Reg. No. : \square

Question Paper Code : 40492

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2021.

Fifth Semester
Electrical and Electronics Engineering
EE 8501 - POWER SYSTEM ANALYSIS

(Regulations 2017)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.

$$
\text { PART A }-(10 \times 2=20 \text { marks })
$$

1. How the base values are chosen in per unit representation of a power system?
2. Define bus admittance matrix.
3. What is a bus?
4. What is P-Q bus in power flow analysis?
5. What are the reactances used in the analysis of symmetrical faults on the synchronous machines as its equivalent reactance?
6. What is the need for short circuit analysis?
7. Name any two methods of reducing short circuit current.
8. What are unsymmetrical faults?
9. Define power angle.
10. What is the use of swing curve?

www.binils.com
 Anna University | Polytechnic | Schools

PART B $-(5 \times 13=65$ marks $)$
11. (a) Obtain the per unit impedance (reactance) diagram of the power system shown in Figure 11(a).

Generator No. 1 : $30 \mathrm{MVA}, 10.5 \mathrm{kV}, \mathrm{X}$ " $=1.6$ Ohm
Generator No. $2: 15 \mathrm{MVA}, 6.6 \mathrm{kV}, \mathrm{X}$ " $=1.2$ Ohm
Generator No. 3 : $\quad 25 \mathrm{MVA}, 6.6 \mathrm{kV}, \mathrm{X}$ " $=0.56 \mathrm{Ohm}$
Transformer T1 (3phase) : 15 MVA, $33 / 11 \mathrm{kV}, \mathrm{X}=15.2 \mathrm{Ohm}$ per phase on HT side

Transformer T2 (3phase) : 15 MVA. $33 / 6.2 \mathrm{kV}, \mathrm{X}=16 \mathrm{Ohm}$ per phase on HT side

Transmission line : 20.5 Ohm/phase
Load A : $15 \mathrm{MW}, 11 \mathrm{kV}, 0.9$ p.f. lagging
Load B : $\quad 40 \mathrm{MW}, 6.6 \mathrm{kV} .0 .85$ lagging p.f.

Or
(b) The parameters of a four system are as under:

Line	Line Starting	Line Ending	Line Impedence	Line Charging Admittance
No.	No.	No.	(pu)	(pu)

Draw the network and find bus admittance matrix.

www.binils.com
 Anna University | Polytechnic | Schools

12. (a) Derive the load flow algorithm using Newton Rapson method with flow chart and discuss the advantages of the method.

Or

(b) In the power system network shown in Figure 12 (b), bus 1 is slack bus with $\mathrm{V}_{1}=1.0+\mathrm{j} 0.0$ per unit and bus 2 is a load bus with $\mathrm{S}_{2}=280 \mathrm{MW}+\mathrm{j} 60 \mathrm{MVAR}$. The line impedance on a base of 100 MVA is $Z=0.02+j 0.04$ per unit. Using Gauss - Seidal method, give V_{2}. Use an initial estimate of $\mathrm{V}_{2}^{(10)}=1.0+\mathrm{j} 0.0$ and perform four iterations. Also find S_{1} and the real, reactive power loss in the line, assuming that the bus voltages have converged.

Figure 12 (b)
13. (a) Explain the step by step procedure for systematic fault analysis using bus impedance matrix.

www biinils. com

 transformers to the transmission line shown in Figure 13 (b) the ratings and reactance of the machines and transformers areMachine 1 and 2: 100 MVA, 20 kV ; $\mathrm{Xd}_{\mathrm{d}}=\mathrm{X}_{1}=\mathrm{X}_{2}=20 \%, \mathrm{X}_{0}=4 \%, \mathrm{X}_{\mathrm{n}}=5 \%$ Transformers T_{1} and $\mathrm{T}_{2}=100 \mathrm{MVA}, 20 \Delta / 345 \mathrm{Y} \mathrm{kV} ; \mathrm{X}=8 \%$.

On a chosen base of $100 \mathrm{MVA}, 345 \mathrm{kV}$ in the transmission line circuit the line reactances are $X_{1}=X_{2}=15 \%$ and $X_{0}=50 \%$. Draw each of the three sequence networks and find the zero sequence bus impedance matrixes by means of Z bus building algorithm.

www.binils.com
 Anna University | Polytechnic | Schools

14. (a) Examine the sequence network for a double line to ground (LLG) fault.

Or
(b) The one-line diagram of a power system is shown below in Figure 14 (b).

The following are the p.u. reactances of different elements on a common base

Generator $1 X_{g_{0}}=0.075 ; \mathrm{X}_{\mathrm{n}}=0.075 ; \mathrm{X}_{1}=\mathrm{X}_{2}=0.25$
Generator 2: $X_{g_{0}}=0.15 ; \mathrm{X}_{\mathrm{n}}=0.15 ; \mathrm{X}_{1}=\mathrm{X}_{2}=0.2$

Transformer 1: $\mathrm{X}_{0}=\mathrm{X}_{1}=\mathrm{X}_{2}=0.12$

Transformer 2: $\mathrm{X}_{0}=\mathrm{X}_{1}=\mathrm{X}_{2}=0.24$

Transformer 3: $\mathrm{X}_{0}=\mathrm{X}_{1}=\mathrm{X}_{2}=0.1276$
Transmission line $2-3 \mathrm{X}_{0}=0.5671 ; \mathrm{X}_{1}=\mathrm{X}_{2}=0.18$

Transmission line $3-5 \mathrm{Xo}=0.4764 ; \mathrm{X}_{1}=\mathrm{X}_{2}=0.12$
Prepare the three sequence networks and determine reactances $Z_{b u s}$, $Z_{\text {bus1 }}$ and $Z_{b u s 2 . ~}$
15. (a) Describe the equal area criterion for transient stability analysis of a system.

Or

www.binils.com

Anna University | Polytechnic | Schools

(b) (i) A 2pole, $50 \mathrm{~Hz}, 11 \mathrm{kv}$ turbo alternator has a ratio of 100 MW , power factor 0.85 lagging. The rotor has a moment of inertia of $10,000 \mathrm{kgm}^{2}$. Calculate H and M .
(ii) A three phase fault is applied at the point P as shown in Figure 15(b) (ii) below. Find the critical clearing angle for clearing the fault with simultaneous opening of the breakers 1 and 2 . The reactance values of various components are indicated in the diagram. The generator is delivering 1.0 p.u. power at the instant preceding the fault.

Figure 15 (b) (ii)

PART C $-(1 \times 15=15$ marks $)$
16. (a) Figure 16 (a) shows the one line diagram of a simple three bus power system with generation at buses at 1 and 2 The voltage at bus 1 is $\mathrm{V}=1+\mathrm{j} 0.0$ V per unit. Voltage magnitude at bus 2 is fixed at 1.05 pu . with a real power generation of 400 MW . A Load consisting of 500 MW and 400 MVAR base. For the purpose of hand calculation, line resistance and line charging susceptances are neglected.

Figure 16 (a)
Using Newton-Raphson method, start with the initial estimates of $V_{2}^{0}=1.05+j 0.0$ and $V_{3}^{0}=1.05+j 0.0$, and keeping $\left|V_{2}\right|=1.05$ pu., examine the phasor values V_{2} and V_{3} Perform two iterations.

Or

www.binils.com

Anna University | Polytechnic | Schools
(b) In the power system shown in figure 16(b) phase fault occurs at point P and the faulty line was opened a little late. Find the power output equations for the pre-fault during fault and post fault calculation. values are marked in p.v. reactances.

Figure 16(b)

www.binils.com

