binils.com

UNIT-IV

DYNAMIC OF PARTICLES

Newton's Law Of Motion

Newton"s Law
The rate of change of momentum is directly proportional to the resultant force.

The Resultant Force acting in the direction of equal to the product of mass and the acceleration in the direction of resultant Force.
$\sum F=m a$

$$
\mathrm{m}=\text { mass }
$$

$\mathrm{a}=$ acceleration
D' Alembert' Principle:
States that the inertia- forces and couples, and the external forces and torques on a body together give statical equilibrium.

Inertia is a property of mater by virture of which a body resists ay change in velocity

$$
F_{I}=-m g
$$

Problem:1

What horizontal force is needed to give the 50 kg block shown in fig. With an acceleration of $3^{m} / \mathrm{s}^{2}$ up the 20° plane. Assume the coefficient of friction b / w the block and plane is 0.25 .

binils - Android App

binils - Anna University App on Play Store

Given:
Weight of block $\mathrm{W}=50 \mathrm{~kg}=50 \times 9.81=490.5 \mathrm{~N}$
Acceleration $\mathrm{a}=3 \mathrm{~m} / \mathrm{s}^{2}$
Coefficient of friction $=0.25$
To find:
Force on the block P
Soln:
Free body diagram

$\sum F X=m a$
$\mathrm{P} \cos 20-M_{X R N}-\mathrm{w} \cos 70=50 \times 3$

$$
\begin{equation*}
P \cos 20-0.25 \times R_{N}-490.5 \times \cos 70=150 \tag{1}
\end{equation*}
$$

binils - Android App
binils - Anna University App on Play Store

```
\(\sum F Y=0\)
    \(R_{N}-p \sin 20-w \sin 70=0\)
    \(R_{N}-p \sin 20-490.5 \sin 70=0\)
    \(R_{-} N-p \sin 20-490.5 \sin 70=0\)
    \(R N=0.34 P-460.91\)
    \(\mathrm{R}_{\mathrm{N}}\) value in Eqn (1)
    \(P \cos 20-0.25[0.34 \times p-490.91]-490.5 \times \cos 70=150\)
    \(0.93 p-0.085 p+122.72-167.76=150\)
    \(0.845 P-45.04=150\)
    \(0.845 P=150+45.04\)
    \(0.845 P=195.04\)
\(P=\frac{195.04}{0.845}\)
    \(P=230.81 N\)
```


Problem: 2

A block weighting 1 KN , rest on a horizontal plane as shown in fig. Find the force P required to give an acceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$ to right. Take the coefficient of friction $\mathrm{M}_{\mathrm{K}}=0.25$.

$P=750.056 \mathrm{~N}$

Problem:3

Two blocks weighting 300N and 450 N are connected by a rope as shown fig. With what acceleration the heavier block comes down, and what is the tension of the rope. Pulley is frictionless and weight less.

soln :
Free body diagram

$\sum F_{X}=m a$
$\mathrm{T}-300=\frac{300}{9.81} \times a$
$T-300=30.58 \times a----(1)$

450N

binils - Android App

$\sum F_{Y}=\mathrm{ma}$
$450-T=\frac{450}{9.81} \times a----(1$
Solving Eqn (1) \& (2)
$T-300=30.58 \times a$
$\underline{450-T=45.87 \times a}$
$150=76.45 \times a$
$a=\frac{150}{76.45}$
$a=1.962 \mathrm{~m} / \mathrm{s} 2$
Problem 4:
Two weight 800 N and 400 N are connected by a thread and they move along a rough horizontal plane under the action of force P of 400 N applied to 800 N block, as shown in Fig. Find the acceleration of the weight and tension in the thread.

To find
Acceleration a
Tension T
Soln:
Consider block '200N'

$\sum F_{Y}=0$
$R_{N}-200=0$
$R_{N}=200 N$
$\sum F_{X}=\mathrm{ma}$
$T=F=m \times a$
$T-\mu \times R N=\frac{200}{9.81} \times a \quad \mu=0.3$ assume

Consider 800N block

$\sum F_{Y}=0$
$R_{N}-800=0$
$R_{N}=800 N$
$\sum F_{X}=\mathrm{ma}$
$-T+F_{N}=\frac{800}{9.81} \times \mathrm{a}$
binils - Android App
binils - Anna University App on Play Store

$$
\begin{aligned}
& -T+\mu \times R_{N}=81.54 \times \mathrm{a} \\
& -T+0.3 \times 800=81.54 \times a \\
& -T+240=81.54 \times \mathrm{a} \\
& -T+240=81.54 \times \mathrm{a}------>(2)
\end{aligned}
$$

Solving Eqn $1 \& 2$

$$
\mathrm{T}-60=20.38 \times \mathrm{a}
$$

$$
-\mathrm{T}+240=81.54 \times \mathrm{a}
$$

$$
180=101.54 \times a
$$

$$
a=\quad 180
$$

$$
101.92
$$

$a=1.766 \mathrm{~m} / \mathrm{s}^{2}$
'a' Value sub in Eqn
$T-60=20.38 \times 1.766$
$T=95.99 N$

Problem:5

Two blocks of mass 10 kg and 5 kg are connected as shown in fig. Assume
$M_{k}=0.25$. Find the acceleration and the tension in the string if pulley is weightless and frictionless.

binils - Android App
binils - Anna University App on Play Store

Given:

$$
\begin{aligned}
& \text { Block } A=10 \mathrm{~kg} \\
& \text { Block } B=5 \mathrm{~kg} \\
& M_{k}=0.25
\end{aligned}
$$

To Find:

1.Acceleration a

2.Tension T

Soln:
Consider block A (10kg)
$\sum F_{Y}=0$

$\sum F_{X}=m a$

$$
\begin{align*}
& T-F_{N}=N 10 \times a \\
& T-M \times R_{N}=10 \times a \\
& T-0.25 \times 98.1=10 a \\
& T-24.52=10 a-----> \tag{1}
\end{align*}
$$

Consider 5 kg block
$\sum F_{Y}=\mathrm{ma}$

$$
T-w=m a
$$

$$
\begin{aligned}
& T-5 \times 9.81=5 \times a \\
& W=5 \times 9.81=49.05 \mathrm{~N} \\
& +T-49.05=5 a---->(2)
\end{aligned}
$$

Solving Eqn 1\&2

$$
\begin{gathered}
T-24.52=10 a \\
T-49.05=5 a \\
\hline 24.52=5 a \\
a=\frac{24.52}{5} \\
a=4.905 \mathrm{~m} / \mathrm{s} 2
\end{gathered}
$$

'a' Value sub in Eqn 1

$$
\begin{aligned}
& \text { in Eqn } 1 \\
& T-24.52=10 a \\
& T=10 a+24.52 \\
& T=10 \times 4.905+24.52 \\
& T=73.57 \mathrm{~N}
\end{aligned}
$$

Problem 6

A block of 1200 N rest on a rough inclined plane at 12° to the horizontal. It is pulled up the plane by means of a light flexible rope running parallel to the plant and passing over a light frictionless pulley at the top of the plane. The portion of the rope beyond the pulley hangs vertically down and carries a weight of 800 N at its end.

If Coefficient of friction $=0.2$, find a) tension in the rope (b) acceleration with which the body moves up the plane (c) distance moved is after 3sec after starts from rest.

binils - Android App

binils - Anna University App on Play Store

Given:

$$
\text { Coefficient of friction } \mu=0.2
$$

Weight of block $w=1200 \mathrm{~N}$
To Find:

1. Tension 'T'
2. Acceleration ' a '
3. Distance moved 3 sec after starts from rest

Soln:

Consider 800 N block

$\sum F_{Y}=\mathrm{ma}$

$$
\begin{align*}
& \mathrm{T}-800=\mathrm{m} \mathrm{a} \\
& T-800=800 / 9.81 \times a \\
& T-800=81.54 a-\cdots--> \tag{1}
\end{align*}
$$

binils - Android App

Consider 1200 N block:

$\sum F_{Y}=0$
$R_{N}-120070=0$
$R_{N}=1127.63=0$
$R_{N}=1127.63 N$
$\sum F_{Y}=\mathrm{ma}$

$$
\begin{align*}
& T-1200 \cos 70-F_{N}=m a \\
& T-1200 \cos -M \times R_{N}=\frac{1200}{9.81} \times a \\
& T-410.42-0.3 \times 1127.63=122.32 \times a \\
& T-410.42-338.28=122.3 \times a \\
& T-748.70=122.3 \times a------> \tag{2}
\end{align*}
$$

Solve Eqn (1) \& (2)

$$
\begin{gathered}
T-800=81.54 a \\
T-748=122.3 a \\
\hline-51.8=-40.76 a
\end{gathered}
$$

$$
\begin{aligned}
& a=\frac{-51.8}{-40.76} \\
& a=1.27 \mathrm{~m} / \mathrm{s} 2
\end{aligned}
$$

'a' Value sub in Eqn (1)
$T-800=81.54 \times a$
$T-800=81.54 \times 1.27$
$T=(81.54 \times 1.27)+800$
$T=903.55 \mathrm{~N}$
Consider kinetic Eqn
To Find Distance
$S=u t+\frac{1}{2} a t 2$
Initial condition
$S=0 \times 3+1 / 2(1.27) \times(3) 2$
$S=5.71 \mathrm{~m}$

Problem 7

Two blocks of mass 20 kg and 40 kg are connected by a rope passing over a frictionless pulley as shown in fig. (a) Assuming the coefficient of friction as 0.3 for all contact surfaces. Find the tension in the string and the aueleration of the system. Also compute the velocity of the system after 4 sec starting from rest.

binils - Android App
binils - Anna University App on Play Store

Given:
Mass of block A $m A=20 \mathrm{~kg}$
Mass of block B $\mathrm{mB}=40 \mathrm{~kg}$
Coefficient of friction $\mu=0.3$
To Find:
Tension in the string T
Acceleration ' a '
Velocity of the system after 4 sec
Solution:
Consider 20 kg block

$$
\sum F_{Y}=0
$$

$$
\begin{aligned}
& R_{N A}-196.2 \sin 60=0 \\
& R_{N A}-196.2 \sin 60 \\
& R_{N A}-169.91 N
\end{aligned}
$$

$\sum F_{X}=\mathrm{ma}$

$$
\begin{aligned}
& T-w \cos 60-F_{N A}=m a \\
& T-196.2 \cos 60-\mu \times R_{N A}=20 \times a
\end{aligned}
$$

$$
\begin{align*}
& T-196.2 \cos 60-0.3 \times 169.91=20 \times a \\
& T-98.1-50.973=20 a \\
& T-149.07=20 a----> \tag{1}
\end{align*}
$$

Consider 40 kg block

solve Eqn $1 \& 2$

$$
\begin{aligned}
& T-149.07=2 \lambda \\
& 280.96-T=40 \mathrm{a}
\end{aligned}
$$

binils - Android App
binils - Anna University App on Play Store
$131.89=60 a$

$$
\begin{aligned}
& a=131.89 / 60 \\
& a=2.19 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

' a ' value sub in Eqn (1)
$T-149.07=20 \times 2.19$
$T=193.03 \mathrm{~N}$
Using kinetic Eqn
$V=u+a t$
$\mathrm{u}=0$ Initial stage
$V=0+2.198 \times 4$
$\mathrm{t}=4 \mathrm{sec}$
$V=8.79 \mathrm{~m} / \mathrm{sec}$
Problem:
Two blocks of weight 750 N and 1500 N statt from shown in fig. Find the acceleration of each block and the distance travelled by the 750 N block in 2 sec Also find the tension in the string.

Given:
binils - Android App
binils - Anna University App on Play Store

Weight of block $A W_{A}=750 \mathrm{~N}$
Weight of block $B W_{B}=1500 \mathrm{~N}$
Coefficient of friction $\mu=0.3$
To Find:

1. Acceleration
2. Tension
3. Distance travelled by the 750 N in 2 Sec .

Soln
Consider 1500N block

Consider 750 N block
 per
binils - Android App
binils - Anna University App on Play Store

$$
\begin{align*}
& \sum F_{Y}=0 \\
& \quad R_{N}-w \sin 60=0 \\
& R_{N}=w \sin 60 \\
& R_{N}=750 \sin 60 \\
& R_{N}=649.51 N \\
& \sum F_{X}=\mathrm{ma} \\
& \mathrm{~T}-F_{N}-\mathrm{w} \cos 60=m a \\
& \mathrm{~T}-\mu R_{N}-750 \cos 60=\frac{750}{9.81} \times a \\
& \mathrm{~T}-0.3 \times 649.51-750 \cos 60=76.45 \times a \tag{2}\\
& \mathrm{~T}-569-85=76.45 a-------(2)
\end{align*}
$$

Solve eqn (1) \& (2)

$$
\begin{align*}
& 2 T-1500=152.90 \times 2 a- \\
& 2 T-1500=305.8 a \\
& \div 2 \quad T-750=152.9 a--\cdots-->(1) \\
& T-750=152.90 \times a-\cdots---> \tag{1}\\
& T-569.85=76.45 \times a-\cdots-----> \tag{1}
\end{align*}
$$

$$
\begin{gathered}
-180.15=76.45 a \\
a=\frac{-180.15}{76.45} \\
a=-2.35 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

a value sub in Eqn (1)

$$
\begin{aligned}
& T-750=152.9 \times(-2.35) \\
& T-750=152.9 \times(-359.31)
\end{aligned}
$$

binils - Android App
binils - Anna University App on Play Store

$$
\begin{aligned}
& T=750=-359.31 \\
& T=-359.3+750 \\
& T=390.68 N
\end{aligned}
$$

Distance travelled

$$
\begin{aligned}
& s=u t+1 / 2 \text { at } 2 \quad \mathrm{u}=0 \mathrm{t}=2 \\
& s=0 \times 2+1 / 2 \times(-2.35) \times(2) 2
\end{aligned}
$$

$s=-4.7 m$

Impact of Elastic Bodies:

A collision between two bodies to be an impact, if the bodies are in contact for short interval of a time and exert very large force on a short period of time.

On impact bodies deform first and then recover due to elastic properties and start moving with different velocities

Types of Impact:

* Line of impact
* Direct impact
* Oblique impact
* Central impact
* Eccentric impact

Perfectly Elastic impact: [$\mathrm{e}=1$]
If both of bodies regain to their original shape and size after the impact. Both momentum and energy is conserved.

In elastic impact $[\mathrm{e}<1$]
The collision do not return to their original shape and size completely after the collection. Only the momentum remains conserved, but there is a loss energy.

binils - Android App

Period of collision:
During the collection, the bodies undergo a deformation for a small time interval and then recover the deformation in a further small interval.

Time elapse b / w initial contact and maximum deformation is called the period of deformation. And the instant of separation is called time of restitution or period of recovery.

Principal of collision:
Consider 2 bodies approach each other with the velocity v_{1} and v_{2} masses m_{1} and m_{2} are shown in fig.

Let ' F ' be force entered due to collection at a small time. Apply conservation of momentum principal for both bodies

$$
m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1^{1}}+m_{2} v_{2^{1}}
$$

Newton's impact Eqn:
Coefficient of restitution, $\mathrm{e}=\frac{\text { relative velocity of separation }}{\text { relative velocity of approach }}$

$$
\mathrm{e}=\frac{v_{2} v_{1} v_{1}}{v_{1}-v_{2}}
$$

Total kinetic energy at before impact
$=\frac{1}{2} m_{1} v+\frac{1}{2} m_{2} v_{2}^{2}$
Total kinetic energy at after impact
$=\frac{1}{2} m_{1} v_{1}{ }^{2}+{ }_{2}{ }_{2}^{1} m_{2} v_{2}{ }^{12}$
Loss of K.E=Intial K.E - Final K.E
Oblique:
$\mathrm{V}_{1} \sin \alpha_{1}=\mathrm{V}_{1}{ }^{1} \sin \theta_{1}$
$\mathrm{V}_{2} \sin \alpha_{1}=\mathrm{V}_{2} \sin \theta_{1}$
$\mathrm{m}_{1} \mathrm{v}_{1} \cos \propto_{1}+\mathrm{m}_{1} \mathrm{v}_{1}{ }^{1} \cos \theta_{1}+\mathrm{m}_{2} \mathrm{v}_{2}{ }^{1} \cos \theta_{2} \quad \mathrm{~m}_{1}=\mathrm{m}_{2}$

$$
\mathrm{V}_{2}{ }^{1} \cos \theta_{2}-\mathrm{V}_{1}{ }^{1} \cos \theta_{1}
$$

$\mathrm{e}=\frac{\mathrm{V}_{1} \cos \alpha_{1}-\mathrm{V}_{2} \cos \alpha_{2}}{}$ ๑- い?

Problem based on impact of elastic body:

1. A sphere of 1 kg moving at $3 \mathrm{~m} / \mathrm{s}$, collides with another sphere of weight of 5 kg in the same Direction at $0.6 \mathrm{~m} / \mathrm{s}$. If the collision is perfectly elastic, find the velocity after impact.

Given:

$$
\begin{aligned}
& \mathrm{m}_{1}=1 \mathrm{~kg} \\
& \mathrm{~m}_{2}=5 \mathrm{~kg} \\
& \mathrm{v}_{1}=3 \mathrm{~m} / \mathrm{s} \\
& \mathrm{v}_{2}=0.6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

m_{1}

m_{2}

Perfectly elastic impact $\mathrm{e}=1$
To find:
binils - Android App
binils - Anna University App on Play Store

Velocity at after the impact $\mathrm{V}_{1}{ }^{1} \& \mathrm{~V}_{2}{ }^{1}$

Soln:1

Law of conservation of momentum

$$
\begin{align*}
& m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}{ }^{1}+m_{2} v_{2} \\
& 1 \times 3+5 \times 0.6=1 \mathrm{v}_{1}{ }^{1}+5 \mathrm{v}_{2}{ }^{1} \tag{1}\\
& \mathrm{~V}_{1}{ }^{1}+5 \mathrm{~V}_{2}{ }^{1}=6------>(1)
\end{align*}
$$

The coefficient of restitution, $\quad \mathrm{e}=\mathrm{V}_{2}{ }^{1}-\mathrm{V}_{1}{ }^{1}$

$$
\overline{\mathrm{V}_{1}-\mathrm{V}_{2}}
$$

$\mathrm{e}=1$ [perfectly Elastic Impact]

$$
1=\underline{\mathrm{V}_{2}{ }^{1}-\mathrm{V}_{1}{ }^{1}}
$$

$$
3-0.6
$$

Solve Eqn (1) \& (2)

$$
\begin{gathered}
\mathrm{V}_{1}{ }^{1}+5 \mathrm{~V}_{2}{ }^{1}=6 \\
\mathrm{~V}_{2}{ }^{1}-\mathrm{V}_{1}{ }^{1}=2.4 \\
\hline 6 \mathrm{~V}_{2}{ }^{1}=8.4 \\
\mathrm{~V}_{2}{ }^{1}=8.4 / 6 \\
\mathrm{~V}_{2}{ }^{1}=1.4 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

$\mathrm{V}_{2}{ }^{1}$ value sub in Eqn (1)

$$
\begin{aligned}
& \mathrm{V}_{1}{ }^{1}+5 \mathrm{~V}_{2}{ }^{1}=6 \quad------>\quad \mathrm{V}_{1}{ }^{1}=6-\left[5 \times \mathrm{V}_{2}{ }^{1}\right] \\
& \mathrm{V}_{1}{ }^{1}+=6-[5 \times 1.4]
\end{aligned}
$$

$\mathrm{V}_{1}{ }^{1}=-1 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{1}{ }^{1}=1 \mathrm{~m} / \mathrm{s}$
2. A car weighting 5 KN is moving east with a velocity of 54 k m p h and collide with a second car weighting 12 KN is moving west with a velocity of 72 km ph If the impact is perfectly plastic, what will be the velocities of the cars.

Given:

$$
\begin{gathered}
\mathrm{V}_{1}=54 \mathrm{~km} / \mathrm{h} \quad \begin{array}{l}
\mathrm{v}_{2}=-72 \mathrm{~km} / \mathrm{h} \\
\mathrm{~W}_{1}=5 K N
\end{array} \quad \mathrm{~W}_{2}=12 K N \\
\mathrm{M}_{1}=5 / 9.81 \quad \mathrm{M}_{2}=12 / 981
\end{gathered}
$$

$$
\mathrm{W}_{1}=5 \mathrm{KN}=5 / 9.81=0.509 \mathrm{~kg}=\mathrm{m}_{1}
$$

$$
\mathrm{W}_{2}=12 \mathrm{KN}=12 / 9.81=1.22 \mathrm{~kg}=\mathrm{m}_{2}
$$

$$
\begin{aligned}
& \mathrm{V}_{1}=54 \mathrm{~km} / \mathrm{hr} \\
& \mathrm{~V}_{2}=-72 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

To Find:
Velocity of car
Soln:
Law of conservation momentum

$$
\mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} \mathrm{v}_{2}=\mathrm{m}_{1} \mathrm{v}_{1}{ }^{1}+\mathrm{m}_{2} \mathrm{v}_{2}{ }^{1}
$$

Perfectly plastic means $\mathrm{e}=0$

$$
\therefore \mathrm{v}_{1}{ }^{1}=\mathrm{v}_{2}{ }^{2}=\mathrm{e}
$$

$0.509 \times 54+1.22 \times[-72]=0.509 \times \mathrm{v}_{1}{ }^{1}+1.22 \times \mathrm{v}_{2}{ }^{1}$

$$
\begin{aligned}
27.486-87.84 & =[0.509 V c+1.22] \\
-60.354 & =V c \times 1.729
\end{aligned}
$$

$$
V_{c}=-60.354
$$

$$
V c=-34.90 \mathrm{~km} / \mathrm{hr}
$$

3. Direct central impact occurs between 300 N body moving to right with a velocity of $6 \mathrm{~m} / \mathrm{s}$ and 150 N body moving to the left with a velocity of 10 m / s. Find the velocity of each body after the impact if the coefficient of restitution is 0.8 .

Same as problem No:1
Ans: $\mathrm{V}_{2}{ }^{1}=9.2 \mathrm{~m} / \mathrm{s}$

$$
\mathrm{V}_{1}{ }^{1}=-3.6 \mathrm{~m} / \mathrm{s}
$$

4. Two bodies, one of which 20 N and velocity $10 \mathrm{~m} / \mathrm{s}$ and the other of 100 N with a velocity of m / s downward, each other and implinges centerlly. Find the velocity of each body of the impact if the coefficient of restitution is 0.6 . Find also the loss in kinetic energy due to impact.

Given data:

$\mathrm{W}_{1}=20 \mathrm{~N} \quad \mathrm{~m}_{1}=\frac{20}{9.81}$
$\mathrm{m}_{1}=2.038 \mathrm{~kg}$
$\mathrm{V}_{1}=10 \mathrm{~m} / \mathrm{s}$
$\mathrm{W}_{2}=100 \mathrm{~N} \quad \mathrm{~m}_{1}=\frac{100}{9.81} \quad \mathrm{~m}_{2}=10.19 \mathrm{~kg}$
$\mathrm{V}_{2}=-10 \mathrm{~m} / \mathrm{s}$
Coefficient of restitution, $\mathrm{e}=0.6$
To find:
Final velocity After impact $V_{1}{ }^{1} \& V_{2}{ }^{1}$
Loss of kinetic Energy.

Soln:
Law of conservation of Energy
$\mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} \mathrm{v}_{2}=\mathrm{m}_{1} \mathrm{v}_{1}{ }^{1}+\mathrm{m}_{2} \mathrm{v}_{2}{ }^{1}$
$(2.038 \times 10)+(10.19 \times-10)=2.038 \mathrm{v}_{1}{ }^{1}+10.19 \times \mathrm{v}_{2}{ }^{1}$

$$
\begin{aligned}
& 20.38-101.9=2.038 \mathrm{v}_{1}{ }^{1}+10.19 \mathrm{v}_{2}{ }^{1} \\
& \quad-81.52=2.038 \mathrm{v}_{1}{ }^{1}+10.19 \mathrm{v}_{2}{ }^{1} \\
& 2.038 \mathrm{v}_{1}{ }^{1}+10.19 \mathrm{v}_{2}{ }^{1}=-81.52 \text {------->>(1) }
\end{aligned}
$$

If coefficient of restitution Eg ' e ' is given

Solve Eqn (1) \& (2)

$$
2.038 \mathrm{~V}_{1}{ }^{1}+10.19 \mathrm{~V}_{2}{ }^{1}=-81.52----->(1)
$$

Eqn (2) $\times 2.037$

$$
\begin{array}{rr}
2.038 \mathrm{~V}_{2}{ }^{1}-2.038 \mathrm{~V}_{1}{ }^{1}= & 24.456 \\
\hline 12.228 \mathrm{~V}_{2}{ }^{1}= & -57.06
\end{array}
$$

$\mathrm{V}_{2}{ }^{1}=\frac{-57.06}{12.228}$
$\mathrm{V}_{2}{ }^{1}=-4.66 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{2}{ }^{1}$ value sub in Eqn (1)

$$
2.038 \mathrm{~V}_{1}{ }^{1}+10.19 \mathrm{~V}_{2}{ }^{1}=-81.52------>(1)
$$

$$
\begin{aligned}
& 2.038 \mathrm{~V}_{1}{ }^{1}+10.19 \times(-4.66)=-81.52 \\
& 2.038 \mathrm{~V}_{1}{ }^{1}+[-47.55]=-81.52
\end{aligned}
$$

$\mathrm{V}_{1}{ }^{1}=\frac{-81.52+47.55}{2.038}$
$\mathrm{V}_{1}{ }^{1}=\frac{-33.96}{2.038}$
$\mathrm{V}_{1}{ }^{1}=16.66 \mathrm{~m} / \mathrm{s}$
Loss of kinetic Energy:
$=$ Initial kinetic Energy - Final kinetic Energy
[before Impact] [after impact]
Total kinetic Energy before impact

$$
\begin{aligned}
& =\frac{1}{2} m_{1} v_{1}{ }^{2}+\frac{1}{2}(10.19)(-10)^{2} \\
& =\frac{1}{2}(20038)(10)^{2}+\frac{1}{2}(10.19)(-10)^{2} \\
& -
\end{aligned}
$$

Before K.E $=611.4$ N.m
Total kinetic at after impact [find K.E]
$=\frac{1}{2} m_{1} \mathrm{v}_{1}{ }^{12}+\frac{1}{2} m_{2}{ }^{12}$
$=\frac{1}{2} \times(2.038)(-16.66)^{2}+\frac{1}{2} \times(10.19)(-4.66)^{2}$
After K.E= 394.26 N.m
Loss of kinetic energy during impact
= After K. $\mathrm{E}=$ Before $\mathrm{K} . \mathrm{E}$
$=611.4-394.26$
Loss $=217.11$ N.m

Problem 5

binils - Android App
binils - Anna University App on Play Store

A ball of weight 500 g moving with velocity of $\mathrm{im} / \mathrm{sec}$ impings on a bar of mass 1 kg moving with velocity $0.75 \mathrm{~m} / \mathrm{s}$ at the time of impact the velocity of the body are parallel and inclined at 60° to the line joining there centers. Determine the velocity direction of the ball after the impact where $\mathrm{e}=0.6$ also find the loss of kinetic energy due to impact.

$$
\begin{aligned}
& \propto_{1}=\propto_{2}=60^{\circ} \\
& m_{1}=500 \mathrm{~g}=\frac{500}{1000}=0.5 \mathrm{~kg}
\end{aligned}
$$

$$
m_{2}=1 \mathrm{~kg}
$$

$$
\begin{aligned}
& m_{2}=1 \mathrm{~kg} \\
& v_{1}=1 \mathrm{~m} / \mathrm{s} \\
& v_{2}=0.75
\end{aligned}
$$

Coefficient of restitution $\mathrm{e}=0.6$
To find:

1. final velocity $\mathrm{v} 1^{1} \& \mathrm{v} 2^{1}$
2. Direction $\theta_{1} \& \theta_{2}$
3. loss of kinetic energy

Soln:
Law of conservation of momentum
$\mathrm{m}_{1} \mathrm{v}_{1} \cos \propto_{1}+\mathrm{m}_{2} \mathrm{v}_{2} \cos \propto_{2}=\mathrm{m}_{1} \mathrm{v} 1^{1} \cos \theta_{1}+1 \mathrm{v} 2^{1} \cos \theta_{2}$
$0.635=0.5 v 1^{1} \cos \theta_{1}+v 2^{1} \cos \theta_{2}$
If coefficient of restitution is given
binils - Android App
binils - Anna University App on Play Store
$\mathrm{e}=\frac{v 2^{1} \cos \theta_{2}-v 1^{1} \cos \theta_{1}}{v_{1} \cos \alpha_{1-} v_{2} \cos \alpha_{2}}$
$0.6=\frac{v 2^{1} \cos \theta_{2}-v 1^{1} \cos \theta_{1}}{1 \cos 60-0.75 \text { os } 60}$
$0.6[\cos -0.7 \times \cos 60]=v 2^{1} \cos \theta_{2}-v 1^{1} \cos \theta_{1}$
Solve Eqn (1) \& (2)
$0.625=0.5 \mathrm{v} 1^{1} \cos \theta_{1}+\mathrm{v} 2^{1} \cos \theta_{2}$
$\underline{0.075=v 2^{1} \cos \theta_{2} \mp v 1^{1} \cos \theta_{1}}$
$0.55=1.5 \mathrm{v} 1^{1} \cos \theta_{1}$
$\mathrm{v} 1^{1} \cos \theta_{1}=\frac{0.55}{1.5}$
$\therefore \mathrm{v} 1^{1} \cos \theta_{1}=0.366$
$\mathrm{v} 1^{1} \sin \theta_{1}=\mathrm{v}_{1} \sin \propto 1$
$=1 \sin 60$
$=0.866$

$\underline{\mathrm{V}_{1}{ }^{1} \sin \theta_{1}}=\frac{0.866}{0.366}$
$\mathrm{V}_{1}{ }^{1} \cos \theta_{1}$

$$
\begin{aligned}
\tan \theta_{1} & =2.366 \\
\theta_{1} & =\tan ^{-1}(2.366) \\
\theta & =67^{\circ}
\end{aligned}
$$

$\mathrm{V}_{1}{ }^{1} \cos \theta_{1}=0.366$
$\mathrm{V}_{1}{ }^{1} \cos 67^{\circ}=0.366$
$\mathrm{V}_{1}{ }^{1}=\frac{0.366}{\cos 67^{\circ}}$
$\mathrm{V}_{1}{ }^{1}=0.94 \mathrm{~m} / \mathrm{s}$
binils - Android App
binils - Anna University App on Play Store
\qquad (2) $0.075=\mathrm{V}_{2}{ }^{1} \cos \theta_{2}-\mathrm{V}_{1}{ }^{1} \cos \theta_{1}$

$$
\begin{aligned}
& 0.075=\mathrm{V}_{2}{ }^{1} \cos \theta_{2}-0.94 \cos 67^{\circ} \\
& 0.075+0.94 \cos 67^{\circ}=\mathrm{V}_{2}{ }^{1} \cos \theta_{2}
\end{aligned}
$$

$$
0.442=\mathrm{V}_{2}{ }^{1} \cos \theta_{2}
$$

$\mathrm{V}_{2}{ }^{1} \sin \theta_{2}=0.6495$
$\underline{\mathrm{V}_{1}{ }^{1} \sin \theta_{1}} \quad=\frac{0.6495}{0.442}$
$\mathrm{V}_{1}{ }^{1} \cos \theta_{1}$

$$
\tan \theta_{2}=1.469
$$

$$
\theta_{2}=55^{\circ}
$$

$\mathrm{V}_{2}{ }^{1} \cos \theta_{2}=0.442$
$\mathrm{V}_{2}{ }^{1} \cos 55^{\circ}=0.442$
$\mathrm{~V}_{2}{ }^{1}=\frac{0.442}{\cos 55^{\circ}}$

$$
\mathrm{V}_{2}{ }^{1}=0.785 \mathrm{~m} / \mathrm{s}
$$

Loss of kinetic Energy $=$ Before K.E- After K.E
Before K.E $=1 / 2 m_{1} v_{1}{ }^{2}+1 / 2 m_{2} v_{2}{ }^{2}$

$$
=1 / 2 \times 0.5 \times 1^{2}+1 / 2 \times 1 \times(0.75)^{2}
$$

Before K.E $=0.25+0.281$
Before K.E $=0.531$ N.m
After kinetic Energy $=1 / 2 m_{1} v_{1}{ }^{2}+1 / 2 m_{2} v_{2}{ }^{2}$

$$
\begin{aligned}
& =1 / 2 \times 0.5 \times(0.94)^{2}+1 / 2 \times 1 \times(0.785)^{2} \\
& =0.2209+0.308
\end{aligned}
$$

binils - Android App
binils - Anna University App on Play Store

Loss of K.E=before K.E-After K.E

$$
=0.531-0.528
$$

Loss K.E $=2.1 \times 10^{-3} \mathrm{~N} . \mathrm{m}$

DYNAMIC OF PARTICLES

Dynamics

It is the branch of science which deals with the study of a body in motion.
Dynamic is further classified into two branches 1. Kinematics 2. Kinetics
Kinematics:
Kinematics is the study of motion of a moving body without considering the force.

Kinetics:

Kinetics is the study of motion of a moving body with considering external force.

Types of plane motion:

1. Rectilinear motion
2. Curvilinear motion

Rectilinear motion:
The motion of particle along a straight line.
Ex: A car moving straight road.
Ex: A stone vertically downward.
Curvilinear motion:
binils - Android App
binils - Anna University App on Play Store

The motion of a particle along a curved path

Characteristic of Kinematics:

1. Displacement: ' s '

The displacement of a moving particle is the change in its position, during which the particle remains in motion. It is denoted by ' s '
2. Speed:

It is distance travelled by the particle (or) body along the path per unit time.

$$
\text { Speed }=\frac{\text { Distance dravelled }}{\text { time taken }}
$$

3. Velocity 'v'

It is the rate of change displacement.
Velocity $=$ Distance travelled in a particular direction
Time taken $\quad \mathrm{m} / \mathrm{s}$
binils.com

4. Acceleration ' a '

It is the rate of change of velocity acceleration

$$
\begin{aligned}
& a=\frac{\text { change of velocity }}{\text { time taken }} \\
& a=\frac{\text { final velocity } \sim \text { Intial velocity }}{\text { time taken }}
\end{aligned}
$$

Negative acceleration is called retardation [When final velocity < Initial velocity]
5. Average velocity

$$
\text { Average velocity }=\frac{\text { Change in position }}{\text { Change in time }}=\frac{\Delta x}{\Delta t}
$$

6. $\frac{\text { Average speed }}{\text { Average speed }}=\frac{\text { Total distance travelled }}{\text { Total time taken }}$

Mathematically Expression for Velocity and Acceleration:
Let $s=$ Distance travelled by a particle in a straight line
$\mathrm{t}=$ time taken by the particle travelled this distance
Velocity $=\frac{d s}{d t}$
Acceleration $=\frac{d v}{d t}=\frac{d}{d t} \frac{d}{d t}=\mathrm{d}^{2} \mathrm{~s} / \mathrm{dt}^{2}$
Types of Rectilinear Motion:

1. Uniform acceleration
2. Variable acceleration

Rectilinear motion with uniform acceleration:
Eqn of motion in a straight line:
Consider the particle moving the uniform acceleration is a straight line.
Let $\mathrm{u}=$ Initial velocity $(\mathrm{m} / \mathrm{s})$
$\mathrm{v}=$ final velocity $(\mathrm{m} / \mathrm{s})$
$\mathrm{s}=$ Distance travelled (m)
$\mathrm{t}=$ time taken by the particle by the change from the u to v
$a=$ acceleration of particle $\mathrm{m} / \mathrm{s}^{2}$
change o velocity=final velocity-Intial velocity

$$
=\mathrm{v}-\mathrm{u}
$$

Acceleration $=\frac{\text { change of velocity }}{\text { time taken }}$

$$
a=\frac{v-u}{t}
$$

$a t=v-u$
v=u+at----------------> (1)
binils - Android App
binils - Anna University App on Play Store

Average velocity $=\frac{\text { Initial velocity }+ \text { final velocity }}{2}$

$$
=\frac{u+v}{2}
$$

Distance traveled by the particle in +sec
$s=$ Average velocity \times time
$s=\left(\frac{u+v}{2}\right) t------------->(2)$
velocity $=\frac{\text { distance }}{\text { time }}$
$v=\frac{s}{t}$
$s=v t$
$s=\frac{u+v}{2} \times t$
$2 s=u+v+t$
$2 s / t=u+v$
$u+v=\frac{2 s}{t} \quad \mathrm{v}=\quad \mathrm{u}+\mathrm{at}$
$u+u+a t=\frac{2 s}{t}$
$s=\frac{(2 u t+a t) t}{2}$
$s=\frac{2 u t+a t^{2}}{2}$
$s=\frac{2 u t+a t^{2}}{2}$
$s=\frac{2 u t}{2} \neq \frac{a t^{2}}{2}$
$s=u t+1 / 2 a t$
binils - Android App
binils - Anna University App on Play Store

$$
\begin{aligned}
& \mathrm{s}=u t+1 / 2 a t^{2} \\
& \text { from }(1) \mathrm{v}=u+a t \quad \mathrm{t}=\frac{v-u}{a} \\
& s=u\left(\frac{v-u}{a}\right)+\frac{1}{2} a \times\left(\frac{v-u}{a}\right) 2 \\
& s=\frac{u v-u^{2}}{a}+\frac{1}{2} a\left(\frac{v-u}{a^{2}}\right) \\
& s=\frac{u v}{a}-\frac{u^{2}}{a}+\frac{1}{2} \frac{v^{2}+u^{2}-2 v u}{a} \\
& s=\frac{u v}{a}-\frac{u^{2}}{a}+\frac{v^{2}}{2 a}+\frac{u^{2}}{2 a}-\frac{2 u v}{2 a} \\
& s=\frac{1}{\mathrm{a}}\left[u v \times 2-u^{2} \times 2+v^{2}+u^{2}-2 u v\right] \\
& \mathrm{s}=\frac{1}{2 \mathrm{a}}\left[2 \mathrm{uv}-2 \mathrm{u}^{2}+v^{2}+\mathrm{u}^{2}-2 \mathrm{uv}\right] \\
& s=\frac{1}{\mathrm{Z}}\left[v^{2}-u^{2}\right] \\
& 2 a s=v^{2}-u^{2} \\
& v^{2}=\mathrm{u}^{2}+2 a
\end{aligned}
$$

Problem 1:
An automobile travels 600 m in 40 s when it is accelerated at a constant rate of $0.6 \mathrm{~m} / \mathrm{s}^{2}$. Determine the initial and final velocity and the distance travelled for the first 12s.

Given:

Total travels distance $=600 \mathrm{~m}$
Total time $=40 \mathrm{~s}$
Acceleration $\mathrm{a}=0.6 \mathrm{~m} / \mathrm{s}^{2}$

To find
Intitial and final velocity u \&v
Distance travelled for the first 12 s
Soln
Now
Distance travelled at 60 m
$s=u t+\frac{1}{2} a t 2$
$600=u \times 40+\frac{1}{2} \times 0.6 \times(40)^{2}$
Intial velocity.u=3m/s
Velocity $\mathrm{v}=\mathrm{u}+\mathrm{at}$

Final velocity $\mathrm{v}=27 \mathrm{~m} / \mathrm{s}$
The distance travelled for the first $12 \mathrm{~s}, 1-2^{1}$
$a=0.6 \mathrm{~m} / \mathrm{m}^{2} \quad u=3 \mathrm{~m} / \mathrm{s}$
$\mathrm{s}=\mathrm{ut}+{ }_{2}^{\frac{1}{2}} \mathrm{at}^{2}$
$s=3 \times 12+\frac{1}{2} \times 0.6 \times(12)^{2}$
$\mathrm{s}=79.2 \mathrm{~m}$
2. The motion of a p [article is defined by the relation $x=3 t^{3}-18 t^{2}+26 t+8$

Where is the position expressed in metres and t is the time in seconds Determine (i)When the velocity is zero and (ii)The position and the total distance travelled when the acceleration becomes zero.

Given:

binils - Android App
binils - Anna University App on Play Store
$x=3 t^{3}-18 t^{2}+26 t+8$
$\mathrm{x}=$ position
$\mathrm{t}=$ seconds.
Soln:

$$
\begin{aligned}
& \text { Velocity }=\mathrm{v}=\frac{d x}{d t} \\
& \qquad \begin{aligned}
v & =\frac{d}{d t}\left(3 t^{2}-18 t^{2}+26 \times 1+0\right. \\
v & =9 t^{2}-36 t+26
\end{aligned}
\end{aligned}
$$

(ii) When velocity $\mathrm{v}=0$
$0=9 t^{2}-36 t+26$
$9 t^{2}-36 t+26=0$
$\mathrm{a}=9 \mathrm{~b}=-36 \quad \mathrm{c}=26$
$t=\frac{-b \pm \sqrt{b^{2}-4 c}}{2 a}$
$t=\frac{-(-36) \pm \sqrt{(-36)^{2}-4 \times 9 \times 26}}{2 \times 9}$
$t=\frac{-36 \pm 18.97}{18}$
$t=\frac{36 \pm 18.97}{18} \quad \mathrm{t}=3.094 \mathrm{~s}$
$t=\frac{36-18.97}{18}$
$\mathrm{t}=0.946 \mathrm{~s}$
the velocity becomes zero $t=0.946 \mathrm{~s}$ and $\mathrm{t}=3.054 \mathrm{~s}$
Acceleration $\mathrm{a}=\frac{d v}{d t}$

$$
\mathrm{a}=\frac{d}{d t}\left[9 t^{2}-36 t+26\right]
$$

binils - Android App

$$
\begin{aligned}
& a=9 \times 2 t-36 \times 1+0 \\
& a=18 t-36
\end{aligned}
$$

Acceleration $\mathrm{a}=0$

$$
\begin{array}{r}
0=18 t-36 \\
18 \mathrm{t}=36 \\
\mathrm{t}=\frac{36}{18} \\
\mathrm{t}=2 \mathrm{~s}
\end{array}
$$

Distance travelled from $\mathrm{t}=0$ to $\mathrm{t}=2 \mathrm{~s}$
$\mathrm{t}=2 \mathrm{~s}$

$$
x=3 t^{3}-18 t^{2}+26+8
$$

$$
x=3 \times(2)^{3}-18 \times(2)^{2}+26 \times 2+8
$$

$$
\mathrm{t}=0 \mathrm{~s}
$$

$$
\begin{aligned}
x & \equiv 12 m \\
x & =3 \times(0)^{3}-18 \times(0)^{2}+26 \times 0+8
\end{aligned}
$$

$$
x=8 \mathrm{~m}
$$

When $t=0.946 s \quad$ ' v ' becomes zero

$$
\begin{aligned}
& x=3(0.946)^{3}-18 \times(0.946)^{2}+26 \times 0.946+8 \\
& x=19 m
\end{aligned}
$$

Total distance travelled $=(19-8)+(19-12)$

$$
=18 \mathrm{~m}
$$

3. A particle under constant deceleration is moving on a straight line and covers a distance of 25 m in the first 3 s and 40 m in nest 6 s . Calculate the distance it covers in subsequent 2 s and the total distance covered before it come to rest.

Given:
A
B
C
D
E
binils - Android App
binils - Anna University App on Play Store

(A-B) (UDRM)
$\mathrm{S}=\mathrm{ut}+\frac{1}{2} a t^{2}$
$\mathrm{S}_{\mathrm{A}-\mathrm{B}}=u_{a} t_{A-B}+a t_{A B^{2}}$
$25 \pm u+3+\frac{1}{2}(a) \times(3)^{2}$
$25=3 u+\frac{1}{2} a \times 9$
$25=3 \mathrm{u}+4.5 a$
Both side \div by 3
$\frac{25}{3}=\frac{34}{3}+\frac{4.5}{3} \mathrm{a}$
$8.33=\mathrm{u}+4.5 \mathrm{a}$
$\mathrm{u}+1.5 a=8.33$
A-C

$$
\mathrm{s}=u t+\frac{1}{2} a t^{2}
$$

$65 \pm u \times 9+{ }_{2}^{1} \mathrm{a} t^{2}$
$\mathrm{s}=65 \mathrm{t}=3+6=9$
$65=9 u+40 . s u$
$\div 9$
$7.22=\mathrm{u}+4.5 \mathrm{a}$
$\mathrm{u} \pm 4.5 a=7.22$
binils - Android App
binils - Anna University App on Play Store
$u=7.22-4.5 a------->(2)$
sub (ii) in (i)
$7.22-4.5 \mathrm{a}+1.5 \mathrm{a}=8.33$
$-3 \mathrm{a}=8.33-7.22$
$-3 \mathrm{a}=1.108$
$\mathrm{a}=1.108 /-3$
$\mathrm{a}=-0.369 \mathrm{~m} / \mathrm{s}^{2-------->}>(3)$
sub (iii) in (2)

$$
u=7.22-4.5 \times(0.369)
$$

$\mathrm{u}=8.88 \mathrm{~m} / \mathrm{s}$
To find velocity at point c
$\mathrm{v}=\mathrm{u}+\mathrm{at}$
$\mathrm{v}_{\mathrm{c}}=\mathrm{u}_{\mathrm{A}}+a t_{A-C}$
$=8.88+(-0.369)(9)$
$\mathrm{v}_{\mathrm{c}}=5.56 \mathrm{~m} / \mathrm{s}$
For the motion from C to D (UDRM)
$\mathrm{v}_{\mathrm{c}}=5.56 \mathrm{~m} / \mathrm{s} \quad t_{C-D}=2 \mathrm{~s} \quad \mathrm{a}=-0.369 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{s}=u t+\frac{1}{2} a t^{2}$
$\mathrm{S}_{\mathrm{C}-\mathrm{D}}=u_{C} t_{C-D}+\frac{1}{2} a t_{C D^{2}}$
$=5.56 \times 2+\frac{1}{2} \times(-0.369) 2^{2}$
$\mathrm{S}_{\mathrm{C}-\mathrm{D}}=10.38 \mathrm{~m}$
Distance travelled in subsequent $\mathrm{t}=2 \mathrm{~s}$
binils - Android App
binils - Anna University App on Play Store
$\mathrm{s}=10.38 \mathrm{~m}$
For the motion from C-E (UDRM)
$\mathrm{V}_{\mathrm{c}}=5.56 \mathrm{~m} / \mathrm{s} \quad \mathrm{a}=-0.369 \mathrm{~m} / \mathrm{s} \quad \mathrm{V}_{\mathrm{E}}=0$
We have

$$
\begin{aligned}
& \quad \mathrm{v}^{2}-\mathrm{u}^{2}=2 \mathrm{as} \\
& \mathrm{vE}^{2}-\mathrm{vC}^{2}=2 \mathrm{as} \\
& 0^{2}-(5.56)^{2}=2 \times(-0.369) \times s_{C E} \\
& \mathrm{~S}_{\mathrm{CE}}=41.8 \mathrm{~m}
\end{aligned}
$$

Total distance travelled before it comes to res
$=S_{A B} S_{B C}+S_{C E}$
$=25+40+41.8$
Total distance $=106.9 \mathrm{~m}$
4. The position of a particle which moves along a straight line is defined as $s=$ $t^{3}-6 t^{2}-15 t+40$ where s is expressed in m and + is in sec. Determine the (a) time at which the velocity will be zero. (b) the position and distance travelled by the particle at that time (c) acceleration of the particle at that time (d) the distance travelled by the particle when $t=4$ to $t=6$

Given:
$s=t^{3}-6 t^{2}-15 t+40$
Soln:
a) $t=? \quad$ Velocity $v=0$
$\mathrm{v}=\frac{d s}{d t}$
$\mathrm{v}=\frac{d}{d t}\left(t^{3}-6 t^{2}-15 t+4\right)$

binils - Android App

binils - Anna University App on Play Store

$$
\begin{aligned}
& v=3 t^{2}-6 \times 2 t-15 \times 1+0 \\
& v=3 t^{2}-12 t-15 \\
& v=0 \\
& 3 \mathrm{t}^{2}-12 \mathrm{t}-15=0 \\
& \mathrm{t}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \mathrm{a}=3 \mathrm{~b}=-12 \mathrm{c}-15 \\
& \mathrm{t}=\frac{-b \pm \sqrt{(-12)^{2}-4 \times 3(-15)}}{2 \times 3} \\
& \mathrm{t}=\frac{12 \pm \sqrt{144+130}}{6} \\
& \mathrm{t}=\frac{12 \pm \sqrt{324}}{6} \\
& \mathrm{t}=\frac{12 \pm 18}{6} \\
& \mathrm{t}=\frac{12+18}{6}=\frac{30}{6} \\
& \mathrm{~T}=5 \operatorname{Sec}
\end{aligned}
$$

\&

$$
\mathrm{t}=\frac{12-18}{6}=\frac{-6}{6}
$$

$$
\mathrm{t}=-1 \mathrm{sec}
$$

$$
\mathrm{t} \neq-1
$$

$$
\mathrm{t}=5 \mathrm{sec}
$$

b) $\mathrm{t}=5 \operatorname{Sec} \&$ displacement $\mathrm{s}=$?

$$
\begin{aligned}
& s=t^{3}-6 t^{2}-15 t+40 \\
& s=5 t^{3}-6(5)^{2}-15 \times 5+40
\end{aligned}
$$

$\mathrm{s}=-60 \mathrm{~m}$
$\mathrm{t}=0$
$\mathrm{s}=0^{3}-6 \times 0^{2}-15 \times 0+40$
$\mathrm{s}=40 \mathrm{~m}$
Distance travelled $=\left[s_{t}=5\right]-\left[s_{t}=0\right]$

$$
=-60-40=-100 \mathrm{~m}
$$

Distance travelled $=100 \mathrm{~m}$
3) when $t=6 \mathrm{sec}$ displacement ' s '
$\mathrm{s}=t^{3}-6 t^{2}-15 t+40$
$s=6^{3}-6 \times 6^{2}-15 \times 6+40$
$s=4^{3}-6 \times 4^{2}-15 \times 4+40$
$\mathrm{s}=-52 \mathrm{~m}$
Distance travelled when $\mathrm{t}=4$ to 5 sec

$$
\begin{aligned}
& =s_{t}=5-s_{t}=4 \\
& =-60-[-52] \\
& =-60+52 \\
& =-8=8 \mathrm{~m}
\end{aligned}
$$

Distance travelled when $\mathrm{t}=5$ to 6

$$
\begin{aligned}
& =s_{t}=5-s_{t}=5 \\
& =-50-(-60) \\
& =10 \mathrm{~m}
\end{aligned}
$$

Total distance travelled $=8+10=18 \mathrm{~m}$
4) Acceleration a
$\mathrm{a}=\frac{d v}{d t}=\frac{d}{d t}\left[3 t^{2}-12 t-15\right]$
$a=3 \times 2 t-12 \times 1--(5)$
$\mathrm{a}=6 \mathrm{t}-12$
$\mathrm{t}=5 \mathrm{sec}$
$a=6 \times 5-12$
$a=30-12$
$\mathrm{a}=18 \mathrm{~m} / \mathrm{s}^{2}$
5) A driver of a car travelling at $72 \mathrm{~km} / \mathrm{h}$ Observes the traffic light 300 m ahead of him turning red. The traffic light is timed to remain red for 20 seconds before it turns without stopping to wait for its turn green, Determine (i) the required uniform acceleration of the cār (ii) the-speed with which the motorist crosses the traffic light.

Soln:
Displacement
$\mathrm{s}=u t+\frac{1}{2} a t^{2}$
$300=20 \times 20+\frac{1}{2} \times a \times 20^{2}$
binils - Android App
binils - Anna University App on Play Store
$\mathrm{a}=-0.5 \mathrm{~m} / \mathrm{s}^{2} \quad$ (Retardation)
Final velocity
$\mathrm{v}=\mathrm{u}+\mathrm{at}$
$\mathrm{v}=20+(-0.5) \times 20$
$\mathrm{v}=10 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}=\frac{10 \times 3600}{1000} \mathrm{~km} / \mathrm{hr}$
$\mathrm{v}=36 \mathrm{~km} / \mathrm{hr}$
Problem:5
A particle starting from rest moves in a straight like and its acceleration is given by $\mathrm{a}=50-36 t^{2} \mathrm{~m} / \mathrm{s}^{2}$ Where t is in sec.Determine the velocity of the particle when it has travelled 52 m .

To find
Velocity
Soln
Acceleration $\mathrm{a}=\frac{d v}{d t}$
$d v=\mathrm{a} \times d t$
$d v=\mathrm{a} \times d t$
$d v=\left(50-36 t^{2}\right) \mathrm{dt}$
$\int d v=\int\left(50-36 t^{2}\right) d t$
$\int d v=\int\left(50-36 t^{2}\right) d t$
binils - Android App
binils - Anna University App on Play Store

$$
\begin{aligned}
& \mathrm{v}=50 \mathrm{t}-36 \times \frac{\mathrm{t}^{3}}{3} \\
& \mathrm{v}=50 t-36 \times \frac{t^{3}}{3} \\
& \mathrm{v}=50 t-12 t^{3}+c_{1}
\end{aligned}
$$

$$
\text { when } \mathrm{t}=0 \mathrm{v}=0 \mathrm{c}_{1}=0
$$

$$
\mathrm{v}=50 t-12 t^{3}
$$

$$
\mathrm{ds}=\mathrm{v} \times \mathrm{dt}
$$

$$
\mathrm{ds}=50 \mathrm{t}-12 \mathrm{t}^{3} \times \mathrm{dt}
$$

$$
\mathrm{ds}=50 \mathrm{t}-12 \mathrm{t}^{3} \times \mathrm{dt}
$$

$$
\int d s=\int\left(50 t-12 t^{3}\right) \mathrm{dt}
$$

$$
\mathrm{s}=\frac{50 t^{2}}{2}-12 \times \frac{t^{4}}{4}+c_{2}
$$

$$
\mathrm{s}=25 t^{2}-3 t^{4}+c_{2}
$$

$$
\text { when } \mathrm{t}=0 \quad \mathrm{~s}=0 \quad c_{2}=0
$$

$$
s=25 t^{2}-3 t^{4}
$$

Now $\mathrm{s}=52 \mathrm{~m}$ finding out t
$52=25 \times t-3 t^{4}$
$52=25 t-3 t^{4}$
Put $t^{2}=t$
$52=25 \mathrm{t}-3 \mathrm{t}^{2}$
$3 t^{2}-25 t+52=0$
$a=3$
$\mathrm{b}=-25$
binils - Android App
binils - Anna University App on Play Store
$\mathrm{c}=52$
$t=\frac{-b \mp \sqrt{b^{2}-4 a c}}{2 a}$
$\mathrm{t}=\frac{-(25) \mp \sqrt{(-25)^{2}-4 \times 3 \times 52}}{2 \times 3}$
$\mathrm{t}=2.0816 \mathrm{sec} \& \mathrm{t}=2 \mathrm{sec}$
when $t=2 \sec \quad v=50 \times 2-12 \times 2^{3}$
$\mathrm{v}=2 \mathrm{~m} / \mathrm{s}$
when $\mathrm{t}=200816 \sec \quad v=5050 \times 2.0816-12 \times(2.0810)^{2}$
$v=-4.163 / \mathrm{m} / \mathrm{s}$
6. Two stations pand Q are 5.2 km apart. A train stars from rest at the station P and accelerates uniformly to attain a speed of $54 \mathrm{~km} / \mathrm{hr}$ in 30 sec . The speed is maintained until the brakes are applied. The train comes to rest at the station Q with uniform retaration of $1 \mathrm{~m} / \mathrm{s}^{2}$. Determine the total time required to cover the distance b / w these two station

Consider Phase I
$\mathrm{U}=0$
$t_{1}=30 \mathrm{sec}$
$v_{1}=15 \mathrm{~m} / \mathrm{s}$
$v_{1}=\mathrm{u}+a_{1} t_{1}^{v=u+a t}$
binils - Android App
binils - Anna University App on Play Store

$$
\begin{aligned}
& 15=0+a_{1} \times 30 \\
& a_{1}=0.5 \mathrm{~m} / s^{2} \\
& s_{1}=u t_{1}+\frac{1}{2} a_{1} t 1^{2} \\
& s^{2}=0 \quad 1 \quad{ }^{2}+\frac{1}{2}+a_{1} t 1^{2} \\
& s_{1}=225 \mathrm{~m}
\end{aligned}
$$

Consider Phase -III
$v_{1}=15 \mathrm{~m} / \mathrm{s}$
$a_{3}=-1 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{V}=0$
$\mathrm{V}=u+a t$

$\mathrm{t}_{3}=15 \mathrm{sec}$
$s_{3}=u_{3} v_{3}+1 / 2 a_{3} t 3^{2}$
$=15 \times 15+1 / 2(-1) 15^{2}$
$s_{3}=112.5 \mathrm{~m}$
Consider Phase-II
$s_{2}=s-\left[s_{1}+s_{3}\right]$
$s_{2}=5200-[225+112.5]$
$s_{2}=4862.5 \mathrm{~m}$
$s_{2}=\mathrm{ut}+1 / 2 a t^{2} \quad a=0$
binils - Android App
binils - Anna University App on Play Store
$s_{2}=$ ut
$4862.5=15 \times t$
$t_{2}=\frac{4862.5}{15}$
$t_{2}=324.167 \mathrm{sec}$
Total time $=30+324.167+15$
time $=369.167 \mathrm{sec}$
multiply 2
$120=14 u+49 a$
$14 \mathrm{u}+49 \mathrm{a}=129=0$---- (1)
$\div=14$
$u+3.5 a=8.57$
$u=8.57-3.5 \mathrm{a}-(2)$
Sub Eqn (2) in (1)
$u+a=10------(1)$
$3.57-3.5 a+a=10$
$8.57-2.5 a=10$
$-2.5 \mathrm{a}=10-8.57=1.43$
$a=\frac{1.43}{-2.5}$
$a=-0.572 \mathrm{~m} / \mathrm{s}^{2}$
$u+(-0.572)=10$
$u=10.572 \mathrm{~m} / \mathrm{s}$
binils - Android App
binils - Anna University App on Play Store
7. A particle under constant declaration is moving in a straight line and covers a distance of 20 m in first 2 seconds, and 40 min the next 5 sec . Calculate the distance it covers in the he subsequent 3 sec and total distance travelled by the particle before it comes to rest.

Soln:
Phase (1)-2
The displacement $s=u t+1 / 2 a t^{2}$
$t=2 \mathrm{sec}$
$\mathrm{s}=20 \mathrm{~m}$
$20=u \times 2+1 / 2 a t^{2}$
$20=2 u+2 a$
$\div 10$
$u+a=10$
Phase 1-3
$\mathrm{s}=u+1 / 2 a t^{2}$
$60=u \times+1 / 2 \times a \times 7^{2}$
$60=7 u+1 / 2 \times 49 a$
$S=20+40=60$
$t=2+5=7$
Considered $3{ }^{\text {rd }}$ phase
binils - Android App
binils - Anna University App on Play Store
$t=2+5+3=10$
$s_{3}=10.572 \times 10-1 / 2 \times 0.572 \times 10^{2}$
$S_{3}=17.142 \mathrm{~m}$
$v_{3}=u+a t$
$v_{3}=10.57-0.572 \times 10$
$v_{3}=4.857 \mathrm{~m} / \mathrm{s}$
Considered $4^{\text {th }}$ phase
$u_{4}=4.857 \quad \mathrm{v}=0 \quad \mathrm{a}=-0.572 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{V}=u+a t$
$0=4.857+(-0.572) \times t$
$t=8.5 \mathrm{sec}$
Total time $=2+5+3+8.5=18.5 \mathrm{sec}$
Total distance travel $=\mathrm{s}=u t+\frac{1}{2} \mathrm{a} t^{2}$
$S=10.57 \times 18.5-1 / 2 \times 0.57 \times 18.5^{2}$
$\mathrm{S}=97.78 \mathrm{~m}$
8. A stone is thrown vertically upwards at a point on a bridge located 40 m above the water. If it strikes the water after 4 sec , determine (i) the speed at which the stone was thrown up and (ii)The speed at which the stone strikes the water.
binils - Android App
binils - Anna University App on Play Store

Soln:
For the $\mathrm{a}=-9.81 \mathrm{~m} / \mathrm{s}^{2}$
$v_{2}=0$
$t_{1-2}=t$
$s_{1-2}=h$
$v=u+a t$
$0=u-9.81 \times t$
$u=+9.81 \mathrm{t}-$
Distance $\mathrm{s}=\mathrm{ut}+\frac{1}{2} a t^{2}$
$s_{1-2}=9.81 t \times t-\frac{1}{2} 9.81 t^{2}$
$s_{1-2}=9.81 t^{2}-4.905 t^{2}$
$s_{1-2}=4.905 t^{2} \quad s_{1-2}=\mathrm{h}---->(2)$
$\mathrm{h}=4.905 \mathrm{t}^{2}$
For motion 2 to 3
$s_{2-3}=h+40=v_{2}=0 \quad t_{2-3}=4-t$
$a=9.81 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{s}=u t+\frac{1}{2} a t^{2}$
$s_{2-3}=u_{2} t_{2-3}+{ }_{2} a t_{2-3^{2}}$
$h+40=0+\frac{1}{2} \times 9.81 \times(4-t)^{2}$
binils - Android App
binils - Anna University App on Play Store

$$
\mathrm{h}+40=\frac{1}{2} 9.81 \times(4-t)^{2}=4.905[4-t]^{2}
$$

sub in (2)

$$
\begin{aligned}
& 4.905 \mathrm{t}^{2}+40=4.905\left[16+\mathrm{t}^{2}-8 \mathrm{t}\right] \\
& 4.905 \mathrm{t}^{2}+40=78.48-4.905 \mathrm{t}^{2}-39.24 \mathrm{t}
\end{aligned}
$$

$$
40=78.48-39.24 t
$$

$$
-39.24 t=40-78.48
$$

$$
-39.24 t=-38.48
$$

$$
\mathrm{t}=+0.98 \mathrm{~s}
$$

$$
\mathrm{u}=9.81 \times t=9.81 \times 0.98
$$

$$
\mathrm{u}=9.62 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
\mathrm{v}_{3} & =\mathrm{v}_{2}+9.81(4-\mathrm{t}) \\
\mathrm{v}_{3} & =0+9.81(4-0.98) \\
\mathrm{v}_{3} & =29.62 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

