#### **GLOBALIZATION**

Globalization means integration of countries through commerce, transfer of technology, and exchangeof information and culture. In a way, it includes acting together and interacting economies through trade, investment, loan, development schemes and capital across countries. In a different sense, these flows include knowledge, science, technology, skills, culture, information, and entertainment, besides direct human resource, tele-work, and outsourcing. This interdependence has increased the complex tensions and ruptures among the nations. For the engineers, the issues such as multinational organizations, computer, internet functions, military development and environmental ethics have assumed greater importance for their very sustenance and progress.

#### **MULTINATIONAL CORPORATIONS**

Organisations who have established business in more than one country, are called multinational corporation. The headquarters are in the home country and the business is extended in many host countries. The Western organizations doing business in the less-economically developed (developing, and overpopulated) countries gain the advantage of inexpensive labor, availability of natural resources, conducive-tax atmosphere, and virgin market for the products. At the same time, the developing countries are also benefited by fresh job opportunities, jobs with higher remuneration and challenges, transfer of technology, and several social benefits by the wealth developed. But this happens invariably with some social and cultural disturbance. Loss of jobs for the home country, and loss or exploitation of natural resources, political instability for the *host* countries are some of the threats of globalization.

# **International Human Rights**

To know what are the moral responsibilities and obligations of the multinational corporations operating in the host countries, let us discuss with the framework of rights ethics. Common minimal rights are to be followed to smoothen the transactions when the engineers and employers of MNCs have to interact at official, social, economic and sometimes political levels. At international level, the organizations are expected to adopt the minimum levels of (a) values, such as mutual support, loyalty, and reciprocity,

(a) the negative duty of refraining from harmful actions such as violence and fraud, and (c) basic fairness and practical justice in case of conflicts.

#### The ten international rights to be taken care of, in this context are:1

- 1. Right of freedom of physical movement of people
- 2. Right of ownership of properties
- 3. Freedom from torture
- 4. Right to fair trial on the products
- 5. Freedom from discrimination on the basis of race or sex. If such discrimination against women or minorities is prevalent in the host country, the MNC will be compelled to accept. MNCs may opt to quit that country if the human rights violations are severe.
- 6. Physical security. Use of safety gadgets have to be supplied to the workers even if the laws of the host country do not suggest such measures.
- 7. Freedom of speech and forming association
- 8. Right to have a minimum education
- 9. Right to political participation

# **Technology Transfer**

It is a process of moving technology to a new setting and implementing it there. Technology includes hardware (machines and installations) and the techniques (technical, organizational, and managerial skills and procedures). It may mean moving the technology applications from laboratory to the field/factory or from one country to another. This transfer is effected by governments, organizations, universities, and MNCs.

# **Appropriate Technology**

Identification, transfer, and implementation of most *suitable* technology for a set of new situations, is called *appropriate technology*. Technology includes both hardware (machines and installations) and software (technical, organizational and managerial skills and procedures). Factors such as economic, social, and engineering constraints are the causes for the modification of technology. Depending on the availability of resources, physical conditions (such as temperature, humidity, salinity, geographical location, isolated land area, and availability of water), capital opportunity costs, and the human value system (social acceptability) which includes their traditions, beliefs, and religion, the appropriateness is to be determined.

#### **MNCs and Morality**

The economic and environmental conditions of the home and host countries may vary. But the multinational institutions have to adopt appropriate measures not to disturb or dislocate the social and living conditions and cultures of the home countries. A few principles are enlisted here:

- 1. MNC should respect the basic human rights of the people of the host countries.
- 2. The activities of the MNC should give economic and transfer technical benefits, and implement welfare measures of the workers of the host countries.
- 3. The business practices of the multinational organisations should improve and promote morallyjustified institutions in the host countries.
- 4. The multinationals must respect the laws and political set up, besides cultures and promote the cultures of the host countries.
- 5. The multinational organisations should provide a fair remuneration to the employees of the host countries. If the remuneration is high as that of home country, this may create tensions and if it is too low it will lead to exploitation.
- 6. Multinational institutions should provide necessary safety for the workers when they are engaged in hazardous activities and 'informed consent' should be obtained from them. Adequate compensation should be paid to them for the additional risks undertaken.

# **Case Study: Bhopal Gas Tragedy**

The Union Carbide had 51% and the Indian subsidiary UC India Ltd. had 49% of stock. In 1983, there were 14 plants in India manufacturing chemicals, pesticides, and other hazardous products. The Bhopalplant had a license to make Methyl isocyanate-based pesticides. In November 1984, they had decided to close down the plant. For quite some years before the production rate was going down.

In the history of chemical plants disasters, three other wake-up calls were reported. Flixborough accident in 1974 in U.K. when certain modifications carried out in the plant led to the leakage and explosion of *cyclohexane*, which killed 28 people. The Piper Alpha offshore oil platform disaster in 1988, near Scotland, killed 167 people and resulted in \$2 billion losses. The third occurred in Toulouse, France in 2001, killing 29 people, and injuring thousands. A warehouse holding 300 tonnes of *ammonium nitrate* fertilizer exploded and damaged 10000 buildings, including schools, a university, and a hospital. But we have not learnt from the past.

- 1. Maintenance was neglected and the trained maintenance personnel were reduced as economymeasure. Need for quick diagnosis aggravates the situation by causing considerable psychological stress on the plant personnel.
- 2. Training activities for the supervisory personnel were stopped. This led to inadequate training of the personnel to handle emergencies.
- 3. Periodical Safety Inspection teams from U.S. which visited previously were also stopped. From the initial U.S. Standards, the safety procedures were reduced to low level Indian standards. The procedures had been deteriorating at these sites for weeks or months, prior to the accident. There was clear lack of management systems and procedures to ensure safety.
- 4. Vital spares for equipments and machineries were not available
- 5. Absence of capital replacement led to the stagnant economy of the plant.
- 6. The high turnover of the experienced engineers and technicians, who were demoralized by the lack of development.
- 7. Lack of experienced personnel to operate and control the vital installations.
- 8. They have not conducted a thorough process hazards analysis that would have exposed the serious hazards which resulted in disaster later.
- 9. No emergency plan was put in practice, during the shut down and maintenance.
- 10. Above all, the commitment of top-level management to safety was lacking. They have been paying only lip service to safety of people of the host country.

Technologically, the tragedy was caused by a series of events listed:

- 1. The safety manual of Union Carbide prescribed that the MIC tanks were to be filled only upto 60% of the capacity. But the tanks were reported to have been filled up to 75%.
- 2. The safety policy prescribed that an empty tank should be available as a stand-bye in case ofemergency. But the emergency tank was also filled with to its full capacity. These facts confirmed that the MNC had not followed and implemented appropriate safety standards of the home country in the host country. Can this be called as an example of 'misappropriate technology'?

# binils.com

#### **Ethical Balance**

Should an organization adopt the rules and practices of the host country fully and face dangers and other serious consequences or adopt strictly their own country's standards and practices in the host country?

There is a saying, "When in Rome do as Romans do". Can this be applied in the case of MNCs? This is called *ethical relativism*. The actions of corporation and individuals that are accepted by law, custom and other values of a society can be morally right in that society. It is morally false, if it is illogical. It means, the corporation (and the engineers) functioning in other countries must understand their law, customs, and beliefs and act in line with those prevailing in that country. This will lead to disaster if the country is a developing one where the safety standards are given a go-bye. Laws and conventions are not morally self-sustaining. In a overpopulated country, the loss of human lives may not physically affect them, but the tragedy cast shadow for over decades, as it happened in Bhopal in 1984. This will be criticized from the points of view of human rights, public welfare, and respect to people.

#### **ENVIRONMENTAL ETHICS**

Environmental ethics is the study of (a) moral issues concerning the environment, and (b) moral perspectives, beliefs, or attitudes concerning those issues. Engineers in the past are known for their negligence of environment, in their activities. It has become important now that engineers design eco-friendly tools, machines, sustainable products, processes, and projects. These are essential now to (a) ensure protection (safety) of environment (b) prevent the degradation of environment, and (c) slow down the exploitation of the natural resources, so that the future generation can survive.

The American Society of Civil Engineers (ASCE) code of ethics, has specifically requires that "engineers shall hold paramount the safety, health, and welfare of the public and shall strive to comply with the principles of sustainable development in the performance of professional duties" The term *sustainable development* emphasizes on the investment, orientation of technology, development and functioning of organizations to meet the present needs of people and at the same time ensuring the future generations to meet their needs

#### **Disasters**

#### 1. Plastic Waste Disposal

In our country, several crores of plastic bottles are used as containers for water and oil, and plastic bags are used to pack different materials ranging from vegetables to gold ornaments. Hardly any of these are recycled. They end up in gutters, roadsides, and agricultural fields. In all these destinations, they created havoc. The worse still is the burning of plastic materials in streets and camphor along with plastic cover in temples, since they release toxic fumes and threaten seriously the air quality. Cities and local administration have to act on this, collect and arrange for recycling through industries.

# 2. e-Waste Disposal

The parts of computers and electronic devices which have served its useful life present a major environmental issue for all the developing countries including India. This scrap contains highly toxic elements such as lead, cadmium, and mercury. Even the radioactive waste will lose 89% of its toxicity after 200 years, by which time it will be no more toxic than some natural minerals in the ground. It will lose 99% of its remaining toxicity over the next 30,000 years. The toxic chemical agents such as mercury, arsenic, and cadmium retain toxicity undiminished for ever. But these scraps are illegally imported by unscrupulous agencies to salvage some commercially-valuable inputs. Instead of spending and managing on the scrap, unethical organizations sell them to countries such as India. This is strictly in violation of the Basel Convention of the United Nations Environment Program, which has banned the movement of hazardous waste. A recent report of the British Environment Agency, 13 has revealed that the discarded computers, television sets, refrigerators, mobile phones, and electrical equipments have been dispatched to India and Pakistan in large quantity, for ultimate disposal in environmentally-unacceptable ways and at great risk to the health of the labour. Even in the West, the electronic junk has been posing problems. Strong regulation including (a) pressure on industries to set up disassembling facilities, (b) ban on disposal in landfill sites, (c) legislation for recycling requirements for these junk and (d) policy incentives for eco-friendly design are essential for our country.

Indian Government expressed its concern through a technical guide on environmental management for IT Industry in December, 2004. It is yet to ratify the ban on movement of hazardous waste according to the Basel Convention. A foreign news agency exposed a few years back, the existence of a thriving e-waste disposal hub in a suburb of New Delhi, operating in appallingly dangerous conditions ROHINI COLLEGE OF

#### 1. Industrial Waste Disposal

There has been a lot of complaints through the media, on (a) against the Sterlite Copper Smelting Plant in Thuthukkudi (1997) against its pollution, and (b) when Indian companies imported the discarded French Warship Clemenceau for disposal, the poisonous asbestos compounds were expected to pollute the atmosphere besides exposing the labor to a great risk, during the disposal. The government did not act immediately. Fortunately for Indians, the French Government intervened and withdrew the ship, and the serious threat was averted!

#### 2. Depletion of Ozone Layer

The *ozone* layer protects the entire planet from the ill-effects of ultraviolet radiation and is vital for all living organisms in this world. But it is eaten away by the Chloro-fluro-carbons (CFC) such as *freon* emanating from the refrigerators, air conditioners, and aerosol can spray. This has caused also skin cancer to sun-bathers in the Western countries. Further NO and NO<sub>2</sub> gases were also found to react with the ozone. Apart from engineers, the organizations, laws of the country and local administration and market mechanisms are required to take up concerted efforts to protect the environment.

# 3. Global Warming

Over the past 30 years, the Earth has warmed by 0.6 °C. Over the last 100 years, it has warmed by

0.8 °C. It is likely to push up temperature by 3 °C by 2100, according to NASA"s studies. The U.S. administration has accepted the reality of global climate change, which has been associated with stronger hurricanes, severe droughts, intense heat waves and the melting of polar ice. Greenhouse gases, notably carbon dioxide emitted by motor vehicles and coal-fired power plants, trap heat like the glass walls of a greenhouse, cause the Earth to warm up. Delegates from the six countries — Australia, China, India, Japan, South Korea and US met in California in April 2006 for the first working session of the Asia- Pacific Partnership on Clean Development and Climate. These six countries account for about half of the world"s emissions of climate-heating greenhouse gases. Only one of the six, Japan, is committed to reducing greenhouse gas emissions by at least 5.2 per cent below 1990 levels by 2012 under the Kyoto Agreement.

About 190 nations met in Germany in the middle of May 2006 and tried to bridge vast policy gaps between the United States and its main allies over how to combat climate change amid growing evidence that the world is warming that could wreak havoc by stoking more droughts, heat waves, floods, more powerful storms and raise global sea levels by almost a meter by 2100

#### **COMPUTER ETHICS**

Computer ethics is defined as (a) study and analysis of nature and social impact of computer technology,

(b) formulation and justification of policies, for ethical use of computers. This subject has become relevant to the professionals such as designers of computers, programmers, system analysts, system managers, and operators. The use of computers have raised a host of moral concerns such as free speech, privacy, intellectual property right, and physical as well as mental harm. There appears to be no conceptual framework available on ethics, to study and understand and resolve the problems in computer technology.

#### Types of Issues

Different types of problems are found in computer ethics.

#### 1. Computer as the Instrument of Unethical Acts

- (a) The usage of computer replaces the job positions. This has been overcome to a large extent by readjusting work assignments, and training everyone on computer applications such as word processing, editing, and graphics.
- (b) Breaking privacy. Information or data of the individuals accessed or erased or the ownership changed.
- (c) Defraud a bank or a client, by accessing and withdrawing money from other sbank account.

# 2. Computer as the Object of Unethical Act

The data are accessed and deleted or changed.

- (a) *Hacking*: The software is stolen or information is accessed from other computers. This may cause financial loss to the business or violation of privacy rights of the individuals or business. In case of defense information being hacked, this may endanger the security of the nation.
- (b) *Spreading virus*: Through mail or otherwise, other computers are accessed and the files are erased or contents changed altogether. "Trojan horses" are implanted to distort the messages and files beyond recovery. This again causes financial loss or mental torture to the individuals. Some hackers feel that they have justified their right of free information or they do it for fun. However, these acts are certainly unethical.

#### 3. Problems Related to the Autonomous Nature of Computer

- (a) Security risk: Recently the Tokyo Stock Exchange faced a major embarrassment. A seemingly casual mistake by a junior trader of a large security house led to huge losses including that of reputation. The order through the exchange"s trading system was to sell one share for 600,000 Yen. Instead the trader keyed in a sale order for 600,000 shares at the rate of one Yen each. Naturally the shares on offer at the ridiculously low price were lapped up. And only a few buyers agreed to reverse the deal! The loss to the securities firm was said to be huge, running into several hundred thousands. More important to note, such an obvious mistake could not be corrected by some of the advanced technology available. For advanced countries like Japan who have imbibed the latest technology, this would be a new kind of learning experience.12
- (b) Loss of human lives: Risk and loss of human lives lost by computer, in the operational control of military weapons. There is a dangerous instability in automated defense system. An unexpected error in the software or hardware or a conflict during interfacing between the two, may trigger a serious attack and cause irreparable human loss before the error is traced. The Chinese embassy was bombed by U.S. military in Iraq a few years back, but enquiries revealed that the building was shown in a previous map as the building where insurgents stayed.
- (c) In flexible manufacturing systems, the autonomous computer is beneficial in obtaining continuous monitoring and automatic control.

#### Computers In Workplace

The ethical problems initiated by computers in the workplace are:

Elimination of routine and manual jobs. This leads to unemployment, but the creation of skilled and IT-enabled service jobs are more advantageous for the people. Initially this may

require some upgradation of their skills and knowledge, but a formal training will set this problem right. For example, in place of a typist, we have a programmer or an accountant.

Health and safety: The ill-effects due to electromagnetic radiation, especially on women and pregnant employees, mental stress, wrist problem known as Carpel Tunnel Syndrome, and backpain due to poor ergonomic seating designs, and eye strain due to poor lighting and flickers in the display and long exposure, have been reported worldwide. Over a period of long exposure, these are expected to affect the health and safety of the people.

#### **Privacy and Anonymity**

The data transmission and accessibility have improved tremendously by using the computers, but the right to privacy has been threatened to a great extent. Some issues concerned with the privacy are listed hereunder:

#### 1. Records of Evidence

Service records or criminal records and the details of people can be stored and accessed to prove the innocence or guilty. Records on psychiatric treatment by medical practitioners or hospital, or records of membership of organizations may sometime embarrass the persons in later years.

#### 2. Hacking

There are computer enthusiasts who willfully or for fun, plant virus or "Trojan horses" that may fill the disc space, falsify information, erase files, and even harm the hardware. They breakdown the functioning of computers and can be treated as violation of property rights. Some hackers opine that the information should be freely available for everybody. It is prudent that the right to individual privacy in limiting the access to the information on oneself, should not be violated. Further any unauthorized use of personal information (which is a property), is to be considered as theft. Besides the individual privacy, the national security, and freedom within the economy are to be respected. The proprietary information and data of the organizations are to be protected so that they can pursue the goals without hindrance.

# 3. Legal Response

In the Indian scene, the Right to Information Act 2005 14 provides the right to the citizens to secure access to information *under the control of public authorities*, including the departments of the central government, state governments, government bodies, public sector companies and public sector banks, to promote transparency and accountability of public authorities.

Right to information: Under the Act, section 2(j), the right to information includes the right to

Inspect works, documents, records, (2) take notes, extracts or certified copies of documents or records, (3) take certified samples of material, and (4) obtain information in the form of printouts, diskettes, floppies, tapes, video cassettes or in any other electronic mode

#### **Professional Responsibility**

The computer professionals should be aware of different conflicts of interests as they transact with other at different levels. The IEEE and Association for Computing Machinery (ACM) have established the codes of ethics to manage such responsibilities.

#### WEAPONS DEVELOPMENT

Military activities including the world wars have stimulated the growth of technology. The growth of Internet amply illustrates this fact. The development of warfare and the involvement of engineers bring out many ethical issues concerned with engineers, such as the issue of integrity in experiments as well as expenditure in defense research and development, issue of personal commitment and conscience, and the issues of social justice and social health.

Engineers involve in weapons development because of the following reasons:

- 1. It gives one job with high salary.
- 2. One takes pride and honor in participating in the activities towards the defense of the nation (patriotic fervor).
- 3. One believes the he fights a war on terrorism and thereby contribute to peace and stability of the country. Ironically, the wars have never won peace, only peace can win peace!
- 4. By research and development, the engineer is reducing or eliminating the risk from enemy weapons, and saving one's country from disaster.
- 5. By building-up arsenals and show of force, a country can force the rogue country, towards regulation. Engineers can participate effectively in arms control negotiations for surrender or peace, e.g., bombing of Nagasaki and Hiroshima led to surrender by the Japanese in 1945.

Many engineers had to fight and convince their personal conscience. The scene such as that of a Vietnamese village girl running wild with burns on the body and horror in the face and curse in her mind has moved some engineers away from their jobs

# **ENGINEERS AS MANAGERS Characteristics**

The characteristics of engineers as managers are:

- 1. Promote an ethical climate, through framing organization policies, responsibilities and by personal attitudes and obligations.
- 2. Resolving conflicts, by evolving priority, developing mutual understanding, generating various alternative solutions to problems.

Social responsibility to stakeholders, customers and employers. They act to develop wealth as well as the welfare of the society. Ethicists project the view that the manager's responsibility is only to increase the profit of the organization, and only the engineers have the responsibility to protect the safety, health, and welfare of the public. But managers have the ethical responsibility to produce safe and good products (or useful service), while showing respect for the human beings who include the employees, customers and the public. Hence, the objective for the managers and engineers is to produce valuable products that are also profitable ROHINI COLLEGE OF

#### **Managing Conflicts**

In solving conflicts, force should not be resorted. In fact, the conflict situations should be tolerated, understood, and resolved by participation by all the concerned. The conflicts in case of project managers arise in the following manners:

- (a) Conflicts based on schedules: This happens because of various levels of execution, priority and limitations of each level.
- (b) Conflicts arising out of fixing the priority to different projects or departments. This is to be arrived at from the end requirements and it may change from time to time.
- (c) Conflict based on the availability of personnel.
- (d) Conflict over technical, economic, and time factors such as cost, time, and performance level.
- (e) Conflict arising in administration such as authority, responsibility, accountability, and logistics required.
- (f) Conflicts of personality, human psychology and ego problems.
- (g) Conflict over expenditure and its deviations.

Most of the conflicts can be resolved by following the principles listed here:

#### 1. People

Separate people from the problem. It implies that the views of all concerned should be obtained. The questions such as what, why, and when the error was committed is more important than to know who committed it. This impersonal approach will lead to not only early solution but also others will be prevented from committing errors.

#### 2. Interests

Focus must be only on interest i.e., the ethical attitudes or motives and not on the positions (i.e., stated views). A supplier may require commission larger than usual prevailing rate for an agricultural product

But the past analysis may tell us that the material is not cultivated regularly and the monsoon poses some additional risk towards the supply. Mutual interests must be respected to a maximum level. What is right is more important than who is right!

# 3. Options

Generate various options as solutions to the problem. This helps a manager to try the next best solution should the first one fails. Decision on alternate solutions can be taken more easily and without loss of time.

#### 4. Evaluation

The evaluation of the results should be based on some specified objectives such as efficiency, quality, and customer satisfaction. More important is that the means, not only the goals, should be ethical

#### **CONSULTING ENGINEERS**

The consulting engineers work in private. There is no salary from the employers. But they charge fees from the sponsor and they have more freedom to decide on their projects. Still they have no absolute freedom, because they need to earn for their living. The consulting engineers have ethical responsibilities different from the salaried engineers, as follows:

#### 1. Advertising

The consulting engineers are directly responsible for advertising their services, even if they employ other consultants to assist them. But in many organisations, this responsibility is with the advertising executives and the personnel department. They are allowed to advertise but to avoid deceptive ones. Deceptive advertising such as the following are prohibited

- (a) By white lies.
- (b) Half-truth, e.g., a product has actually been tested as prototype, but it was claimed to have been already introduced in the market. An architect shows the photograph of the completed building with flowering trees around but actually the foundation of the building has been completed and there is no real garden.
- (c) Exaggerated claims. The consultant might have played a small role in a well-known project. But they could claim to have played a major role.
- (d) Making false suggestions. The reduction in cost might have been achieved along with the reduction in strength, but the strength details are hidden.
- (e) Through vague wordings or slogans.

# 2. Competitive Bidding

It means offering a price, and get something in return for the service offered. The organizations have a pool of engineers. The expertise can be shared and the bidding is made more realistic. But the individual consultants have to develop creative designs and build their reputation steadily and carefully, over a period of time. The clients will have to choose between the reputed organizations and proven

# 1. Contingency Fee

This is the fee or commission paid to the consultant, when one is successful in saving the expenses for the client. A sense of honesty and fairness is required in fixing this fee. The NSPE Code III 6 (a) says that the engineers shall not propose or accept a commission on a contingent basis where their judgment may be compromised

#### **ENGINEERS AS EXPERT WITNESS**

Frequently engineers are required to act as consultants and provide expert opinion and views in many legal cases of the past events. They are required to explain the causes of accidents, malfunctions and other technological behavior of structures, machines, and instruments, e.g., personal injury while using an instrument, defective product, traffic accident, structure or building collapse, and damage to the property, are some of the cases where testimonies are needed. The focus is on the past.

The functions of eye-witness and expert-witness are different as presented in the Table

#### Eye-witness and expert-

#### witness *Eye-witness*

1. Eye-witness gives evidence on only what has been seen or heard actually (perceived facts)

#### Expert-witness

- 1. Gives expert view on the facts in their area of their expertise
- 2. Interprets the facts, in term of the cause and effect relationship
- 3. Comments on the view of the opposite side
- 4 Reports on the professional standards, especially on the precautions when the product is made or the service is provided



The engineers, who act as expert-witnesses, are likely to abuse their positions in the following manners:

#### 1. Hired Guns

Mostly lawyers hire engineers to serve the interest of their clients. Lawyers are permitted and required to project the case in a way favorable to their clients. But the engineers have obligations to thoroughly examine the events and demonstrate their professional integrity to testify only the truth in the court. They do not serve the clients of the lawyers directly. The hired guns forward white lies and distortions, as demanded by the lawyers. They even withhold the information or shade the fact, to favor their clients.

# 2. Money Bias

Consultants may be influenced or prejudiced for monitory considerations, greputation

#### 3. Ego Bias

The assumption that the own side is innocent and the other side is guilty, is responsible for this behavior. An inordinate desire to serve one's client and get name and fame is another reason for this bias.

#### 4. Sympathy Bias

Sympathy for the victim on the opposite side may upset the testimony. The integrity of the consultants will keep these biases away from the justice. The court also must obtain the balanced view of both sides, by examining the expert witnesses of lawyers on both sides, to remove a probable bias.

#### **Duties**

- 1. The expert-witness is required to exhibit the responsibility of *confidentiality* just as they do in the consulting roles. They can not divulge the findings of the investigation to the opposite side, unless it is required by the court of law.
- 2. More important is that as witness they are *not required to volunteer* evidence favorable to the opponent. They must answer questions truthfully, need not elaborate, and remain neutral until the details are asked for further.
- 3. They should be *objective* to discover the truth and communicate them honestly.
- 4. The stand of the experts depends on the *shared understanding* created within the society. The legal system should be respected and at the same time, they should act in conformance with the professional standards as obtained from the code of ethics.
- 5. The experts should earnestly be *impartial* in identifying and interpreting the observed data, recorded data, and the industrial standards. They should not distort the truth, even under pressure. Although they are hired by the lawyers, they do not serve the lawyers or their clients. They serve the justice. Many a time, their objective judgments will help the lawyer to put up the best defense for their clients.

#### **ENGINEERS AS ADVISORS IN PLANNING AND POLICY MAKING Advisors**

The engineers are required to give their view on the future such as in planning, policy-making, which involves the technology. For example, should India expand nuclear power options or support traditional energy sources such as fossil fuels or alternative forms like solar and wind energy? In the recent past, this topic has created lot of fireworks, in the national media.

Various issues and requirements for engineers who act as advisors are:

# 1. Objectivity

The engineers should study the cost and benefits of all possible alternative means in objective manner, within the specified conditions and assumptions. ROHINI COLLEGE OF

#### 2. Study All Aspects

They have to study the economic viability (effectiveness), technical feasibility (efficiency), operational feasibility (skills) and social acceptability, which include environmental and ethical aspects, before formulating the policy Engineers have to posses the qualities, such as (a) honesty, (b) competence (skills and expertise),

(c) diligence (careful and alert) (d) loyalty in serving the interests of the clients and maintaining confidentiality, and (e) public trust, and respect for the common good, rather than serving only the interests of the clients or the political interests.

#### 2. Technical Complexity

The arbitrary, unrealistic, and controversial assumptions made during the future planning that are overlooked or not verified, will lead to moral complexity. The study on future is full of uncertainties than the investigations on the past events. On the study of energy options, for example, assumptions on population increase, life style, urbanization, availability of local fossil resources, projected costs of generating alternative forms of energy, world political scenario, world military tensions and pressures from world organizations such as World Trade Organisation (W.T.O.) and European Union (EU) may increase the complexity in judgment on future.

# 3. National Security

The proposed options should be aimed to strengthen the economy and security of the nation, besides safeguarding the natural resources and the environment from exploitation and degradation.

For the advisors on policy making or planning, a shared understanding on balancing the conflicting responsibilities, both to the clients and to the public, can be effected by the following roles or models:

#### 1. Hired Gun

The prime obligation is shown to the clients. The data and facts favorable to the clients are highlighted, and unfavorable aspects are hidden or treated as insignificant. The minimal level of interest is shown for public welfare.

# 2. Value-neutral Analysts

This assumes an impartial engineer. They exhibit conscientious decisions, impartiality i.e., without bias, fear or favor, and absence of advocacy

#### 3. Value-guided Advocates

follows:

The consulting engineers remain honest (frank in stating all the relevant facts and truthful in interpretation of the facts) and autonomous (independent) in judgement and show paramount importance to the public (as different from the hired guns **MORAL LEADERSHIP** 

Engineers provide many types of leadership in the development and implementation of technology, as managers, entrepreneurs, consultants, academics and officials of the government. Moral leadership is not merely the dominance by a group. It means adopting reasonable means to motivate the groups to achieve morally desirable goals. This leadership presents the engineers with many challenges to their moral principles. Moral leadership is essentially required for the engineers, for the reasons listed as

- 1. It is leading a group of people towards the achievement of global and objectives. The goals as well as the means are to be moral. For example, Hitler and Stalin were leaders, but only in an instrumental sense and certainly not on moral sense.
- 2. The leadership shall direct and motivate the group to move through morally desirable ways.
- 3. They lead by thinking ahead in time, and morally creative towards new applications, extension and putting values into practice. 'Morally creative' means the identification of the most important values as applicable to the situation, bringing clarity within the groups through proper communication, and putting those values into practice.
- 4. They sustain professional interest, among social diversity and cross-disciplinary complexity. They contribute to the professional societies, their professions, and to their communities. The moral leadership in engineering is manifested in leadership within the professional societies. The professional societies provide a forum for communication, and canvassing for change within and by groups.

**Voluntarism**: Another important avenue for providing moral leadership within communities, by the engineers is to promote services without fee or at reduced fees (pro bono) to the needy groups. The professional societies can also promote such activities among the engineers. This type of voluntarism (or philanthropy) has been in practice in the fields of medicine, law and education. But many of the engineers are not self-employed as in the case of physicians

#### **SPIRITUALITY**

Spirituality is a way of living that emphasizes the constant awareness and recognition of the spiritual dimension (mind and its development) of nature and people, with a dynamic balance between the material development and the spiritual development. This is said to be the great virtue of Indian philosophy and for Indians. Sometimes, spirituality includes the faith or belief in supernatural power/ God, regarding the worldly events. It functions as a fertilizer for the soil 'character' to blossom into values and morals.

Spirituality includes creativity, communication, recognition of the individual as human being (as opposed to a life-less machine), respect to others, acceptance (stop finding faults with colleagues and accept them the way they are), vision (looking beyond the obvious and not believing anyone blindly), and partnership (not being too authoritative, and always sharing responsibility with others, for better returns).

Spirituality is motivation as it encourages the colleagues to perform better. Remember, lack of motivation leads to isolation. Spirituality is also energy: Be energetic and flexible to adapt to challenging and changing situations. Spirituality is flexibility as well. One should not be too dominating. Make space for everyone and learn to recognize and accept people the way they are. Variety is the order of the day. But one can influence their mind to think and act together. Spirituality is also fun. Working is okay, but you also need to have fun in office to keep yourself charged up. Tolerance and empathy are the reflections of spirituality. Blue and saffron colors are said to be associated with spirituality.

Creativity in spirituality means conscious efforts to see things differently, to break out of habits and outdated beliefs to find new ways of thinking, doing and being. Suppression of creativity leads to violence. People are naturally creative. When they are forced to crush their creativity, its energy turns to destructive release and actions. Creativity includes the use of color, humor and freedom to enhance productivity. Creativity is fun. When people enjoy what they do, it is involvement. They work much harder.

# Spirituality in the Workplace

Building spirituality in the workplace: Spirituality is promoted in the workplace by adhering to the following activities:

- 1. Verbally respect the individuals as humans and recognize their values in all decisions and actions.
- 2. Get to know the people with whom you work and know what is important to them. Know their goals, desires, and dreams too.
- 3. State your personal ethics and your beliefs clearly.
- 4. Support causes outside the business.
- 5. Encourage leaders to use value-based discretion in making decisions.
- 6. Demonstrate your own self-knowledge and spirituality in all your actions.
- 7. Do unto others as you would have them do unto you.

#### **Sprituality for Corporate Excellence**

The spiritual traits to be developed for excellence in corporate activities are listed as follows:

- 8. *Self-awareness* Realization of self-potential. A human has immense capability but it needs to be developed.
- 9. Alertness in observation and quickness in decision making, i.e., spontaneity which includes quick reflexes, no delay but also no hasty decisions.
- 10. *Being visionary and value based* This includes an attitude towards future of the organization and the society, with clear objectives.
- 11. *Holism* Whole system or comprehensive views and interconnected with different aspects. Holistic thinking, which means the welfare of the self, family, organization and the society including all other living beings and environment.
- 12. *Compassion* Sympathy, empathy and concern for others. These are essential for not only building the team but also for its effective functioning.
- 13. *Respect for diversity* It means search for unity in diversity i.e., respect others and their views.
- 14. *Moral Autonomy* It means action based on rational and moral judgment. One need not follow the crowd or majority i.e., band-wagon effect.
- 8.Creative thinking and constant reasoning Think if we can do something new and if we can improve further? ■
- 15. *Ability to analyze and synthesize* Refrain from doing something only traditional.
- 16. *Positive views of adversity* Make adversities one's source of power—a typical Karma yogi's outlook! Every threat is converted into opportunity.
- 17. *Humility* The attitude to accept criticism (it requires courage!) and willing to correct. It includes modesty and acknowledging the work of colleagues.

*Sense of vocation* — Treat the duty as a service to society, besides your organization