H of a group (G, *) are either identical or disjoint and the union of distinct left Cosets of H is G (or) The set of all distinct left Cosets of the subgroup H of the group (G, *) forms a partition of G.

Proof:

Let $a, b \in G$

Consider the Cosets a * H and b * H

We shall prove that a * H = b * H (or) $a * H \cap b * H = \emptyset$

MA8351 DISCRETE MATHEMATICS

Suppose $a * H \cap b * H \neq \emptyset$

Let c $\epsilon a * H \cap b * H = \emptyset$

 $\Rightarrow c \in a * H \text{ and } c \in b * H$

Let $c = a * h_1$ and $c = b * h_2$ for all $h_1, h_2 \in H$

 $\therefore a * h_1 = b * h_2$

Take h_1^{-1} on both sides

$$\Rightarrow (a * h_1) * h_1^{-1} = (b * h_2) * h_1^{-1}$$

$$\Rightarrow a * (h_1 * h_1^{-1}) = b * (h_2 * h_1^{-1})$$

$$\Rightarrow a * e - h * h_2 \text{ where } h_2 = h_2 * h_1^{-1}$$

$$\Rightarrow a * e = b * h3$$
 where $h3 = h2 * h1$

 $\Rightarrow a = b * h_3$

 $\Rightarrow a \in b * h_3$

 $\Rightarrow a * H \subseteq b * H \dots (1)$

IIIrly $b * H \subseteq a * H \dots (2)$

From (1) and (2) we have a * H = b * H

 \therefore Any two left cosets are either identical or distinct.

MA8351 DISCRETE MATHEMATICS

Each element of the left Coset a * H is also an element of G.

 \therefore Every left coset of a * H is a subset of G.

Hence $\bigcup_{a \in G} a * H \subseteq G \dots (3)$

If $a \in G$, $a \in a * H$ then $a \in \bigcup_{a \in G} a * H$

 $G \subseteq \bigcup_{a \in G} a * H \dots (4)$

 \therefore The set of all distinct left cosets of H is a partition "n' of the group G.

Hence the proof.

LAGRANGE'S THEOREM:

The order of a subgroup of a finite group is a divisor of the order of the group.

i.e., if H is a subgroup of a finite group (G, *) then O(H) divides O(G).

Proof:

Let (G, *) be a finite group of order n and H be a subgroup of G with order m.

 $\Rightarrow O(H) = m \& O(G) = n$

We will prove that O(H)

Since H contains m distinct elements, every left cost of H contains exactly m elements.

MA8351 DISCRETE MATHEMATICS

(Write the theorem: 1)

Let $a_1 * H$, $a_2 * H$, ..., $a_k * H$ be the distinct left cosets of

H. Let $G = a_1 * H \cup a_2 * H \cup \ldots \cup a_k * H$

 $O(G) = O(a_1 * H) + O(a_2 * H) + \ldots + O(a_k * H)$

 $= O(H) + O(H) + \ldots + O(H)$

 $= m + m + \ldots + m$ (n times)

 \Rightarrow *n* = *mk*

$$\Rightarrow n/m = k$$

$$\Rightarrow m \text{ divides n. Discourse Combinations of } Combinations of C$$

Hence the proof.

Normal Subgroup

A subgroup (H,*) of (G,*) is said to be normal subgroup of G, for $x \in G$ and for $h \in H$, if x * h = h * x (or) for all $x \in G, xH = Hx$

Note:

Consider H as a subgroup of G, then the subgroup H is said to be normal,

MA8351 DISCRETE MATHEMATICS

for all $x \in G$, $x * h * x^{-1} = H(\text{or})$ for all $x \in G$, $x * h * x^{-1} \in H$

Theorem: 1

Every subgroup of an abelian group is normal.

Proof:

Let (G,*) be an abelian group and (H,*) be a subgroup of G.

Let $x \in G$ be any element.

Then $xH = \{x * h / h \in H\}$

$$= \{h * x / h \in H\}$$
(G is abelian)
$$= Hx$$

Since "x" is arbitrary, $xH = Hx \forall x \in G$

Hence H is a normal subgroup of G.

Hence the proof.

Theorem: 2

Prove that intersection of two normal subgroup of (G,*) is a normal subgroup

of (G,*).

Proof:

MA8351 DISCRETE MATHEMATICS

Let (H,*) and (K,*) are two normal subgroup.

 \Rightarrow H and K are subgroups of G.

 \Rightarrow *H* \cap *K* is a subgroup of G. (Already proved)

To prove $(H \cap K, *)$ is a normal subgroup of (G, *).

Let $h \in H \cap K$ be any element and $x \in G$ be any element.

Then $x \in G$ and $h \in H$ and $h \in K$

Since *H* and *K* are normal, $x * h * x^{-1} \in H \dots (1)$

and $x * h * x^{-1} \in K \dots (2)$ From (1) and (2) we get,

$$x * h * x^{-1} \in H \cap K$$

Hence $H \cap K$ is a normal subgroup of G.

Hence the proof.

MA8351 DISCRETE MATHEMATICS

4.5 Homomorphism

Let (G, \cdot) and (G', *) be any two groups.

A mapping $f: G \to G'$ is said to be a homomorphism, if $f(a \cdot b) = f(a) * f(b)$

for any $a, b \in G$ is called a group homomorphism.

Example: (i)

Let $f: (Z, +) \rightarrow (Z, +)$ given by $f(x) = 2x \forall x \in Z$ is a homomorphism.

For, $x, y \in Z$, f(x + y) = 2(x + y) = 2x + 2y = f(x) + f(y)

Example: (ii) Let $f: (R, +) \to (R^+, \cdot)$ given by $f(x) = e^x \forall x \in R$ is a homomorphism.

For,
$$x \in R$$
, $f(x + y) = e^{x+y} = e^x \cdot e^y = f(x) \cdot f(y)$

Isomorphism:

Let (G, \cdot) and (G', *) be any two groups. A mapping $f: G \to G'$ is said to be isomorphism if

- (i) f is one one
- (ii) f is onto
- (iii) f is homomorphism

MA8351 DISCRETE MATHEMATICS

Types of Homomorphism

- (i) If f is one to one then f is monomorphism.
- (ii) (ii) If f is onto then f is epimorphism.

Theorem: 1

Homomorphism preserves identities.

Proof:

Let $a \in G$

Let f be a homomorphism from (G, *) and (G', *)

= f(a * e) (e – identity in G)

= f(a) * f(e) (f – homomorphism)

 $\Rightarrow e' = f(e)$ (Left cancellation law)

Hence f preserves identities.

Hence the proof.

Theorem: 2

MA8351 DISCRETE MATHEMATICS

Homomorphism preserves inverse.

Proof:

Let $a \in G$

Since G is a group, $a^{-1} \in G$

Since G is a group $a * a^{-1} = a^{-1} * a = e$

Consider $a * a^{-1} = e$

$$\Rightarrow f(a * a^{-1}) = f(e)$$

$$\Rightarrow f(a) * f(a^{-1}) = e' \because e' = f(e), f \text{ is homomorphism}$$
$$\Rightarrow f(a^{-1}) \text{ is the inverse of } f(a) \in G'$$

Hence $[f(a)]^{-1} = f(a^{-1})$

Hence f preserves inverse.

Hence the proof.

Kernal of Homomorphism

Let $f: G \to G'$ be a group homomorphism. The set of elements of G which are mapped into e' (identity in G') is called the kernel of f and it is denoted by ker(f)

$$\ker(f) = \{x \in G / f(x) = e'\}$$

MA8351 DISCRETE MATHEMATICS

Theorem: 1

Kernel of a homomorphism of a group into another group is a normalsubgroup.

Proof:

Let (G,*) and (G', \bigoplus) be two groups.

 $f: (G,*) \rightarrow (G', \bigoplus)$ is a homomorphism.

Define ker(f) = { $x \in G / f(x) = e'$ }

Claim: Ker f is a normal subgroup of G

We know that homomorphism preserves identity. *i.e.*, f(e) = e', so $e \in kerf$

 \Rightarrow Ker f is non empty.

(ii) $a, b \in \ker f \Rightarrow a * b^{-1} \in \ker f$ then ker f is a subgroup.

 $a \in kerf \Rightarrow f(a) = e'$ by definition of ker f

 $b \in kerf \Rightarrow f(b) = e'$ by definition of ker f

Since homomorphism preserves inverse $\Rightarrow [f(a)]^{-1} = f(a^{-1})$

Now $f(a * b^{-1}) = f(a) \oplus f(b^{-1})$

MA8351 DISCRETE MATHEMATICS

$$= f(a) \bigoplus [f(b)]^{-1}$$
$$= e' \bigoplus e'$$
$$= e'$$

 $\Rightarrow a \ast b^{-1} \in kerf$

Hence kerf is a subgroup of G.

(iii) Let $a \in kerf \Rightarrow f(a) = e'$ by definition of kerf

Homomorphism preserves inverses $\Rightarrow [f(a)]^{-1} = f(a^{-1})$

So
$$f(g^{-1} * a * g) = f(g^{-1}) \oplus f(a) \oplus f(g)$$

$$= [f(g)]^{-1} \oplus e' \oplus f(g)$$

$$= [f(g)]^{-1} \oplus f(g)$$

$$= e'$$

Hence by definition, $g^{-1} * a * g \in kerf$

Hence kerf is a normal subgroup.

Hence the proof.

Theorem:2

MA8351 DISCRETE MATHEMATICS

Fundamental theorem of group homomorphism

Every homomorphic image of a group G is isomorphic to some quotient group of G.

(**OR**)

Let $f: G \to G'$ be a onto homomorphism of groups with kernel K, then $\frac{G}{K} \cong G'$

Proof:

Let f be the homomorphism $f: G \to G'$

Let *G*['] be the homomorphic image of a group G. Let K be the kernel of this homomorphism.

Clearly K is a normal subgroup of G.

Claim: $\frac{G}{K} \cong G'$

Define $\varphi: \frac{G}{K} \to G'$ by $\varphi(K * a) = f(a)$ for all $a \in G$

(i) φ is well defined.

We have K * a = K * b

 $\Rightarrow a * b^{-1} \in K$

 $\Rightarrow f(a * b^{-1}) = e'$ (e' is identity)

MA8351 DISCRETE MATHEMATICS

$$\Rightarrow f(a) * f(b^{-1}) = e'$$

$$\Rightarrow f(a) * [f(b)]^{-1} = e'$$

$$\Rightarrow f(a) * [f(b)]^{-1} * f(b) = e' * f(b)$$

$$\Rightarrow f(a) = f(b)$$

$$\Rightarrow \varphi(K * a) = \varphi(K * b)$$

Hence φ is well defined.

(ii) To prove φ is one – one.

To prove $\varphi(K * a) = \varphi(K * b) \Rightarrow K * a = K * b$

We know that $\varphi(K * a) = \varphi(K * b)$

$$\Rightarrow f(a) = f(b)$$

$$\Rightarrow f(a) * f(b^{-1}) = f(b) * f(b^{-1})$$

$$= f(b * b^{-1})$$

$$= f(e)$$

$$\Rightarrow f(a) * f(b^{-1}) = e'$$

$$\Rightarrow f(a * b^{-1}) = e'$$

$$\Rightarrow a * b^{-1} \in K$$

$$\Rightarrow K * a * b^{-1} = K$$

$$\Rightarrow K * a = K * b$$

Hence φ is one – one.

MA8351 DISCRETE MATHEMATICS

(iii) φ is onto.

Let $y \in G'$

Since f is onto, there exists $a \in G$ such that f(a) = y

Hence $\varphi(K * a) = f(a) = y$

Hence φ is onto.

(iv) φ is a homomorphism.

Now $\varphi(K * a * K * b) = \varphi(K * a * b)$

$$= f(a * b)$$

$$= f(a) * f(b) COM$$

$$= \varphi(K * a) * (K * b)$$

Hence φ is a homomorphism.

Since φ is one – one, onto, homomorphism φ is an isomorphism between $\frac{G}{K}$ and G'.

Hence $\frac{G}{K} \cong G'$

Hence the proof.

MA8351 DISCRETE MATHEMATICS