binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

4.1 Semigroups and Monoids

Define Algebraic System:

- A non - empty set G together with one or more n - ary operations say * (binary) is called an Algebraic System or Algebraic Structure or Algebra.
- We denoted it by $[G, *]$.
- Note: +,,$- \cdot \times, \quad$ *, U, \cap etc are some of binary operations.

Properties of Binary Operations

Let the binary operation be $*: G \times G \rightarrow G$.
Then we have the following properties:

Closure Property:

$\mathrm{a} * \mathrm{~b}=x \in \mathrm{G}$, for all $a, b \varepsilon G$.

Commutativity Property:

$$
a * b=b * a \text {, for all } a, b \varepsilon G .
$$

Associativity:

$$
(a * b) * c=a *(b * c), \text { for all } a, b, c \varepsilon G .
$$

Identity Element:

$$
a * e=e * a=a, \text { for all } a \varepsilon G .
$$

' e ' is called the identity element.

Inverse Element:

If $a * b=b * a=e$ (identity), then b is called the inverse of a and it is denoted by $\mathrm{b}=a^{-1}$.

Left Cancellation law:

$$
a * b=a * c \Rightarrow b=c
$$

Right Cancellation law:

$$
b * a=c * a \Rightarrow b=c
$$

If the binary operation defined on G is + and X , then we have the following table.

For all a, b, c $\boldsymbol{\varepsilon}$	$(\mathbf{G},+)$	(\mathbf{G}, \times)
G		
Commutativity	$\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}$	$\mathrm{a} \times \mathrm{b}=\mathrm{b} \times \mathrm{a}$
Associativity	$(\mathrm{a}+\mathrm{b})+\mathrm{c}=\mathrm{a}+(\mathrm{b}+\mathrm{c})$	$(\mathrm{a} \times \mathrm{b}) \times \mathrm{c}=\mathrm{a} \times(\mathrm{b} \times \mathrm{c})$
Identity element	$\mathrm{a}+0=0+\mathrm{a}=\mathrm{a}$	$\mathrm{a} \times 1=1 \times \mathrm{a}=\mathrm{a}$
Inverse element	$\mathrm{a}+(-\mathrm{a})=0$	$(1 \rightarrow \mathrm{identity})$
	$(-\mathrm{a} \rightarrow$ additive inverse $)$	$\left(\frac{1}{a} \rightarrow\right.$ multiplicative

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

NOTATIONS:

- Z - the set of all integers.
- Q - the set of all rational numbers.
- R - the set of all real numbers.
- C - the set of all complex numbers.
- R^{+}- the set of all positive real numbers.
- Q^{+}- the set of all positive rational numbers.

Semigroups and Monoids:

Define semigroup

If a non - empty set S together with the binary operation $*$ satisfying the following properties

Closure Property:

$a * b=b * a$, for all $a, b \varepsilon S$.

Associativity:

$$
(a * b) * c=a *(b * c), \text { for all } a, b, c \varepsilon S
$$

Then $(S, *)$ is called a semigroup.
Monoid:

A semigroup $(S, *)$ with an identity element with respect to $*$ is called Monoid. It is denoted by $(M, *)$.

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

In other words, a non - empty set ' M ' with respect to $*$ is said to be a monoid, if $*$ satisfies the following properties

For $a, b \in M$

Closure Property:

$a * b=b * a$, for all $\mathrm{a}, \mathrm{b} \varepsilon \mathrm{M}$.

Associativity:

$$
(a * b) * c=a *(b * c) \text {, for all a, b, c } \varepsilon \mathrm{M} .
$$

Identity Element:

$$
a * e=e * a=a \text {, for all a } \varepsilon \mathrm{M}
$$

' e ' is called the identity element.

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

4.2 Groups

Define Group

A non-empty set G together with the binary operation *,i.e., $(G, *)$ is called a group if $*$ satisfies the following conditions.
(i) Closure Property: $a * b=x \in G$, for all $a, b \varepsilon G$.
(ii) Associativity: $(a * b) * c=a *(b * c)$ for all $a, b, c \varepsilon G$.
(iii) Identity: There exists an element $e \varepsilon G$ called the identity element such that $a * e=e * a=a$, for all a $\varepsilon \mathrm{G}$.
(iv) Inverse: There exists an element $a^{-1} \varepsilon \mathrm{G}$ called the inverse of ' a ' such that $a * a^{-1}=a^{-1} * a=a$, for all a $\varepsilon \mathrm{G}$. Define Abelian Group

In a group $(\mathrm{G}, *)$, if $\mathrm{a} * \mathrm{~b}=\mathrm{b} * \mathrm{a}$, for $\mathrm{all} \mathrm{a}, \mathrm{b} \varepsilon \mathrm{G}$, then the $\operatorname{group}(\mathrm{G}, *)$ is called an Abelian group.

Example: $\left(Z_{,}+\right)$is an Abelian group.

Define an Order of a Group

The number of elements in a group G is called the order of the group and is denoted by $\mathrm{O}(\mathrm{G})$.

It is denoted by $\mathrm{O}(\mathrm{G})$ or $|G|$.

Define Finite and Infinite Group

(i) If $\mathrm{O}(\mathrm{G})$ is finite, then G is said to be a finite group.

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

(ii) If $\mathrm{O}(\mathrm{G})$ is infinite, then G is said to be a infinite group.

Theorems on Abelian Groups

Theorem: 1
If every element of a group G has its own inverse, then \mathbf{G} is abelian.
(OR)
For any group \mathbf{G}, if $a^{2}=e$ with $a \neq e$, then \mathbf{G} is abelian.

Proof:

Let (G, *) be a group.
For $\mathrm{a}, \mathrm{b} \varepsilon \mathrm{G}$, we have $\mathrm{a} * \mathrm{~b} \in \mathrm{G}$

$$
\begin{aligned}
& \text { Given } \left.\begin{array}{rl}
& =a^{-1} \text { and } b=b^{-1} \\
\begin{array}{rl}
(a * b) & =(a * b)^{-1} \\
& =b^{-1} * a^{-1}=b * a\left(\because a=a^{-1} \& b=b^{-1}\right) \\
\Rightarrow a * b & =b * a
\end{array}
\end{array} \begin{array}{l}
\Rightarrow a+1
\end{array}\right)
\end{aligned}
$$

$\therefore G$ is abelian.
Hence the proof.

Theorem: 2

Prove that a group $(\mathbf{G}, *)$ is abelian iff $(a * b)^{2}=a^{2} * b^{2}$ for all $a, b \in G$

Proof:

Assume that G is abelian.
$a * b=b * a, \mathrm{a}, \mathrm{b} \in \mathrm{G} \rightarrow(1)$

Let $a^{2} * b^{2}=(a * a) *(b * b)$
$=a *[a *(b * b)] \because(*$ is Associative $)$
$=a *[(a * b) * b] \because(*$ is Associative $)$
$=a *[(b * a) * b] \because(B y(1))$
$=(a * b) *(a * b) \because(*$ is Associative $)$
$=(a * b)^{2}$
$\therefore(a * b)^{2}=a^{2} * b^{2}$ ก

Conversely assume that $(a * b)^{2}=a^{2} * b^{2}$

To prove G is abelian.

$$
\begin{array}{cl}
& \Rightarrow(a * b) *(a * b)=(a * a) *(b * b) \\
\Rightarrow & a *[b *(a * b)]=a *[a *(b * b)] \\
\Rightarrow & \because(* \text { is Associative) } \\
\Rightarrow & b *(a * b)=a *(b * b) \\
& \text { (Left Cancellation law) } \\
\Rightarrow(b * a)=(a * b) & \text { (Right Cancellation law) } \\
\Rightarrow(a * b) * b &
\end{array}
$$

$\therefore \mathrm{G}$ is abelian.

Hence the proof.
Theorem: 3
If $(\mathbf{G}, *)$ is an abelian group, then for all $\mathrm{a}, \mathrm{b} \boldsymbol{\varepsilon} \mathbf{G}$ then $(a * b)^{\boldsymbol{n}}=\boldsymbol{a}^{\boldsymbol{n}} * \boldsymbol{b}^{\boldsymbol{n}}$

Proof:

Let $(\mathrm{G}, *)$ be an abelian group and $\mathrm{a}, \mathrm{b} \varepsilon \mathrm{G}$. Then for all $\mathrm{n} \varepsilon \mathrm{Z}$,

$$
(a * b)^{n}=a^{n} * b^{n}
$$

Case (i) Let $n=0$

Then $a^{0}=e, b^{0}=e,(a * b)^{0}=e$

Hence the result is true when $n=0$

$$
亠(a * b)^{0}=a^{0} * b^{0}
$$

Case (ii) let $n=1$
Let n be a positive integer

$$
(a * b)^{1}=a^{1} * b^{1}
$$

The result is true for $n=1$
Assume that it is true for $n=k$, so that

$$
(a * b)^{k}=a^{k} * b^{k} \rightarrow(1)
$$

To prove it is true for $n=k+1$
Now $(a * b)^{k+1}=(a * b)^{k} *(a * b)$

$$
=a^{k} * b^{k} * a * b
$$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

$$
\begin{aligned}
& =a^{k} *\left(b^{k} * a\right) * b \\
& =a^{k} *\left(a * b^{k}\right) * b \\
& =\left(a^{k} * a\right) *\left(b * b^{k}\right) \\
& =a^{k+1} * b^{k+1}
\end{aligned}
$$

Hence the result is true for $n=k+1$.

Hence by induction, the result is true for positive integer values of n.

Hence the proof.

Problems on Groups:

1. Show that set \mathbb{R} with the usual addition as a binary operation is an abelian group.

Solution: Let $a, b, c \in \mathbb{R}$
(i) Closure property: Clearly $a+b \in \mathbb{R}$
(ii) Associative property: $a+(b+c)=(a+b)+c$
(iii) Identity element: Since $0 \in \mathbb{R}$, we have
$\Rightarrow a+0=0+a=a$
(iv) Additive Inverse: For $a \in \mathbb{R}$, we have $-a \in \mathbb{R}$, such that

$$
a+(-a)=0=(-a)+a
$$

\therefore The inverse of a is -a .
(v) Commutative property: $a+b=b+a$ for all $a, b \in \mathbb{R}$
$\therefore(\mathbb{R},+)$ is an abelian group.

Since \mathbb{R} contains infinite number of elements, $(\mathbb{R},+)$ is an infinite abelian group
2. Show that $(\mathbb{R}-\{1\}, *)$ is an abelian group, where $*$ is defned by
$a * b=a+b+a b$, for all $a, b \in \mathbb{R}$.

Solution:

Here $\mathbb{R}-\{1\}$ means the set or real numbers except 1.
(i) Closure property:

Clearly $a * b=a+b+a b \in(\mathbb{R}-\{1\})$
$[a \neq-1, b \neq-1]$
(ii) Associative property:

$$
\begin{align*}
(a * b) * c & =(a+b+a b) * c \\
& =a+b+a b+c+(a+b+a b) c \\
& =a+b+a b+c+a c+b c+a b c \tag{A}
\end{align*}
$$

$$
\begin{align*}
& a *(b * c)=a *(b+c+b c) \\
&=a+b+c+b c+a(b+c+b c) \\
&=a+b+c+b c+a b+a c+a b c \tag{B}
\end{align*}
$$

From (A) and (B), we get

$$
(a * b) * c=a *(b * c), \quad \text { for all } a, b \in(\mathbb{R}-\{1\})
$$

(iii) Identity element:

Let ' e ' be the identity element.

Here ' 0 ' is the identity element and $0 \in(\mathbb{R}-\{1\})$
(iv) Inverse:

Let the inverse of a be a^{-1}

Then, $a * a^{-1}=0 \quad$ (identity)

$$
\Rightarrow a+a^{-1}+a a^{-1}=0
$$

$$
\Rightarrow a^{-1}(1+a)=-a
$$

$$
\Rightarrow a^{-1}=-\frac{a}{1+a} \in(\mathbb{R}-\{1\})
$$

\therefore Inverse element is $-\frac{a}{1+a}$
(v) Commutative:

$$
\Rightarrow a * b=a+b+a b
$$

$$
=b+a+b a
$$

$$
=b b * a
$$

$\therefore a * b=b * a, \quad$ for all $a, b \in(\mathbb{R}-\{1\})$
$\therefore(\mathbb{R}-\{1\})$ is an abelian group.
3. Show that $\left(\mathbb{Q}^{+}, *\right)$ is an abelian group where *is defined by

$$
a * b=\frac{a b}{2}, \text { for all } a, b \in \mathbb{Q}^{+}
$$

Solution:

Let \mathbb{Q}^{+}be the set of all positive rational numbers.
(i) Closure property:

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Clearly $a * b=\frac{a b}{2} \in \mathbb{Q}^{+}$
(ii) Associative property:

$$
\begin{align*}
& (a * b) * c=\frac{a b}{2} * c=\frac{\frac{a b c}{2}}{2}=\frac{a b c}{4} \tag{1}\\
& a *(b * c)=a * \frac{b c}{2}=\frac{\frac{a b c}{2}}{2}=\frac{a b c}{4} \tag{2}
\end{align*}
$$

From (1) and (2) we get,

$$
(a * b) * c=a *(b * c), \text { for all } a, b \in \mathbb{Q}^{+}
$$

(iii) Identity element:

Let ' e ' be the identity element.

Then, $\quad a * e=a$
$\Rightarrow \frac{a e}{2}=a \quad \Rightarrow e=2$

Here ' 2 ' is the identity element and $2 \in \mathbb{Q}^{+}$
iv) Inverse:

Let the inverse of a be a^{-1}

Then, $a * a^{-1}=2$
(identity)

$$
\begin{aligned}
& \Rightarrow \frac{a a^{-1}}{2}=2 \\
& \Rightarrow a^{-1}=\frac{4}{a}
\end{aligned}
$$

\therefore Inverse element is $\frac{4}{a} \in \mathbb{Q}^{+}$
v) Commutative:

Now $a * b=\frac{a b}{2}$
$\therefore b * a=\frac{b a}{2}=\frac{a b}{2}$
$\therefore a * b=b * a$, for all $a, b \in \mathbb{Q}^{+}$
Hence $\left(\mathbb{Q}^{+}, *\right)$ is an abelian group.
 under the operation of matrix multiplication.

Solution:
Let $\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \mathrm{A}=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \mathrm{C}=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
$\therefore G=\{I, A, B, C\}$. Since it is finite set we shall form Cayley table and verify the axioms of a Group.

I is the identity element.

$$
\begin{aligned}
& A \cdot I=I \cdot A=A, B \cdot I=I \cdot B=B, C \cdot I=I \cdot C=C \\
& I^{2}=A \cdot A=\left[\begin{array}{lll}
\perp & { }_{1} \\
0 & 1
\end{array}\left[\begin{array}{ll}
\perp & { }_{1} \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
\perp & { }^{1} \\
0 & 1
\end{array}\right]=I\right. \\
& A B=\left[\begin{array}{cc}
-1 & 0 \\
n & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]=C \\
& A C=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=B \\
& B^{2}=B \cdot B=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I \\
& C^{2}=C \cdot C=\left[\begin{array}{ccc}
-1 & 0 & -1 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I \\
& B C=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]=A \\
& C A=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]=B
\end{aligned}
$$

Similarly $\mathrm{BA}=\mathrm{C}, \mathrm{CB}=\mathrm{A}$

Cayley table:

\cdot	I	A	B	C
I	I	A	B	C

A	A	I	C	B
B	B	C	I	A
C	C	B	A	I

(i) Closure property:

The first line of the table contains only all the elements of G. So G is closed under matrix multiplication.
(ii) Associative property:

Since matrix multiplication is associative it is true for G also. So Associative is satisfied.
(iii) Identity element:

I is the identity element.
(iv) Inverse:

Inverse of A is A, B is B and C is C .

So (G, \cdot) is a group under matrix multiplication.

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

5. Check whether $\boldsymbol{H}_{1}=\{0,5,10\}$ and $\boldsymbol{H}_{2}=\{0,4,8,12\}$ are subgroups of Z_{15} with respect to ${ }^{+15}$.

Solution:

The addition tables $(\bmod 15)$ for the sets H_{1} and H_{2} is given below:

For H_{1}

For H_{2}

$+_{15}$	0	4	8	12
0	0	4	8	12
4	4	8	12	1
8	8	12	1	5
12	12	1	5	9

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Here all the entries in the addition table for H_{1} are the elements of H_{1}.
$\therefore H_{1}$ is a subgroup of Z_{15}.

Also all the entries in the addition table for H_{2} are not the elements of H_{2}.
$\therefore H_{2}$ is not closed under addition.
$\therefore H_{2}$ is not a subgroup of Z_{15}.
binils.com

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

4.3 Subgroups

Define Subgroups

Let $(\mathrm{G}, *)$ be a group. Then $(\mathrm{H}, *)$ is said to be subgroup of $(\mathrm{G}, *)$ if $H \subseteq G$ and $(\mathrm{H}, *)$ itself is a group under the operation *
i.e., $(\mathrm{H}, *)$ is said to be a subgroup of $(\mathrm{G}, *)$ if

- $e \varepsilon H$, where e is the identity in G .
- For any $a \varepsilon H, a^{-1} \varepsilon H$
- For $a, b \varepsilon H, a * b \varepsilon H$

Define Trivial and Proper Subgroups

- $(\{e\}, *)$ and $(G, *)$ are trivial subgroups of $(G, *)$.
- All other subgroups of $(\boldsymbol{G}, *)$ are called proper subgroups.

Examples of Subgroups:

- ($\mathrm{Z},+$) is a Subgroup of $(\mathrm{Q},+$)
- ($\mathrm{Q},+$) is a Subgroup of ($\mathrm{R},+$)
- ($\mathrm{R},+$) is a Subgroup of(C,+)

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Example of Subgroups

Find all the subgroups (z12,+12)

Solution:
$z 12=\{0,1,2,3,4,5,6,7,8,9,10,11\}$

- Let $S_{1}=\{0,6\}$
- $S_{2}=\{0,4,8\}$
- $S 3=\{0,3,6,9\}$
- $S_{4}=\{0,2,4,6,8\}$
- $S_{1}, S_{2}, S_{3}, S_{4}$ are proper subgroups of $(212,+12)$
- $(\{0\},+12)$ and $(z 12,+12)$ are its trivial subgroup

Theorems on Subgroups:

Theorem: 1

State and prove the necessary and sufficient condition for a subset of a group to be subgroup.

Statement:

Let $(\mathbf{G}, *)$ be a group. \mathbf{H} is a nonempty subset of \mathbf{G}, then \mathbf{H} is a subgroup of \mathbf{G}
if and only if whenever $a, b \in H \Rightarrow a * b^{-1} \in H$ for all
$a, b \in H$
(Definition: $(\mathrm{G}, *)$ be a group, H nonempty subset of G . H is a subgroup of G if H itself is a group under the same binary operation *)

Proof:

Necessary Part

Let $(\mathrm{G}, *)$ be a group. H is a nonempty subset of G .
Assume that H is a subgroup of G .
By definition, $(H, *)$ is a group.

So $a, b \in H \Rightarrow b^{-1} \in H$ by inverse property
$\Rightarrow a * b^{-1} \in H$ by closure property

Sufficient Part

Let $(\mathrm{G}, *)$ be a group. H is a nonempty subset of G .
Assume $a, b \in H \Rightarrow a * b^{-1} \in H \rightarrow$
Claim: H is a subgroup of
G i.e., $(\mathrm{H}, *)$ is a group.
H is nonempty so let $a \in H$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

(iii) Identity

Now $a, a \in H$ by (1)
$a * a^{-1} \in H$
i.e., $e \in H$

Identity exists
(iv)Inverse

Let a $\in H$. Now by previous step $e \in H$

Now $e, a \in H$ by (1)

Hence Inverse exists.

(i) Closure

Let $a, b \in H$ by previous step $b^{-1} \in H$

Now $a, b^{-1} \in H$ by(1)
$\Rightarrow a *\left(b^{-1}\right)^{-1} \in H$
$\Rightarrow a * b \in H$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Closure is verified.
(ii) Associative
$a, b, c \in H, \boldsymbol{H} \subseteq \boldsymbol{G}, a, b, c \in G$
$\operatorname{In} \mathrm{G}(a * b) * c=a *(b * c)$
\therefore In $\mathrm{H}(a * b) * c=a *(b * c)$
Associative is verified.
$(\mathrm{H}, *)$ be a group.

Hence H is a subgroup of G .

$$
\text { Hence the proof. } \square \text { ? }
$$

Theorem: 2

Prove that intersection of two subgroups of a group $(\mathbf{G}, *)$ is a subgroup of $(G, *)$. Also, prove that union of subgroups need not be a group.

Proof:

Let $(\mathrm{G}, *)$ be a group. H and K are non - empty subgroups of ($\mathrm{G}, *$). Both
H and K satisfying the following necessary conditions
Let $a, b \in H \Rightarrow a * b^{-1} \in H$

Let $a, b \in K \Rightarrow a * b^{-1} \in K$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Consider the subset $H \cap K$ of G
(i) Since H is a subgroup of $\mathrm{G}, e \in H$

Since K is a subgroup of G, $e \in K$
$\therefore e \in H \cap K$
so, $H \cap K$ is a non - empty subset of G .
(ii) Let $\mathrm{a}, \mathrm{b} \in H \cap K$

By Sufficient condition for aSubgroup

We need to prove $a * b^{-1} \in H \cap K$ $a, b \in H$ and $a, b \in K$

By (1) $a * b^{-1} \in H \cap K$
$\therefore H \cap K$ is a subgroup of $(\mathrm{G}, *)$
Hence the proof.
Now we are going to Prove that Union of two Subgroups of a group need not be a Subgroup.

Let us prove the above fact by giving counter examples

Consider $\mathrm{G}=$ set of integers under addition $(Z,+)$

$$
=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

- $\mathrm{H}=2 \mathrm{Z}=\{\ldots,-6,-4,-2,0,2,4,6, \ldots\}$
- $K=3 Z=\{\ldots,-9,-6,-3,0,3,6,9, \ldots\}$

H and K are subgroups of $(Z,+)$
$H \cup K=\{\ldots,-9,-6,-4,-3,-2,0,2,3,4,6,9, \ldots\}$
$H \cup K$ is not closed under addition.

As $2,3 \in H \cup K$ but $2+3=5 \notin H \cup K$

So $H \cup K$ is not a subgroup of $(Z,+)$.
Hence the proof.

Define Cyclic Groups

A group (G, *) is said to be cyclic if there exists an element $a \in G$ such that every element of G can be written as some power of "a".
i.e., a^{n} for some integer n.

G is said to be generated by "a" (or) " a " is a generator ofG.

We write $G=<a>$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Examples:

The set of complex numbers $\{1,-1, i,-i\}$ under multiplication operation is a cyclic group.

There are two generators $-i$ and i as $i^{1}=1, i^{2}=-1, i^{3}=-i, i^{4}=1$ and also $(-i)^{1}=-i,(-i)^{2}=-1,(-i)^{3}=i,(-i)^{4}=1$ which covers all the elements of the group.

Hence it is a Cyclic Group.

However -1 is not a generator.

Every Subgroup of a Cyclic group is Cyclic.

Proof:

Let H be a cyclic group generated by an element $a \in G$.
\therefore Every element in G can be expressed as a power of the element "a".
Let H be a subgroup of G .
If $H=\{e\}$, then H is a subgroup of G and it is cyclic.
\therefore The result is trivial.

Suppose $H \neq\{e\}$ then there exists an element $x \in H$ with $x \neq e$.

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

$\therefore x=a^{k}$ for some integer k .

Let m be the least positive integer such that $a^{m} \in H$.

Let $b \in H$ then $b=a^{n}$ for some integer n.

Let $n=m q+r$ where $0 \leq r<m$
$\Rightarrow b=a^{n}$
$\Rightarrow b=a^{m q+r}$
$\Rightarrow b=a^{m q} * a^{r}$
$\Rightarrow b=\left(a^{m}\right)^{q} * a^{r}$
s.anmbinils.com
$\Rightarrow a^{r}=b *\left(a^{m}\right)^{-q}$

Now $b \in H,\left(a^{m}\right)^{q} \in H$ and H is closed in $*$.
\therefore we have $b *\left(a^{m}\right)^{-q} \epsilon H$

This shows that there exists an integer " r " such that $o \leq r<m$ with $a^{r} \in H$.

Since m is the least positive integer for which $a^{m} \in H, a^{r} \in H$ with $o \leq r<m$ is not possible.
$\therefore r=0$ so $b=a^{m q}$
$\Rightarrow b=\left(a^{m}\right)^{q}$

Every element $b \in H$ is expressed as a power of a^{m}.
i.e., H is generated by the element $a^{m} \epsilon H$

H is a cyclic group generated by a^{m}.

Hence, every subgroup of a cyclic group is cyclic.

Hence the proof.
binils.com

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

4.4 Cosets

Define Left Coset and Right Coset of H in G.

Let $(H, *)$ be a subgroup of $(G, *)$.

For any $a \in G$, the left coset of H , denoted by $a * H$, is the set
$a * H=\{a * h: h \in H\}$ for all $a \in G$

For any $a \in G$, the right coset of H , denoted by $H * a$, is the set
$H * a=\{h * a: h \in H\}$ for all $a \in G$

Theorem: 1

Let $(H, *)$ be a subgroup of $(G, *)$. Then any two left Cosets (right Cosets)
of \mathbf{H} of a group $(\boldsymbol{G}, *)$ are either identical or disjoint and the
union of distinct left Cosets of \mathbf{H} is \mathbf{G} (or) The set of all distinct left Cosets
of the subgroup \mathbf{H} of the $\operatorname{group}(\boldsymbol{G}, *)$ forms a partition of \mathbf{G}.

Proof:

Let $a, b \in G$

Consider the Cosets $a * H$ and $b * H$

We shall prove that $a * H=b * H$ (or) $a * H \cap b * H=\varnothing$

Suppose $a * H \cap b * H \neq \emptyset$

Let c $\epsilon a * H \cap b * H=\emptyset$
$\Rightarrow c \in a * H$ and $c \in b * H$

Let $c=a * h_{1}$ and $c=b * h_{2}$ for all $h_{1}, h_{2} \in H$
$\therefore a * h_{1}=b * h_{2}$

Take $h_{1}{ }^{-1}$ on both sides
$\Rightarrow\left(a * h_{1}\right) * h_{1}^{-1}=\left(b * h_{2}\right) * h_{1}{ }^{-1}$
$\Rightarrow a *\left(h_{1} * h_{1}^{-1}\right)=b *\left(h_{2} * h_{1}^{-1}\right)$
$\Rightarrow a * e=b * h_{3}$ where $h_{3}=h_{2} * h_{1}^{-1}$
$\Rightarrow a=b * h 3$
$\Rightarrow a \in b * h 3$
$\Rightarrow a * H \subseteq b * H \ldots$ (1)

IIIrly $b * H \subseteq a * H \ldots$ (2)
From (1) and (2) we have $a * H=b * H$
\therefore Any two left cosets are either identical or distinct.

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Each element of the left Coset $a * H$ is also an element of G.
\therefore Every left coset of $a * H$ is a subset of G.
Hence $\bigcup_{a \in G} a * H \subseteq G \ldots$ (3)
If $a \in G, a \in a * H$ then $a \in \bigcup_{a \in G} a * H$
$G \subseteq \bigcup_{a \in G} a * H \ldots$
\therefore The set of all distinct left cosets of H is a partition " n ' of the group G .

Hence the proof.

LAGRANGE'S THEOREM:

The order of a subgroup of a finite group is a divisor of the order of the
group.
i.e., if \mathbf{H} is a subgroup of a finite group $(G, *)$ then $\mathbf{O}(\mathbf{H})$ divides $\mathbf{O}(\mathbf{G})$.

Proof:

Let $(G, *)$ be a finite group of order n and H be a subgroup of G with order m .
$\Rightarrow O(H)=m \& O(G)=n$

We will prove that ${ }^{O(H)} / O(G)$

Since H contains m distinct elements, every left cost of H contains exactly m elements.

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

(Write the theorem: 1)

Let $a_{1} * H, a_{2} * H, \ldots, a_{k} * H$ be the distinct left cosets of
H. Let $G=a_{1} * H \quad \cup a_{2} * H \cup \ldots \cup a_{k} * H$
$O(G)=O\left(a_{1} * H\right)+O\left(a_{2} * H\right)+\ldots+O\left(a_{k} * H\right)$
$=O(H)+O(H)+\ldots+O(H)$
$=m+m+\ldots+m$ (n times)
$\Rightarrow n=m k$
$\Rightarrow n m=k$
$\Rightarrow \mathrm{m}$ divides n .

This means that ${ }^{O(H)} \not O(G)$.
Hence the proof.

Normal Subgroup

A subgroup $(H, *)$ of $(G, *)$ is said to be normal subgroup of G , for $x \in G$ and for $h \in H$, if $x * h=h * x$ (or) for all $x \in G, x H=H x$

Note:

Consider H as a subgroup of G, then the subgroup H is said to be normal,
for all $x \in G, x * h * x^{-1}=H($ or $)$ for all $x \in G, x * h * x^{-1} \in H$

Theorem: 1

Every subgroup of an abelian group is normal.

Proof:

Let $(G, *)$ be an abelian group and $(H, *)$ be a subgroup of G.

Let $x \in G$ be any element.

Then $x H=\{x * h / h \in H\}$

Since " x " is arbitrary, $x H=H x \forall x \in G$

Hence H is a normal subgroup of G .

> Hence the proof.

Theorem: 2

Prove that intersection of two normal subgroup of $(G, *)$ is a normal subgroup of $(\boldsymbol{G}, *)$.

Proof:

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Let $(H, *)$ and $(K, *)$ are two normal subgroup.
$\Rightarrow \mathrm{H}$ and K are subgroups of G .
$\Rightarrow H \cap K$ is a subgroup of G. (Already proved)

To prove $(H \cap K, *)$ is a normal subgroup of $(G, *)$.

Let $h \in H \cap K$ be any element and $x \in G$ be any element.

Then $x \in G$ and $h \in H$ and $h \in K$

Since H and K are normal, $x * h * x^{-1} \in H \ldots$ (1)
and $x * h * x^{-1} \in K . . .(2)$

From (1) and (2) we get,

$$
x * h * x^{-1} \in H \cap K
$$

$$
\because \cap \cap
$$

Hence $H \cap K$ is a normal subgroup of G .

Hence the proof.

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

4.5 Homomorphism

Let (G, \cdot) and $\left(G^{\prime}, *\right)$ be any two groups.

A mapping $f: G \rightarrow G^{\prime}$ is said to be a homomorphism, if $f(a \cdot b)=f(a) * f(b)$ for any $a, b \in G$ is called a group homomorphism.

Example: (i)

Let $f:(Z,+) \rightarrow(Z,+)$ given by $f(x)=2 x \forall x \in Z$ is a homomorphism.

For, $x, y \in Z, f(x+y)=2(x+y)=2 x+2 y=f(x)+f(y)$

For, $x \in R, f(x+y)=e^{x+y}=e^{x} \cdot e^{y}=f(x) \cdot f(y)$

Isomorphism:

Let (G, \cdot) and $\left(G^{\prime}, *\right)$ be any two groups. A mapping $f: G \rightarrow G^{\prime}$ is said to be isomorphism if
(i) f is one - one
(ii) f is onto
(iii) f is homomorphism

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Types of Homomorphism

(i) If f is one - to - one then f is monomorphism.
(ii) (ii) If f is onto then f is epimorphism.

Theorem: 1

Homomorphism preserves identities.

Proof:

Let $a \in G$

Let f be a homomorphism from $(G, *)$ and $\left(G^{\prime}, *\right)$

Clearly $f(a) \in G^{\prime}$
$\Rightarrow f(a) * e^{\prime}=f(a) \quad\left(e^{\prime}-\right.$ identity in $\left.G^{\prime}\right)$
$=f(a * e) \quad(\mathrm{e}-$ identity in G$)$
$=f(a) * f(e)(\mathrm{f}-$ homomorphism $)$
$\Rightarrow e^{\prime}=f(e) \quad$ (Left cancellation law)

Hence f preserves identities.

Hence the proof.

Theorem: 2

Homomorphism preserves inverse.

Proof:

Let $a \in G$

Since G is a group, $a^{-1} \in G$

Since G is a group $a * a^{-1}=a^{-1} * a=e$

Consider $a * a^{-1}=e$

$$
\Rightarrow f\left(a * a^{-1}\right)=f(e)
$$

Hence $[f(a)]^{-1}=f\left(a^{-1}\right)$

Hence f preserves inverse.

Hence the proof.

Kernal of Homomorphism

Let $f: G \rightarrow G^{\prime}$ be a group homomorphism. The set of elements of G which are mapped into e^{\prime} (identity in G^{\prime}) is called the kernel of f and it is denoted by $\operatorname{ker}(\mathrm{f})$

$$
\operatorname{ker}(f)=\left\{x \in G / f(x)=e^{\prime}\right\}
$$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Theorem: 1

Kernel of a homomorphism of a group into another group is a normalsubgroup.

Proof:

Let $(G, *)$ and $\left(G^{\prime}, \oplus\right)$ be two groups.
$f:(G, *) \rightarrow\left(G^{\prime}, \oplus\right)$ is a homomorphism.

Define $\operatorname{ker}(f)=\left\{x \in G / f(x)=e^{\prime}\right\}$

Claim: Ker f is a normal subgroup of G

We know that homomorphism preserves identity.
i.e., $f(e)=e^{\prime}$, so $e \in k e r f$
\Rightarrow Ker f is non empty.
(ii) $a, b \in \operatorname{ker} f \Rightarrow a * b^{-1} \in \operatorname{ker} f$ then $\operatorname{ker} \mathrm{f}$ is a subgroup.
$a \in \operatorname{kerf} \Rightarrow f(a)=e^{\prime}$ by definition of $\operatorname{ker} \mathrm{f}$
$b \in \operatorname{ker} f \Rightarrow f(b)=e^{\prime}$ by definition of $\operatorname{ker} \mathrm{f}$

Since homomorphism preserves inverse $\Rightarrow[f(a)]^{-1}=f\left(a^{-1}\right)$

Now $f\left(a * b^{-1}\right)=f(a) \oplus f\left(b^{-1}\right)$

$$
\begin{aligned}
& =f(a) \oplus[f(b)]^{-1} \\
& =e^{\prime} \oplus e^{\prime} \\
& =e^{\prime}
\end{aligned}
$$

$$
\Rightarrow a * b^{-1} \in \operatorname{ker} f
$$

Hence kerf is a subgroup of G.
(iii) Let $a \in \operatorname{kerf} \Rightarrow f(a)=e^{\prime}$ by definition of kerf

Homomorphism preserves inverses $\Rightarrow[f(a)]^{-1}=f\left(a^{-1}\right)$

So $f\left(g^{-1} * a * g\right)=f\left(g^{-1}\right) \oplus f(a) \oplus f(g)$

$$
\begin{aligned}
& =[f(g)]^{-1} \oplus f(g) \\
& =e^{\prime}
\end{aligned}
$$

Hence by definition, $g^{-1} * a * g \in \operatorname{kerf}$

Hence kerf is a normal subgroup.

Hence the proof.

Theorem:2

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Fundamental theorem of group homomorphism

Every homomorphic image of a group G is isomorphic to some quotient group of G.
(OR)

Let $\boldsymbol{f}: \boldsymbol{G} \rightarrow \boldsymbol{G}^{\prime}$ be a onto homomorphism of groups with kernel K , then $\frac{G}{K} \cong \boldsymbol{G}^{\prime}$

Proof:

Let f be the homomorphism $f: G \rightarrow G^{\prime}$

Let G^{\prime} be the hōmomōrphic image of a group G.

Let K be the kernel of this homomorphism.

Clearly K is a normal subgroup of G .

Claim: $\frac{G}{K} \cong G^{\prime}$
Define $\varphi: \underset{K}{G} \rightarrow G^{\prime}$ by $\varphi(K * a)=f(a)$ for all $a \in G$
(i) $\quad \varphi$ is well defined.

We have $K * a=K * b$

$$
\Rightarrow a * b^{-1} \in K
$$

$\Rightarrow f\left(a * b^{-1}\right)=e^{\prime} \quad\left(e^{\prime}\right.$ is identity $)$

$$
\begin{aligned}
& \Rightarrow f(a) * f\left(b^{-1}\right)=e^{\prime} \\
& \Rightarrow f(a) *[f(b)]^{-1}=e^{\prime} \\
& \Rightarrow f(a) *[f(b)]^{-1} * f(b)=e^{\prime} * f(b) \\
& \Rightarrow f(a)=f(b) \\
& \Rightarrow \varphi(K * a)=\varphi(K * b)
\end{aligned}
$$

Hence φ is well defined.
(ii) To prove φ is one - one.

To prove $\varphi(K * a)=\varphi(K * b) \Rightarrow K * a=K * b$
We know that $\varphi(K * a)=\varphi(K * b)$

$$
\begin{aligned}
& \Rightarrow f(a)=f(b) \\
& \begin{aligned}
\Rightarrow f(a) * f\left(b^{-1}\right) & =f(b) * f\left(b^{-1}\right) \\
& =f\left(b * b^{-1}\right) \\
& =f(e)
\end{aligned} \\
& \Rightarrow f(a) * f\left(b^{-1}\right)=e^{\prime} \\
& \Rightarrow f\left(a * b^{-1}\right)=e^{\prime} \\
& \Rightarrow a * b^{-1} \in K
\end{aligned} \begin{aligned}
& \Rightarrow K * a * b^{-1}=K \\
& \Rightarrow K * a=K * b
\end{aligned}
$$

Hence φ is one - one.

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

(iii) φ is onto.

Let $y \in G^{\prime}$

Since f is onto, there exists $a \in G$ such that $f(a)=y$

Hence $\varphi(K * a)=f(a)=y$

Hence φ is onto.
(iv) φ is a homomorphism.

Now $\varphi(K * a * K * b)=\varphi(K * a * b)$

$$
\begin{aligned}
& =f(a * b) \\
& =f(a) * f(b) \\
& =\varphi(K * a) *(K * b)
\end{aligned}
$$

Hence φ is a homomorphism.

Since φ is one - one, onto, homomorphism φ is an isomorphism between $\frac{G}{K}$ and G^{\prime}.

Hence $\frac{G}{K} \cong G^{\prime}$

Hence the proof.

