binils.com - Anna University, Polytechnic & Schools Free PDF Study Materials

Catalog

Limits of function	1
Representation of function	10
continuity	13
Derivatives	16

binils.com

binils – Android App

Limit of a function

Definition:

Suppose f(x) is defined when x is near the number a, Then we writelim f(x) =

L and say the limit of f(x), as x approaches a, equals L.

The above definition says that the value of f(x) approach as x approaches a. In other words, the value of f(x) tend to get closer and closer to L as x gets closer and closer to a from either side of a but $x \neq a$. The alternate notation for $\lim_{x \to a} f(x) = L$ is $f(x) \to L$ as $x \to a$.

а.

One-sided Limits:

Left-hand limit of f(x):

Suppose f(x) is defined when x is near the number from left hand side of a, Then we write $\lim_{x \to a^{-}} f(x) = L$ and say the left-hand limit of f(x), as x approaches a.

Right-hand limit of f(x):

Suppose f(x) is defined when x is near the number from right hand side of a, Then we write $\lim_{x \to a^+} f(x) = L$ and say the right-hand limit of f(x), as x approaches a.

Definition:

Suppose f(x) is defined when x is near the number a. Then we write $\lim_{x \to a} f(x) = L$ if and only if $\lim_{x \to a^{-}} f(x) = L$ and $\lim_{x \to a^{+}} f(x) = L$.

Infinite Limits:

Suppose f(x) is defined on both sides of 'a' except possibly at'a' itself. Then (i) $\lim_{x \to a} f(x) = \infty$ means that the value of f(x), can be made arbitrarily large by taking x to

be sufficiently close to 'a' but not equal to a.

(ii) $\lim_{x \to a} f(x) = -\infty$ means that the value of f(x), can be made arbitrarily large negative by

binils - Anna University App on Play Store

taking x to be sufficiently close to 'a' but not equal to a.

binils – Android App MA8151 ENGINEERING MATHEMATICS I

Example: Evaluate $\lim x^2 - x + 2$ $x \rightarrow 2$ Solution: Let $f(x) = x^2 - x + 2$ Х f(x) f(x)Х 1.9 3.71 2.1 4.31 1.99 3.9701 2.01 4.0301 1.999 3.997001 2.001 4.003001 1.9999 3.99970001 2.0001 4.00030001

x>2

From the table, $\lim_{x \to 2} x^2 - x + 2 = 4$

Example:

x<2

Find the value Solution: $f(x) = \frac{x^2 - x^2}{x - x^2}$	$\frac{1}{x} = \frac{(x+1)(x-1)}{(x-1)}$	ils	CC	m
:	$= x + 1, x \neq 1$			
Х	f(x)	Х	f(x)	
0.9	1.9	1.1	2.1	
0.99	1.99	1.01	2.01	
0.999	1.999	1.001	2.001	
<i>x</i> < 1	L	<i>x</i> >	1	

We can say f(x) approaches the limit 2 as x approaches 1.

$$\therefore \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$$

Example:

```
Investigatelim sin \frac{\pi}{x}
Solution:
```

binils – Android App

MA8151 ENGINEERING MATHEMATICS I

Let
$$f(x) = sin \frac{\pi}{x}$$

x 1 1/3 0.1 1/2 1.4 0.01
f(x) 0 0 0 0 0 0

Our guess $\lim_{x\to 0} \sin \frac{\pi}{x} = 0$ is wrong. $\therefore f\left(\frac{1}{n}\right) = \sin n\pi = 0$ for any integer n. $\therefore f(\frac{1}{n}) = 0$ which is not possible.

 \therefore The limit does not exists.

Example:

Use a table of values to estimate the value of the limit $\lim_{x\to 0} \frac{\sqrt{x+4}-2}{x}$

Solution:

Let $f(x) = \lim_{x \to 0} \frac{\sqrt{x+4} - 2}{x}$					
X	f (x)	X	f (x)		
-1 -0.5	0.2679	5.	0.2361 0.2426	Π	
-0.1	0.2516	0.1	0.2485		
-0.05	0.2508	0.05	0.2492		
-0.01	0.2502	0.01	0.2498		
0.001	0.25	0.001	0.25		

$$\therefore \lim_{x \to 0} \frac{\sqrt{x+4} - 2}{x} = 0.25 = \frac{1}{4}$$

Example:

Evaluate the limit and justify each step for the following:

(i)
$$\lim_{x \to -1} (x^4 - 3x)(x^2 + 5x + 3)$$

(ii) $\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$
(iii) $\lim_{u \to -2} \sqrt{u^4 + 3u + 6}$

Solution:

binils – Android App

MA8151 ENGINEERING MATHEMATICS I

(i)
$$\lim_{x \to -1} (x^4 - 3x)(x^2 + 5x + 3) = \lim_{x \to -1} (x^4 - 3x) \lim_{x \to -1} (x^2 + 5x + 3)$$
$$= [\lim_{x \to -1} x^4 - 3\lim_{x \to -1} x]x[\lim_{x \to -1} x^2 + 5\lim_{x \to -1} x + \lim_{x \to -1} 3]$$
$$= [(-1)^4 - 3(-1)][(-1)^2 + 5(-1) + 3]$$
$$= 4(-1) = -4$$
(ii)
$$\lim_{x \to -2} \frac{x^{3+2x^2-1}}{5-3x} = \frac{\lim_{x \to -2} (x^{3+2x^2-1})}{\lim_{x \to -2} (5-3x)}$$
$$= \frac{(-2)^3 + 2(-2)^2 - 1}{5-3(-2)}$$
$$= \frac{-8+8-1}{5+6} = \frac{-1}{11}$$
(iii)
$$\lim_{u \to -2} \sqrt{u^4 + 3u + 6} = \sqrt{\lim_{u \to -2} (u^4 + 3u + 6)}$$
$$= \sqrt{(-2)^4 + 3(-2) + 6}$$
$$= \sqrt{16 - 6 + 6} = \sqrt{16} = 4$$

Example:

Evaluate
$$\lim_{(3+h)^2 - 9}$$

Solution:

$$\lim_{h \to 0} \frac{(3+h)^2 - 9}{h} = \lim_{h \to 0} \frac{9 + 6h + h^2 - 9}{h}$$

$$= \lim_{h \to 0} \frac{h(6+h)}{h}$$

$$= \lim_{h \to 0} 6 + h = 6$$

Example:

Evaluate $\lim_{x \to -4} \frac{x^2 + 5x + 4}{x^2 + 3x - 4}$

Solution:

$$\lim_{x \to -4} \frac{x^2 + 5x + 4}{x^2 + 3x - 4} = \lim_{x \to -4} \frac{(x+1)(x+4)}{(x-1)(x+4)}$$
$$= \lim_{x \to -4} \frac{x+1}{x-1}$$
$$= \frac{-4+1}{-4-1} = \frac{-3}{-5} = -3$$

Example:

Evaluate the limit if it exists
$$\lim_{x \to 1} \frac{x^{4}-1}{x^{3}-1}$$

Solution:

$$\lim_{x \to 1} \frac{x^{4-1}}{x^{3-1}} = \lim_{x \to 1} \frac{(x-1)(x^{3}+x^{2}+x+1)}{(x-1)(x^{2}+x+1)}$$

binils – Android App

MA8151 ENGINEERING MATHEMATICS I

binils - Anna University App on Play Store

3 5

$$= \lim_{x \to 1} \frac{(x^3 + x^2 + x + 1)}{(x^2 + x + 1)}$$
$$= \frac{1 + 1 + 1 + 1}{1 + 1 + 1} = \frac{4}{3}$$

Example:

Evaluate $\lim_{t\to 0} \frac{\sqrt{1+t}-\sqrt{1-t}}{t}$

Solution:

$$\lim_{t \to 0} \frac{\sqrt{1+t} - \sqrt{1-t}}{t} = \lim_{t \to 0} \frac{\sqrt{1+t} - \sqrt{1-t}}{t} \times \frac{\sqrt{1+t} + \sqrt{1-t}}{\sqrt{1+t} + \sqrt{1-t}}$$
$$= \lim_{t \to 0} \frac{(\sqrt{1+t})^2 - (\sqrt{1-t})^2}{t(\sqrt{1+t} + \sqrt{1-t})^2}$$
$$= \lim_{t \to 0} \frac{1+t - (1-t)}{t(\sqrt{1+t} + \sqrt{1-t})}$$
$$= \lim_{t \to 0} \frac{2t}{t(\sqrt{1+t} + \sqrt{1-t})}$$
$$= \frac{2}{\sqrt{1+0} + \sqrt{1-0}}$$
$$= \frac{2}{2} = 1$$

Example:

Evaluate $\lim_{x \to -4} \frac{\frac{1}{4+x}}{\frac{4}{4+x}}$ **SCOM**

Solution:

$$\lim_{x \to -4} \frac{\frac{1}{4} + \frac{1}{x}}{\frac{1}{4} + x} = \lim_{x \to -4} \frac{\frac{x+4}{4x}}{\frac{4x}{4+x}}$$
$$= \lim_{x \to -4} \frac{1}{4} = \frac{1}{-16}$$

Example:

Evaluate the limit if it exists $\lim_{x \to 2} \frac{x^2 - x + 6}{x - 2}$

Solution:

$$\lim_{x \to 2} \frac{x^2 - x + 6}{x - 2} = \frac{8}{0} = \infty$$

So the limit does not exists.

Example:

Evaluate the limit if it exists $\lim_{x \to -1} \frac{x^2 - 4x}{(x-4)(x+1)}$

Solution:

$$\lim_{x \to -1} \frac{x^2 - 4x}{(x - 4)(x + 1)} = \lim_{x \to -1} \frac{x(x - 4)}{(x - 4)(x + 1)}$$
$$= \lim_{x \to -1} \frac{x}{(x + 1)}$$

binils – Android App MA8151 ENGINEERING MATHEMATICS I

$$=\frac{-1}{0}=\infty$$

 \therefore The limit does not exists.

Example:

Prove that $\lim_{x\to 0} |x|=0$

Solution:

$$|x| = f(x) = \begin{cases} x, \ x \ge 0 \\ -x, \ x < 0 \end{cases}$$
$$\lim_{x \to 0^{+}} |x| = \lim_{x \to 0^{+}} x = 0 \ for |x| = x, \ x > 0$$
$$\lim_{x \to 0^{-}} |x| = \lim_{x \to 0^{-}} (-x) = 0 \ for |x| = -x, \ x < 0$$
$$\therefore \lim_{x \to 0^{+}} |x| = 0 = \lim_{x \to 0^{-}} |x|$$
$$\lim_{x \to 0} |x| = 0$$

Example:

Prove that $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.

Solution:

Let
$$f(x) = \frac{|x|}{x}$$

 $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{|x|}{x} = \lim_{x \to 0^+} (\frac{x}{x}) = \lim_{x \to 0^+} (1)$
 $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{|x|}{x} = \lim_{x \to 0^-} (\frac{-x}{x}) = \lim_{x \to 0^-} (-1) = -1$
 $\lim_{x \to 0^+} f(x) \neq \lim_{x \to 0^-} f(x)$
 $\therefore \lim_{x \to 0^+} \frac{|x|}{x}$ does not exist.

Example:

Let
$$g(x) = \frac{x^2 + x - 6}{|x-2|} does \lim_{x \to 2} g(x) exist?$$

Solution:

$$\lim_{x \to 2^{-}} g(x) = \lim_{x \to 2^{-}} \frac{x^{2} + x - 6}{-(x - 2)}$$
$$= \lim_{x \to 2^{-}} \frac{(x - 2)(x + 3)}{-(x - 2)}$$
$$= \lim_{x \to 2^{-}} -(x + 3)$$
$$= -(2 + 3) = -5$$
$$\lim_{x \to 2^{+}} g(x) = \lim_{x \to 2^{+}} \frac{x^{2} + x - 6}{(x - 2)}$$

binils – Android App MA8151 ENGINEERING MATHEMATICS I binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools Free PDF Study Materials

Binils.com – Free Anna University, Polytechnic, School Study Materials

$$= \lim_{x \to 2^+} \frac{(x-2)(x+3)}{(x-2)}$$
$$= \lim_{x \to 2^-} (2+3)$$
$$= 5$$
$$\lim_{x \to 2^-} g(x) \neq \lim_{x \to 2^+} g(x)$$
$$\therefore \lim_{x \to 2^-} g(x) \text{ does not exist.}$$

Example:

Find the limit if it exist $\lim_{x\to 0^-} (\frac{1}{x} - \frac{1}{|x|})$

Solution:

$$\lim_{x \to 0^{-}} \left(\frac{1}{x} - \frac{1}{|x|}\right) = \lim_{x \to 0^{-}} \left(\frac{1}{x} - \frac{1}{-x}\right)$$
$$= \lim_{x \to 0^{-}} \left(\frac{1}{x} + \frac{1}{x}\right)$$
$$= \lim_{x \to 0^{-}} \left(\frac{2}{-x}\right)$$
$$= \frac{2}{0} = \infty$$

∴ Limit does not exist.

Squeeze theorem (or) Sandwich theorem (or) Pinching theorem: Statement:

If $f(x) \le g(x) \le h(x)$ when x is near a (except possibly at a) and $\lim f(x) = \lim h(x) = L$ then $\lim g(x) = L$ $x \rightarrow a$ $x \rightarrow a$ $x \rightarrow a$

ie, If g(x) is squeezed in between h(x) and f(x) which have the same limit L then g(x) also forced to have the same limit L.

Example:

binils – Android App MA8151 ENGINEERING MATHEMATICS I binils - Anna University App on Play Store

Show that $\lim_{x\to 0} x^2 \sin \frac{1}{x} = 0$

Solution:

 $\lim_{x \to 0} x^2 \sin \frac{1}{x} = \lim_{x \to 0} x^2 \limsup_{x \to 0} \frac{1}{x}$ Here $\lim \sin \frac{1}{2}$ does not exists. $x \rightarrow 0$ x

 \therefore By applying $x \rightarrow 0$ Squeeze theorem,

$$-1 \le \sin \frac{1}{x} \le 1$$
$$-x^2 \le \sin \frac{1}{x} \le x^2$$
$$\lim_{x \to 0} (-x^2) = 0 \text{ and } \lim_{x \to 0} (x^2) = 0$$
By Squeeze theorem,
$$\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0$$

-

Example:

Find $\lim_{\theta \to 0} \frac{\tan \theta}{\theta}$

Solution:

$$\lim_{\theta \to 0} \frac{\tan \theta}{\theta} = \lim_{\theta \to 0} \frac{\sin \theta}{\theta \cos \theta}$$
$$= \lim_{\theta \to 0} \left(\frac{\sin \theta}{\theta} \cdot \frac{1}{\cos \theta} \right)$$
$$= \lim_{\theta \to 0} \left(\frac{\sin \theta}{\theta} \right) \cdot \lim_{\theta \to 0} \left(\frac{1}{\cos \theta} \right)$$
$$= 1.1 = 1$$

Example:

Find $\lim_{\theta \to 0} \frac{1 - \cos x}{x}$

Solution:

$$\lim_{\theta \to 0} \frac{1 - \cos x}{x} = \lim_{\theta \to 0} \frac{2\sin^2 \binom{x}{2}}{x}$$
$$= \lim_{\theta \to 0} \frac{\sin^2 \binom{x}{2}}{\binom{x}{2}} x \frac{(x/2)}{(x/2)}$$
$$= \lim_{\theta \to 0} \left(\frac{\sin \binom{x}{2}}{\binom{x}{2}}\right)^2 x \binom{x}{2}$$
$$= \lim_{\theta \to 0} \left(\frac{\sin \binom{x}{2}}{\binom{x}{2}}\right)^2 x \lim_{\theta \to 0} \binom{x}{2}$$
$$= 1 x 0 = 0$$

Example:

binils – Android App

MA8151 ENGINEERING MATHEMATICS I

Find
$$\lim_{x \to \frac{\pi}{2}} \frac{1 + \cos 2x}{(\pi - 2x)^2}$$

Solution:

$$\lim_{x \to \frac{\pi}{2}} \frac{1 + \cos 2x}{(\pi - 2x)^2} = \lim_{x \to \frac{\pi}{2}} \frac{2\cos^2 x}{(\pi - 2x)^2}$$
$$= \lim_{x \to \frac{\pi}{2}} \frac{2\sin(\frac{\pi}{2} - x)}{2^2(\frac{\pi}{2} - x)^2}$$
$$= \lim_{x \to \frac{\pi}{2}} \frac{1}{2} \left[\frac{\sin(\frac{\pi}{2} - x)}{\frac{\pi}{2} - x} \right]^2$$
$$= \frac{1}{2} \lim_{(x - \frac{\pi}{2}) \to 0} \left[\frac{\sin(-)(x - \frac{\pi}{2})}{-(x - \frac{\pi}{2})} \right]^2 = \frac{1}{2} (1) = \frac{1}{2}$$

Example:

Find
$$\lim_{x\to 0} \frac{\sin^2(\frac{x}{3})}{x^2}$$

Solution:

$$\lim_{x \to 0} \frac{\sin^2 \binom{x}{3}}{x^2} = \lim_{x \to 0} \frac{\sin^2 \binom{x}{3}}{x^2 \binom{1}{3^2}} x \binom{1}{3^2}$$
$$= \lim_{x \to 0} \frac{\sin^2 \binom{x}{3}}{\binom{x}{3}^2} x \binom{1}{3^2}$$
COM
$$= \lim_{x \to 0} \left[\frac{\sin^2 \binom{x}{3}}{\binom{x}{3}} \right]^2 x \lim_{x \to 0} \binom{1}{9}$$
$$= 1 x \frac{1}{9} = \frac{1}{9}$$

binils – Android App MA8151 ENGINEERING MATHEMATICS I binils - Anna University App on Play Store

Representation of functions

Functions:

A function is a rule that assigns to each element x in a set A to exactly one element called f(x) in a set B.

Odd and Even functions:

If a function f satisfies f(-x) = f(x) for every number x in its domain, then f is called an even function. **Example:** cosx, x^2 , x^4 , |x| are even functions.

If a function f satisfies f(-x) = -f(x) for every number x in its domain, then f is called an odd function. **Example:** sin x, x, x^3 are odd functions.

Graph of functions:

If f is a function with domain D, then its graph is the set of ordered pair $\{(x, f(x))/x \in D\}$.

Domain, Co-domain, Range and Image:

Let: $A \rightarrow B$, then the set A is called the domain of the function and set B is called Codomain.

The set of all the images of all the elements of A under the function f is called the

range of f and it is denoted by f(A). Range of f is $f(A) = \{f(x): x \in A\}$ clearly $f(A) \subseteq B$

If $x \in A$, $y \in B$ and y = f(x) then y is called the image of x under f.

Find the domain and range of the function:

(i) $f(x) = \frac{1}{x^2 - x}$ (ii) $f(x) = \frac{4}{3 - x}$ (iii) $f(x) = \sqrt{5x + 10}$ (iv) $f(x) = 1 + x^2$ (v) $f(x) = \sqrt{x + 2}$ (i) $f(x) = \frac{1}{x^2 - x}$

Solution:

$$x^2 - x = 0 \Longrightarrow x(x - 1) = 0$$

 $\Longrightarrow x = 0$, $x - 1 = 0 \Rightarrow x = 1$

Domain is $(-\infty, 0) \cup (0, 1) \cup (1, \infty)$

Range is $(0, \infty)$

(ii)
$$f(x) = \frac{4}{3-x}$$

Solution:

 $3 - x = 0 \Longrightarrow x = 3$

Domain is $(-\infty, 3) \cup (3, \infty)$

binils – Android App MA8151 ENGINE

MA8151 ENGINEERING MATHEMATICS I

Range is $(-\infty, 0) \cup (0, \infty)$

(iii) $f(x) = \sqrt{5x + 10}$

Solution:

Since square root of a negative number is not defined, $5x + 10 \ge 0$

 $\Rightarrow 5x \ge -10 \Rightarrow x \ge -2$

Domain is $[-2, \infty)$

Range is $[0, \infty)$

 $(\mathbf{iv})f(x) = 1 + x^2$

Solution:

ie, $y = 1 + x^2 \Rightarrow y - 1 = x^2$ Here $x^2 \ge 0 \Rightarrow y - 1 \ge 0 \Rightarrow y \ge 1$ Domain is $[-\infty, \infty)$ Range is $[1, \infty)$ (v) $f(x) = \sqrt{x+2}$

Solution:

Since square root of a negative number is not defined, $x + 2 \ge 0 \Rightarrow x \ge -2$ Domain is $[-2, \infty)$ Range is $[0, \infty)$

Find the domain and sketch the graph of the function $f(x) = \begin{cases} x+2 & \text{if } x < 0 \\ 1-x & \text{if } x \ge 0 \end{cases}$

Solution:

Given
$$f(x) = \begin{cases} x+2 & \text{if } x < 0 \\ 1-x & \text{if } x \ge 0 \end{cases}$$

ie, $y = x+2$, $x < 0$ $y = 1-x$, $x \ge 0$
 $x < 0$ -1 -2 -3 -4 ...
 $y = x+2$ 1 0 -1 -2 ...
 $y = 1-x$ 1 0 -1 -2 ...
 $y = 1-x$ 1 0 -1 -2 ...

binils – Android App MA8151 ENGINEERING MATHEMATICS I

Domain is $(-\infty, \infty)$

Example:

Sketch the graph of the absolute value function f(x) = |x|

binils – Android App

MA8151 ENGINEERING MATHEMATICS I

Continuity

A function *f* is continuous at a number '*a*' if $\lim_{x\to a} f(x) = f(a)$

Note: (i)

If f is continuous at a, then

- 1. f(a) should exist.
- 2. $\lim_{x\to a} f(x)$ exist both on the left and right
- 3. $\lim_{x \to a} f(x) = f(a)$

The definition says that f is continuous of a if f(x) approaches f(a) as x approaches a.

Note: (ii)

The function f(x) is said to be discontinuous at x = a if one or more of the above three conditions are not satisfied.

Example:

How would you remove the discontinuity of $f(x) = \frac{x^{3-8}}{x^{2-4}}$

Solution:

 $\lim_{x \to a} f(x) = f(a)$ Given $f(x) = \frac{x^3 - 8}{x^2 - 4}$ f(x) is defined in all the real vlues except at x = 2.

j (x) is defined in an the real vides exe

 $\therefore f(2)$ is not defined.

But
$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4} = \lim_{x \to 2} \frac{(x - 2)(x^2 + 2x + 4)}{(x + 2)(x - 2)}$$

$$= \lim_{x \to 2} \frac{(x - 2)(x^2 + 2x + 4)}{(x + 2)(x - 2)}$$

$$= \lim_{x \to 2} \frac{(x^2 + 2x + 4)}{(x + 2)}$$

$$= \frac{4 + 4 + 4}{2 + 2}$$

$$= \frac{12}{4} = 3$$

Then the discontinuity is removed.

$$\therefore \text{ The function is defined as} \{ \begin{array}{c} \frac{x^3-8}{x^2-4} & \text{if } x \neq 2\\ 3 & \text{if } x = 2 \end{array} \}$$

Example.

Discuss the continuity of the function $\frac{x^2-x-2}{x-2}$

Solution:

binils – Android App

MA8151 ENGINEERING MATHEMATICS I

A function f is continuous at 'a' if $\lim_{x\to a} f(x) = f(a)$

The given function $\frac{x^{2}-x-2}{x-2}$ is defined for all real value of x except at x = 2.

So f(2) is not defined.

Hence the function is discontinuous at x = 2.

Example:

Evaluate $sin^{-1} (\frac{1-\sqrt{x}}{x})(or) lim arc sin \frac{1-\sqrt{x}}{1-x}$ $x \to 1$ 1-x $x \to 1$ 1-x

Solution:

$$\lim_{x \to 1} \sin^{-1} \left(\frac{1 - \sqrt{x}}{1 - x} \right) = \lim_{x \to 1} \sin^{-1} \left(\frac{1 - \sqrt{x}}{1 - (\sqrt{x})^2} \right)$$
$$= \lim_{x \to 1} \sin^{-1} \left(\frac{1 - \sqrt{x}}{(1 + \sqrt{x})(1 - \sqrt{x})} \right)$$
$$= \sin^{-1} \left(\frac{1}{2} \right) = \frac{\pi}{6}$$

Example:

Show that the junction $f(x) = 1 - \sqrt{1 - x^2}$ is continuous on the interval [-1, 1] Solution:

Given
$$f(x) = 1 \cdot \sqrt{1 - x^2}$$
 in [-1, 1]
Let $a \in [-1, 1]$, i.e., $-1 < a < 1$
To Prove $\lim_{x \to a} f(x) = f(a)$
L.H.S = $\lim_{x \to a} f(x)$
 $= \lim_{x \to a} [1 - \sqrt{1 - x^2}]$
 $= 1 - \sqrt{1 - a^2}$
 $= f(a)$

 \therefore The given function is continuous.

Example:

For what value of the constant **b** is the function **f** continuous on $(-\infty, \infty)$ $f(x) = \{bx^2 + 2x if x < 2\}$ $x^3 - hx$ if $x \ge 2$

Solution:

Given the function is continuous.

$$\therefore \lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x)$$

$$\lim_{x \to 2} (bx^2 + 2x) = \lim_{x \to 2} (x^3 - bx)$$

$$\Rightarrow 4b + 4 = 8 - 2b$$

$$\Rightarrow 4b + 2b = 8 - 4$$

binils – Android App

MA8151 ENGINEERING MATHEMATICS I

 $\Rightarrow 6b = 4$ $\Rightarrow b = \frac{4}{6} = \frac{2}{3}$

binils.com

binils – Android App MA8151 ENGINEERING MATHEMATICS I binils – Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools Binils.com – Free Anna Universitye Both the hote of the formation of the study of t

Maxima and Minima of functions of one variable

Let c be a point in a domain D of a function f. Then f(c) is the

 \Rightarrow absolute maximum value of f on D if $f(c) \ge f(x)$ for all x in D.

 \Rightarrow absolute minimum value of f on D if $f(c) \le f(x)$ for all x in D.

Definition:

Let c be a point in a domain D of a function f. Then f(c) is the

 \Rightarrow local maximum value of f if $f(c) \ge f(x)$ when x is near c.

 \Rightarrow local minimum value of f if $f(c) \le f(x)$ when x is near c.

Critical Point:

A critical point of a function f is a point c in the domain of f such that either f'(c) = 0 or f'(c) does not exists.

If f has local maximum value or minimum value at c, then c is a critical point of f.

Example:

Find the critical points of the following functions

(i)
$$f(x) = x^3 + x^2 - x$$

(ii) $f(x) = x^{\frac{5}{4}} - 2x^{\frac{5}{4}}$ **IDES COM**
Solutions:
(i) $f(x) = x^3 + x^2 - x$
 $f'(x) = 3x^2 + 2x - 1$
 $f'(x) = 0 \Rightarrow 3x^2 + 2x - 1 = 0$
 $\Rightarrow (3x - 1)(x + 1) = 0$
 $\Rightarrow x = \frac{1}{3}, -1$
Critical points are $x = \frac{1}{3}, -1$.
(ii) $f(x) = x^{\frac{5}{4}} - 2x^{\frac{1}{4}}$
 $f'(x) = \frac{5}{4}x^{\frac{1}{4}} - \frac{1}{4}2x^{-\frac{3}{4}}$
 $f'(x) = 0 \Rightarrow \frac{1}{4}x^{\frac{1}{4}}(5 - \hat{x}^{-1}) = 0$
 $\Rightarrow \frac{1}{4}x^{\frac{1}{4}} = 0, (5 - \hat{x}^{-1}) = 0$
 $\Rightarrow x = 0, \frac{5x-2}{x} = 0$

binils – Android App

binils.com - Anna University, Polytechnic & Schools Binils.com – Free Anna Universitye Both the hoto of the binils.com / Materials

$$\Rightarrow x = \frac{2}{5}$$

Critical points are x = 0, $\frac{2}{5}$.

Example:

Find the absolute maximum and absolute minimum of

(i)
$$f(x) = 3x^4 - 4x^3 - 12x^2 + 10n [-2, 3]$$

(ii)
$$f(x) = x - 2sinx$$
 on $[0, 2\pi]$

(iii) $(x) = x - \log x$ on $[\frac{1}{2}, 2]$

Solutions:

(i)
$$f(x) = 3x^4 - 4x^3 - 12x^2 + 1$$

 $f(x) = 3x^4 - 4x^3 - 12x^2 + 1$ is continuous on [-2, 3]
 $f'(x) = 12x^3 - 12x^2 - 24x$
 $f'(x) = 0 \Rightarrow 12x^3 - 12x^2 - 24x = 0$
 $\Rightarrow x(x + 1)(x - 2) = 0$
 $\Rightarrow x = 0, -1, 2$ are the critical points.

The values of f(x) at critical points are

$$f(0) = 3(0^4) - 4(0^3) - 12(0^2) + 1 = 1$$

$$f(-1) = 3(-1)^4 - 4(-1)^3 - 12(-1)^2 + 1$$

$$= 3 + 4 - 12 + 1 = -4$$

$$f(2) = 3(2)^4 - 4(2)^3 - 12(2)^2 + 1$$

$$= 48 - 32 - 48 + 1 = -31$$

The value of f(x) at the end points of the interval are

$$f(-2) = 3(-2)^{4} - 4(-2)^{3} - 12(-2)^{2} + 1$$

= 48 + 32 - 48 + 1 = 33
$$f(3) = 3(3)^{4} - 4(3)^{3} - 12(3)^{2} + 1$$

= 243 - 112 - 108 + 1 = 28
Absolute minimum value is $f(2) = -31$
Absolute maximum value is $f(-2) = 33$

(ii) f(iv) f(x) = x - 2sinx on $[0, 2\pi]$

Solution:

$$f(x) = x - 2sinx$$
 is continuous on $[0, 2\pi]$

binils.com - Anna University, Polytechnic & Schools Binils.com – Free Anna Universitye Bottor bito Schools Materials

$$f'(x) = 1 - 2\cos x$$

$$f'(x) = 0 \Rightarrow 1 - 2\cos x = 0$$

$$\Rightarrow \cos x = \frac{1}{2}$$

$$\Rightarrow x = \cos^{-1}(\frac{1}{2})$$

$$\Rightarrow x = \frac{\pi}{3}, \frac{5\pi}{3} \text{ are the critical points}$$

The values of f(x) at critical points are

$$f\left(\frac{\pi}{3}\right) = \frac{\pi}{3} - 2\sin\frac{\pi}{3}$$
$$= \frac{\pi}{3} - 2\frac{\sqrt{3}}{2}$$
$$= \frac{\pi}{3} - 2\frac{\sqrt{3}}{2}$$
$$= \frac{\pi}{3} - \sqrt{3} \approx 0.684853$$
$$f\left(\frac{5\pi}{3}\right) = \frac{5\pi}{3} - 2\sin\frac{5\pi}{3}$$
$$= \frac{5\pi}{3} - 2\left(-\frac{\sqrt{3}}{2}\right)$$
$$= \frac{5\pi}{3} + \sqrt{3} \approx 6.968039$$

The values of f(x) at the end points of the intervals are f(0) = 0 - 2sin0 = 0 $f(2\pi) = 2\pi - 2\sin(2\pi) = 2\pi = 6.28$ Absolute minimum value is $f\left(\frac{\pi}{3}\right) = -0.684$ Absolute maximum value is $f\left(\frac{5\pi}{3}\right) = 6.9680$ (iii) $f(x) = x - \log x$ on $[\frac{1}{2}, 2]$

Solution:

$$f(x) = x - \log x \text{ is continuous on } \left[\frac{1}{2}, 2\right]$$
$$f'(x) = 1 - \frac{1}{x}$$
$$f'(x) = 0 \Rightarrow 1 - \frac{1}{x} = 0$$
$$\Rightarrow \frac{x - 1}{x} = 0$$
$$\Rightarrow x = 1 \text{ is the critical point.}$$

The value of f(x) at critical point is

$$f(1) = 1 - \log 1 = 1 - 0 = 1$$

binils.com - Anna University, Polytechnic & Schools Binils.com – Free Anna Universitye Both the holic of Materials

The values of f(x) at the end points of the intervals are

$$f\binom{1}{2} = \frac{1}{2} - \log \frac{1}{2}$$
$$= \frac{1}{2} - (-0.6931)$$
$$= 1.1931$$
$$f(2) = 2 - \log 2$$
$$= 2 - 0.6931$$
$$= 1.3068$$

Absolute maximum value is f(2) = 1.3068

Absolute minimum value is f(1) = 1

Rolle's Theorem:

Let f be a function that satisfies the following three conditions:

1) *f* is continuous on the closed interval [*a*, *b*]

2) f is differentiable on the open interval (a, b)

$$3) f(a) = f(b)$$

Then there exists a number c in (a, b) such that f'(c) = 0

Example:

Verify Rolle's theorem for the following functions on the given interval

a)
$$f(x) = x^3 - x^2 + 6x + 2$$
, [0,3]
b) $f(x) = \sqrt{x} - \frac{1}{2}x$, [0,9]

Solutions:

a)
$$f(x) = x^3 - x^2 + 6x + 2$$
, [0, 3]

Solution:

$$f(x) \text{ is continuous on } [0,3]$$

$$f(x) \text{ is differentiable on } [0,3]$$

$$f(0) = 2$$

$$f(3) = 27 - 9 + 18 + 2 = 38$$

$$f(0) \neq f(3)$$

Hence the Rolle's theorem is not satisfied.

b)
$$f(x) = \sqrt{x} - \frac{1}{3}x$$
, [0,9]

Solution:

binils.com - Anna University, Polytechnic & Schools Binils.com – Free Anna Universitye Bottor bit of the binils.com / Materials

f(x) is continuous on [0, 9]

f(x) is differentiable on [0, 9]

$$f(0) = 0$$

$$f(9) = \sqrt{9} - \frac{9}{3} = 3 - 3 = 0$$

$$f(0) = 0 = f(9)$$

$$\Rightarrow f(x) = \sqrt{x} - \frac{x}{3}$$

$$\Rightarrow f'(x) = \frac{1}{2\sqrt{x}} - \frac{1}{3}$$

$$\Rightarrow f'(x) = 0 \Rightarrow \frac{1}{2\sqrt{x}} - \frac{1}{3} = 0$$

$$\Rightarrow \frac{1}{2\sqrt{x}} = \frac{1}{3}$$

$$\Rightarrow \sqrt{x} = \frac{3}{2}$$

$$a = x - \frac{9}{2} = 2.25 \in (0, 0)$$

Squaring, $x = \frac{9}{4} = 2.25 \in (0,9)$

Hence Rolle's theorem is verified.

Example:

Prove that equation $x^3 - 15x + c = 0$ has atmost one real root in the interval [-2, 2] Solution: Let $f(x) = x^3 - 15x + c = 0$

$$f(-2) = -8 + 30 + c = 22 + c$$

$$f(2) = 8 - 30 + c = -22 + c$$

$$f'(x) = 3x^2 - 15$$

Now if there were two points x = a, b such that f(x) = 0

: By Rolle's theorem there exists a point x = c in between them, where f'(c) = 0

Now
$$f'(x) = 0 \Rightarrow 3x^2 - 15 = 0$$

 $\Rightarrow x^2 = 5$
 $\Rightarrow x = \pm \sqrt{5} = \pm 2.236$

Here both values lies outside [-2, 2]

 \therefore *f* has no more than one zero.

 \Rightarrow *f*(*x*) has exactly one real root.

binils.com - Anna University, Polytechnic & Schools Binils.com – Free Anna Universitye Both the hote of the study Materials

Example:

Let $f(x) = 1 - x^{2/3}$, Show that f(-1) = f(1) but there is no number c in (-1, 1) such that f'(x) = 0. Why does this not contradict Rolle's theorem? Solution:

Given
$$f(x) = 1 - x^{2/3}$$

 $\Rightarrow f(-1) = 1 - (-1)^{\frac{2}{3}} = 0$
 $\Rightarrow f(1) = 1 - 1^{2/3} = 0$
 $\therefore f(-1) = f(1)$
 $\Rightarrow f'(x) = -\frac{2}{3}x^{-1/3}$
 $\Rightarrow f'(x) = 0 \Rightarrow -\frac{2}{3}x^{-1/3} = 0$
 $\Rightarrow x^{-1/3} = 0$
 $\Rightarrow (x^{-1/3})^3 = 0^3$
 $\Rightarrow x^{-1} = 0$
 $\Rightarrow \frac{1}{x} = 0$
There is no number c in (-1, 1)

f is not differentiable on (-1, 1)

Increasing/ Decreasing Test

Definition:

(a) If f'(x) > 0 on an interval, then f is increasing on that interval.

(b) If f'(x) < 0 on an interval, then f is decreasing on that interval.

The first derivative test

Definition:

Suppose that c is a critical number of a continuous function f.

(a) If f changes from positive to negative at c, then f has a local maximum at c.

(b) If f ' changes from negative to positive at c , then f has a local minimum at c.

(c) If f' does not change sign at c (for example if f' is positive on both sides of c or negative on

both sides), then f has no local maximum or minimum at c.

binils.com - Anna University, Polytechnic & Schools Binils.com – Free Anna Universitye Both the hote of the study Materials

Definition:

If the graph of f lies above all of its tangents on an interval I, then it is called concave upward on I. If the graph of f lies below all of its tangents on an interval I, then it is called concave downward on I.

Note:

Concave upward \equiv convex downward Concave downward \equiv convex upward

Concavity Test

Definition:

If f''(x) > 0 for all x in I, then the graph of f is concave upward on I.

(a) If f''(x) < 0 for all x in I, then the graph of f is concave downward on I.

Definition:

A point P on a curve y = f(x) is called an inflection point iff is continuous there and the curve changes from concave upward to concave downward or from concave downward to

concave upward at P.

The Second Derivative Test S COM

Suppose f'' is continuous near c,

(a) If f'(c) = 0 and f''(c) > 0, then f has a local minimum at c.

(b) If f'(c) = 0 and f''(c) < 0, then f has a local maximum at c.

Example:

Find where the function $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ is increasing and where it is decreasing.

Solution:

Given
$$f(x) = 3x^4 - 4x^3 - 12x^2 + 5$$

 $f'(x) = 12x^3 - 12x^2 - 24x$
 $= 12x(x^2 - x - 2)$
 $= 12x(x - 2)(x + 1)$
 $f'(x) = 0 \Rightarrow 12x(x - 2)(x + 1) = 0$
 $\Rightarrow x(x - 2)(x + 1) = 0$

binils – Android App

binils.com - Anna University, Polytechnic & Schools Binils.com – Free Anna Universitye Both the hote of the start Materials

 $\Rightarrow x = 0, 2, -1$ are the critical values.

We divide the real line into intervals whose end points are the critical points. x = 0, 2, -1 and list them in a table

Interval	12 <i>x</i>	<i>x</i> – 2	<i>x</i> + 1	f '(x)	f(x)
<i>x</i> < -1	-	-	-	-	decreasing
-1 < x < 0	-	-	+	+	increasing
0 < x < 2	+	-	+	-	decreasing
<i>x</i> > 2	+	+	+	+	increasing

: The function is increasing in -1 < x < 0 and x > 2 and it is decreasing in x < -1 and

0 < x < 2

Example:

Find the local maximum and minimum values of $y = x^5 - 5x + 3$ using both the first and second derivative tests.

Solution: Given $y = f$	$F(x) = x^5 - 5x + 3$.con
f'	$(x)=5x^4-5$	
f'($f(x) = 0 \Rightarrow 5x^4 - 5 = 0$	
	$\Rightarrow x^4 - 1 = 0 \Rightarrow$	$x^4 = 1 \Rightarrow x^2 = \pm 1$
	$\Rightarrow x = 1, -1$ are t	he critical points.
Interval	Sign of f'	Behaviour of f
$-\infty < x < 1$	+	increasing
-1 < x <1	-	decreasing
$1 < x < \infty$	+	increasing

First derivative test tells us that

(i) Local maximum at x = -1

f(-1) = -1 + 5 + 3 = 7

Second derivative test tells us that

binils.com - Anna University, Polytechnic & Schools Binils.com – Free Anna Universitye Both the hoto of the binils.com / Materials

f(1) = 1 -	5 + 3 = -1			
f''(x)=20x	۲ ³			
$f''(x) = 0 \Rightarrow 20x^3 = 0 \Rightarrow x = 0$				
Interval	$f^{\prime\prime}(x)$	Behaviour of f		
(-∞,0)	-	Concave down		
$(0,\infty)$	+	Concave up		

f'(1) = 0, f''(1) = 20, f(1) = -1 is a local minimum f'(-1) = 0, f''(-1) = -20, f(-1) = 7 is a local maximum

Example:

If $f(x) = 2x^3 + 3x^2 - 36x$ find the intervals on which is increasing or decreasing, the local maximum and local minimum values of f, the intervals of concavity and the inflection points.

Solution:

Given
$$f(x) = 2x^3 + 3x^2 - 36x$$

 $f'(x) = 6x^2 + 6x - 36$
 $f'(x) = 0 \Rightarrow 6(x^2 + x - 6) = 0$
 $\Rightarrow 6(x + 3)(x - 2) = 0$
 $\Rightarrow x = -3$, 2are the critical points.
 $f''(x) = 12x + 6$

We divide the real line into intervals whose end points are the critical points x = 2, -3 and list them in a table.

Interval	6(x + 3)	x - 2	f'(x)	f(x)
<i>x</i> < -3	_	_	+	increasing
-3 < x < 2	+	_	_	decreasing
<i>x</i> > 2	+	+	+	increasing

Now we apply the first derivative test to find the local extremum values.

binils.com - Anna University, Polytechnic & Schools Binils.com – Free Anna Universitye Both the biological materials

f(x) changes from increasing to decreasing at x = -3. Thus the function has a local maximum x = -3 and local maximum value is $f(-3) = 2(-3)^3 + 3(-3)^2 - 36(-3)$ = 2(-27) + 3(9) + 108

$$= -54 + 27 + 108 = 81$$

f(x) changes from decreasing to increasing at x = 2. Thus the function has a local minimum x = 2 and local minimum value is $f(2) = 2(2)^3 + 3(2)^2 - 36(2)$

$$= 2(8) + 3(4) - 72$$
$$= 16 + 12 - 7 = -44$$

For concavity test f''(x) = 0

$$\Rightarrow 12x + 6 = 0$$
$$\Rightarrow x = -\frac{1}{2}$$

We divide the real line into intervals whose end points are the critical points $x = -\frac{1}{2}$ and list

them in a table.

Since the curve changes from concave downward to concave upward at $x = -\frac{1}{2}$

The point of inflection is
$$\left[-\frac{1}{2}, f\left(-\frac{1}{2}\right)\right]$$

 $f\left(-\frac{1}{2}\right) = 2\left(-\frac{1}{2}\right)^3 + 3\left(-\frac{1}{2}\right)^2 - 36\left(-\frac{1}{2}\right)$
 $= 2\left(-\frac{1}{8}\right) + 3\left(\frac{1}{4}\right) + 18$
 $= -\frac{1}{4} + \frac{3}{4} + 18$
 $= \frac{-1+3+72}{4}$
 $= \frac{74}{4} = \frac{37}{2}$

Hence the point of inflection are $\left(-\frac{1}{2}, \frac{37}{2}\right)$

binils.com - Anna University, Polytechnic & Schools Binils.com – Free Anna Universitye Both the hote of the start Materials

Example:

Find the interval of concavity and the inflection points. Also find the extreme values on what interval is f increasing or decreasing.

a)
$$(x) = sinx + cosx$$
, $0 \le x \le 2\pi$
b) $f(x) = e^{2x} + e^{-x}$
c) $f(x) = x + 2sinx$, $0 \le x \le 2\pi$
Solution:
a) $(x) = sinx + cosx$, $0 \le x \le 2\pi$
 $f'(x) = cosx - sinx$
 $f'(x) = 0 \Rightarrow cosx = sinx$
 $\Rightarrow x = \frac{\pi}{4}, \frac{5\pi}{4}$ are the critical points.
Interval Sign of f' Behaviour of f
 $0 < x < \frac{\pi}{4}$ + increasing
 $\frac{\pi}{4} < x < \frac{5\pi}{4}$ + increasing
 $\frac{5\pi}{4} < x < 2\pi$
(i) Maximum at $\frac{\pi}{4}$, $f'(\frac{\pi}{4}) = sin\frac{\pi}{4} + cos\frac{\pi}{4}$
 $= \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}$
(ii) Minimum at $\frac{5\pi}{4}$, $f'(\frac{5\pi}{4}) = sin\frac{5\pi}{4} + cos\frac{5\pi}{4}$
 $= -\sqrt{2}$
 $f''(x) = 0 \Rightarrow -(sinx + cosx) = 0$
 $\Rightarrow sinx = -cosx$
 $\Rightarrow x = \frac{\pi}{4}, \frac{7\pi}{4}$
Interval Sign of f'' Behaviour of f

binils.com - Anna University, Polytechnic & Schools Binils.com – Free Anna Universitye Both the hote of the formation of the start of t

$$0 < x < \frac{3\pi}{4} \qquad - \qquad \text{Concave down}$$

$$\frac{3\pi}{4} < x < \frac{7\pi}{4} \qquad + \qquad \text{Concave up}$$

$$\frac{3\pi}{4} < x < 2\pi \qquad - \qquad \text{Concave down}$$
Inflection points are $(\frac{3\pi}{4}, 0), (\frac{7\pi}{4}, 0)$
Since $f(\frac{3\pi}{4}) = 0, f(\frac{7\pi}{4}) = 0$
b) $f(x) = e^{2x} + e^{-x}$

$$f'(x) = 2e^{2x} - e^{-x} = 0$$

$$\Rightarrow 2e^{2x} = e^{-x}$$

$$\Rightarrow e^{3x} = \frac{1}{2}$$

$$\Rightarrow 3x = \log(\frac{1}{2})$$

$$\Rightarrow 3x = \log(\frac{1}{2})$$

$$\Rightarrow -0.23 \text{ are the critical points.}$$
Interval Sign of f' Behaviour of f
$$-\infty < x < -0.23 \qquad - \qquad \text{decreasing}$$

$$-0.23 < x < \infty \qquad + \qquad \text{increasing}$$

The first derivative test tells us that there is a local minimum at x = -0.23

$$f(-0.23) = f(-\frac{1}{3}\log 2) = f(\log 2^{-\frac{1}{3}})$$
$$= e^{2\log 2^{-1/3}} + e^{-\log 2^{-1/3}}$$
$$= e^{\log (2^{-1/3})^2} + e^{\log (2^{-1/3})^{-1}}$$
$$= (2^{-1/3})^2 + (2^{-1/3})^{-1}$$
$$= (2)^{-2/3} + (2)^{1/3}$$

binils – Android App

binils.com - Anna University, Polytechnic & Schools Binils.com – Free Anna Universitye Bottor bito of the study Materials

$$f''(x) = 4e^{2x} + e^{-x}$$

$$f''(x) = 0 \Rightarrow 4e^{2x} + e^{-x} = 0$$

$$\Rightarrow 4e^{2x} = -e^{-x}$$

$$\Rightarrow e^{3x} = -\frac{1}{4}$$

$$\Rightarrow 3x = \log(-\frac{1}{4})$$

$$\Rightarrow x = \frac{1}{3}\log(-\frac{1}{4})$$

$$\Rightarrow x = \frac{1}{3}(-\log 4)$$

$$= -\frac{1}{3}(\log 4) = -0.46$$
Interval Sign of f'' Behaviour of f
$$\infty < x < -0.46 + Concave up$$

$$-0.46 < x < \infty + Concave up$$

No inflection points.

No inflection points.
c)
$$f(x) = x + 2sinx$$
, $0 \le x \le 2\pi$
 $f'(x) = 1 + 2cosx$
 $f'(x) = 0 \Rightarrow 2cosx = -1$
 $\Rightarrow cosx = -\frac{1}{2}$
 $\Rightarrow x = \frac{2\pi}{3}, \frac{4\pi}{3}$ are the critical points.
Interval Sign of f' Behaviour of f
 $0 < x < \frac{2\pi}{3}$ + increasing
 $\frac{2\pi}{3} < x < \frac{4\pi}{3}$ - decreasing
 $\frac{4\pi}{3} < x < 2\pi$ + increasing

The first derivatives test tells us that there is a

(i) Local maximum at $\frac{2\pi}{3}$

binils.com - Anna University, Polytechnic & Schools Binils.com – Free Anna Universitye Both the hote of the start Materials

$$f\left(\frac{2\pi}{3}\right) = \frac{2\pi}{3} + 2\sin\left(\frac{2\pi}{3}\right) = 3.83$$

(ii) Local minimum at $\frac{4\pi}{3}$

$$f\left(\frac{4\pi}{3}\right) = \frac{4\pi}{3} + 2\sin\left(\frac{4\pi}{3}\right) = 2.46$$
$$f''(x) = -2sinx$$
$$f''(x) = 0 \Rightarrow -2sinx = 0$$
$$\Rightarrow sinx = 0 \Rightarrow x = 0, \pi, 2\pi$$

Interval Sign of f''

Behaviour of f

 $0 < x < \pi$ + Concave up

 $\pi < x < 2\pi$ – Concave down

Inflection points are (π, π)

binils.com