binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials Catalog

SOURCES AND EFFECTS OF ELECTROMAGNETIC FIELDS $\cdot 1$
CO ORDINATE SYSTEM 8
GRADIENT, DIVERGENCE, CURL 17
THEOREMS AND APPLICATIONS 20
COULOMB'S LAW 27
ELECTRIC FIELD DUE TO DISCRETE AND CONTINUOUS CHARGES 30
ELECTRIC FIELD INTENSITY 34
GAUSS'S LAW AND ITS APPLICATIONS 48
binils.com

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

binils.com

1.1 SOURCES AND EFFECTS OF ELECTROMAGNETIC FIELDS

Electromagnetic theory is a prerequisite for a wide spectrum of studies in the field of Electrical Sciences and Physics. Electromagnetic theory can be thought of as generalization of circuit theory. There are certain situations that can be handled exclusively in terms of field theory. In electromagnetic theory, the quantities involved can be categorized as source quantities and field quantities. Source of electromagnetic field is electric charges: either at rest or in motion. However an electromagnetic field may cause a redistribution of charges that in turn change the field and hence the separation of cause and effect is not always visible.
Electromagnetics (EM) is a branch of physics or electrical engineering in which electric and magnetic phenomena are studied.

Sources of Electromagnetic Fields:

- Current Carrying Conductors
- Mobile Phones
- Microwave oven
- High Voltage Power lines
- Transformer
- Electric relays
- Television/Radio
- Electric Motors
- Wave guides
- Antennas
- Optical Fibers
- Radars and lasers

Effect of Electromagnetic Fields

- Plants and Animals
- Humans
- Electrical Components

Fields are classified as

- Scalar Field
- Vector Field

Electric charge is a fundamental property of matter. Charge exists only in positive or negative integral multiple of electronic charge, $e^{-}, \mathrm{e}=1.60 \times 10-19$ coulombs. It may be noted here that in 1962, Murray Gell-Mann hypothesized Quarks as the basic building blocks of matters. Quarks were predicted to carry a fraction of electronic charge and the existence of Quarks has been experimentally verified.] Principle of conservation of charge states that the total charge (algebraic sum of positive and negative charges) of an isolated system remains unchanged, though the charges may redistribute under the influence of electric field. Kirchhoff's Current Law (KCL) is an assertion of the for conservative property of charges under the implicit assumption that there is no accumulation of charge at the junction.
Electromagnetic theory deals directly with the electric and magnetic field vectors where as circuit theory deals with the voltages and currents. Voltages and currents are integrated effects of electric and magnetic fields respectively. Electromagnetic field problems involve three space variables along with the time variable and hence the solution tends to become correspondingly complex. Vector analysis is a mathematical tool with which electromagnetic concepts are more conveniently expressed and best comprehended. Since use of vector analysis in the study of electromagnetic field theory results in real economy of time and thought, we first introduce the concept of vector analysis

VECTOR FIELDS

Scalars and Vectors

Vector analysis is a mathematical tool with which electromagnetic concepts are most convenient expressed and best comprehended.

A Scalar is a quantity that has only magnitude.
Quantities such as time, mass, distance, temperature, entropy, electric potential and population are scalar
A Vector is a quantity that has both magnitude and direction.

Vector quantities include velocity, force, displacement and electric field intensity.
Another class of physical quantities is called tensors, of which scalars and vectors are special cases.

A Scalar quantity is represented by a letter e.g., A, B, U and V .
A Vector quantity is represented by a letter with an arrow on top of it, such as \vec{A} and \vec{B} A field is a function that specifies a particular quantity everywhere in a region.

Unit Vector

A vector A that has both magnitude and direction. The magnitude of A is a scalar written as A or $|A|$. A unit vector $\mathbf{a}_{\mathbf{A}}$ along \mathbf{A} is defined as a vector whose magnitude is unity (i.e., 1) and its direction is along \mathbf{A}, that is

$$
a_{A}=\frac{A}{|A|}=\frac{A}{\bar{A}}
$$

Notes that $\left|\boldsymbol{a}_{\boldsymbol{A}}\right|=\mathbf{1}$
We may write \mathbf{A} as

$$
\llbracket A=A a_{A}
$$

Which completely specifies \mathbf{A} in terms of its magnitude \mathbf{A} and its direction $\boldsymbol{a}_{\boldsymbol{A}}$

Figure 1.1.1 Unit Vectors
[Source: "Elements of Electromagnetics" by Matthew N.O.Sadiku, page-06]
A Vector A in Cartesian or rectangular coordinates represented by

$$
\left(A_{x}, A_{y}, A_{z}\right) \text { or } A_{x} a_{x}+A_{y} a_{y}+A_{z} a_{z}
$$

$\boldsymbol{A}_{\boldsymbol{x}}, \boldsymbol{A}_{\boldsymbol{y}}, \boldsymbol{A}_{\boldsymbol{z}}$ are called the components of A in the $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ directions respectively; $\boldsymbol{a}_{\boldsymbol{x}}$, $\boldsymbol{a}_{\boldsymbol{y}}, \boldsymbol{a}_{z}$ are unit vector in the $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ directions respectively

The magnitude of vector \mathbf{A} is given by

$$
A=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}
$$

and the unit vector along \mathbf{A} is given by

$$
a_{A}=\frac{A_{x} a_{x}+A_{y} a_{y}+A_{z} a_{z}}{\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}}
$$

Sum and Difference of two vectors

The sum of two vectors is the resultant of two vectors.
Two vectors \mathbf{A} and \mathbf{B} can be added together to give to another vector \mathbf{C}

The vector addition is carried out components by component. Thus if

$$
\begin{aligned}
& \vec{A}=A_{x} \vec{a}_{x}+A_{y} \vec{a}_{y}+A_{z} \vec{a}_{z} \\
& \vec{B}=B_{x} \vec{a}_{x}+B_{y} \vec{a}_{y}+B_{z} \vec{a}_{z}
\end{aligned}
$$

Sum of two vectors

$$
C=A+B
$$

Figure 1.1.2 Vector Addition

Difference of two vectors

$$
C=A-B
$$

$$
\vec{A}-\overleftrightarrow{B}=\left(A_{x} \vec{a}_{x}+A_{y} \vec{a}_{y}+A_{z} \vec{a}_{z}\right)-\left(B_{x} \vec{a}_{x}+B_{y} \vec{a}_{y}+B_{z} \vec{a}_{z}\right)
$$

Figure 1.1.2 Vector Subtraction
[Source: "Elements of Electromagnetics" by Matthew N.O.Sadiku, page-07]

Multiplication of a Scalar and a Vector

When two vectors \mathbf{A} and \mathbf{B} are multiplied, the result is either a scalar or a vector depending on they are multiplied. Thus there are two types of vector multiplication:

- Scalar or dot product : A. \boldsymbol{B}
- Vector or Cross product: $\boldsymbol{A} \times \boldsymbol{B}$

Multiplication of three vectors \mathbf{A}, \mathbf{B} and \mathbf{C} can result in either

- Scalar triple product: $\boldsymbol{A} .(\boldsymbol{B} \times \boldsymbol{C})$
- Vector triple product: $\boldsymbol{A} \times(\boldsymbol{B} \times \boldsymbol{C})$

Dot Product or Scalar Product

The dot product of two vectors \mathbf{A} and \mathbf{B} written as A.B is called either the scalar product because it is scalar or the dot product due to the dot sign. If

$$
\begin{aligned}
& \vec{A}=A_{x} \vec{a}_{x}+A_{y} \vec{a}_{y}+A_{z} \vec{a}_{z} \\
& \overrightarrow{\boldsymbol{B}}=B_{x} \vec{a}_{x}+B_{y} \vec{a}_{y}+B_{z} \vec{a}_{z} \\
& \vec{A} \cdot \vec{B}=\left(A_{x} \vec{a}_{x}+A_{y} \vec{a}_{y}+A_{z} \vec{a}_{z}\right) \cdot\left(B_{x} \vec{a}_{x}+B_{y} \vec{a}_{y}+B_{z} \vec{a}_{z}\right) \\
& \vec{A} \cdot \vec{B}=\left(A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}\right) \\
& \vec{a}_{x} \cdot \vec{a}_{x}=\vec{a}_{y} \cdot \vec{a}_{y}=\vec{a}_{z} \cdot \vec{a}_{z}=\mathbf{1} \\
& \overrightarrow{\boldsymbol{a}}_{x} \cdot \vec{a}_{y}=\overrightarrow{\boldsymbol{a}}_{y} \cdot \overrightarrow{\boldsymbol{a}}_{z}=\overrightarrow{\boldsymbol{a}}_{z} \cdot \overrightarrow{\boldsymbol{a}}_{x z}=\mathbf{0}
\end{aligned}
$$

Cross Product or Vector Product

The Cross Product of two vectors \mathbf{A} and \mathbf{B} written $\mathbf{A X B}$, is a vector quantity whose magnitude is the area of the parallelogram formed by \mathbf{A} and \mathbf{B} and is in the direction of advance of a right handed screw as \mathbf{A} is turned into \mathbf{B}

The vector product is given by

$$
A \cdot B=A B \cos \theta
$$

Let \mathbf{A} and \mathbf{B} are two vectors

$$
\begin{aligned}
& \vec{A}=A_{x} \vec{a}_{x}+A_{y} \vec{a}_{y}+A_{z} \vec{a}_{z} \\
& \vec{B}=B_{x} \vec{a}_{x}+B_{y} \vec{a}_{y}+B_{z} \vec{a}_{z}
\end{aligned}
$$

Where $\overrightarrow{\boldsymbol{a}}_{x}, \overrightarrow{\boldsymbol{a}}_{y}$ and $\overrightarrow{\boldsymbol{a}}_{\mathbf{z}}$ are unit vectors in the direction of $\mathbf{x}, \mathbf{y}, \mathbf{z}$

$$
|\boldsymbol{A} \times \boldsymbol{B}|=\begin{array}{rll}
\overrightarrow{\boldsymbol{a}}_{x} & \overrightarrow{\boldsymbol{a}}_{y} & \overrightarrow{\boldsymbol{a}}_{z} \\
\mid \boldsymbol{A}_{x} & \boldsymbol{A}_{y} & \boldsymbol{A}_{z} \mid \\
\boldsymbol{B}_{x} & \boldsymbol{B}_{y} & \boldsymbol{B}_{z}
\end{array}
$$

Note:

$$
\overrightarrow{\boldsymbol{a}}_{x} \cdot \overrightarrow{\boldsymbol{a}}_{y}=\overrightarrow{\boldsymbol{a}}_{z}
$$

$$
\begin{aligned}
& \vec{a}_{y} \cdot \vec{a}_{z}=\vec{a}_{x} \\
& \overrightarrow{\boldsymbol{a}}_{z} \cdot \vec{a}_{x}=\vec{a}_{y}
\end{aligned}
$$

The vector $\boldsymbol{B} \times \boldsymbol{A}$ has the same magnitude but the opposite direction

$$
B \times A=-A \times B
$$

binils.com

1.2 CO- ORDINATE SYSTEMS

A point or vector can be represented in any curvilinear coordinate system, which may be orthogonal or non orthogonal.

An orthogonal system is one in which the coordinates are mutually perpendicular.
To describe a vector accurately and to express a vector in terms of its components, it is necessary to have some reference directions. Such directions are represented in terms of various co-ordinate systems. There are various co-ordinates systems available in mathematics, the co-ordinate systems are

- Cartesian or Rectangular co-ordinate system

- Cylindrical co-ordinate system

- Spherical co-ordinate system

CARTESIAN OR RECTANGULAR CO-ORDINATE SYSTEM

There are three simple methods to describe a vector accurately such as specific lengths, directions, angles, projections or components. The simplest methods of these are Cartesian or Rectangular co-ordinate system.

Figure 1.2.1 Cartesian co-ordinate system

[Source: "Elements of Electromagnetics" by Matthew N.O.Sadiku, page-30]

In Cartesian co-ordinate system three co-ordinate axes $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ are mutually right angles to each other. Considered a point $\mathbf{P}(x, y, z)$ in space at a distance \mathbf{r} from the orgin. The vector \mathbf{r} can be represented as

$$
\overrightarrow{\mathfrak{r}}=x \vec{a}_{\vec{x}}+y \vec{a}_{\vec{y}}+z \vec{a}_{\vec{z}}
$$

$\overrightarrow{\boldsymbol{a}_{\vec{x}}}, \overrightarrow{\boldsymbol{a}_{\vec{y}}}, \overrightarrow{\boldsymbol{a}_{\vec{z}}}$ are Unit Vector
x, y, z are the components vectors. Components vectors have a magnitude and direction. Unit vectors have unit magnitude and directed along the co-ordinate axis.

A Unit Vector in a given direction is a vector in that direction divided by its magnitude. It is given by

$$
\begin{gathered}
\overrightarrow{a_{\vec{r}}}=\frac{\vec{r}}{|r|} \\
|r|=\sqrt{x^{2}+y^{2}+z^{2}} \\
\overrightarrow{\vec{a}_{\vec{r}}}=\frac{x a_{x}+y \vec{a}_{y}+\vec{z} a_{z}}{\sqrt{x^{2}+y^{2}+z^{2}}}
\end{gathered}
$$

The ranges of the co-ordinate variables x, y, z are

$$
\begin{aligned}
& -\infty<x<\infty \\
& -\infty<y<\infty \\
& -\infty<z<\infty
\end{aligned}
$$

Considered the points $\mathbf{P}(x, y, z)$ and $\mathbf{Q}(x+d x, y+d y, z+d z)$ in a rectangular co-ordinate system.

The differential length $\boldsymbol{d l}$ from \mathbf{P} to \mathbf{Q} is the diagonal of the parallel piped is given by

The differential length $\quad \boldsymbol{d} \boldsymbol{l}=\sqrt{ }\left(\boldsymbol{d}_{x}\right)^{2}+\left(\boldsymbol{d}_{y}\right)^{2}+\left(\boldsymbol{d}_{z}\right)^{2}$

The differential area

$$
\begin{array}{r}
d_{s}=d_{x} d_{y} \\
d_{s}=d_{y} d_{z} \\
d_{s}=d_{z} d_{x}
\end{array}
$$

The differential Volume

$$
d_{v}=d_{x} d_{y} d_{z}
$$

CYLINDRICAL CO-ORDINATE SYSTEM

The circular cylindrical co-ordinate system is very convenient whenever we are dealing with problems having cylindrical symmetry.

A point \mathbf{P} is cylindrical co-ordinates is represented as $(\boldsymbol{\rho}, \boldsymbol{\varphi}, \boldsymbol{z})$ and is shown in figure 1.2.2.

Figure 1.2.2 Point P and unit vector in the cylindrical co-ordinate system

- $\boldsymbol{\rho}$ is the radius of cylinder passing through \mathbf{P} or the radial distance from the \mathbf{z} axis
- $\boldsymbol{\varphi}$ called the azimuthal angle, is measured from the \boldsymbol{x} - axis in the $x y$ - plane
- \mathbf{z} is the same as in the Cartesian system .

Considered any point as the intersection of three mutually perpendicular surfaces. They is a circular cylinder ($\rho=$ constant), a place ($\varphi=$ constant), and another place ($\mathbf{z}=$ constant)

A differential volume element in cylindrical co-ordinate may obtained by increasing $\boldsymbol{\rho}, \boldsymbol{\varphi}$ and \boldsymbol{z} by the differential increments $\boldsymbol{d} \boldsymbol{\rho}, \boldsymbol{d} \boldsymbol{\varphi}$ and $\boldsymbol{d z}$.The shape of this small volume is truncated wedge .As the volume element becomes very small.its shape approaches that of a rectangular parallel piped. It has sides of the length $d \rho, \rho d \varphi$ and $d z$

The differential area

$$
\begin{aligned}
& d_{s}=d \rho \cdot \rho d \varphi=\rho d \rho d \varphi \\
& d_{s}=\rho d \varphi \cdot d z \\
& d_{s}=d z \cdot d \rho=d \rho d z
\end{aligned}
$$

The differential Volume $\quad \boldsymbol{d}_{\boldsymbol{v}}=\boldsymbol{d} \boldsymbol{\rho} . \boldsymbol{\rho} \boldsymbol{d} \boldsymbol{\varphi} . \boldsymbol{d z}$

$$
d_{v}=\rho d \rho d \varphi d z
$$

The ranges of the co-ordinate variables are

$$
\begin{gathered}
\mathbf{0} \leq \boldsymbol{\rho}<\infty \\
\mathbf{0} \leq \boldsymbol{\varphi}<2 \boldsymbol{\pi} \\
-\infty<z<\infty
\end{gathered}
$$

Now the unit vector $\boldsymbol{a}_{\boldsymbol{\rho}}, \boldsymbol{a}_{\boldsymbol{\varphi}}$ and $\boldsymbol{a}_{\boldsymbol{z}}$ are mutually perpendicular because our co-ordinate system is orthogonal: $\boldsymbol{a}_{\boldsymbol{\rho}}$ points in the direction of increasing $\boldsymbol{\rho}, \boldsymbol{a}_{\boldsymbol{\varphi}}$ in the direction of increasing $\boldsymbol{\varphi}$ and $\boldsymbol{a}_{\boldsymbol{z}}$ in the positive \boldsymbol{z} - direction

$$
\begin{aligned}
& a_{\rho} \cdot a_{\rho}=a_{\varphi} \cdot a_{\varphi}=a_{z} \cdot a_{z}=1 \\
& \boldsymbol{a}_{\rho} \cdot \boldsymbol{a}_{\varphi}=\boldsymbol{a}_{\varphi} \cdot \boldsymbol{a}_{z}=\boldsymbol{a}_{\boldsymbol{z}} \cdot \boldsymbol{a}_{\rho}=0 \\
& a_{\rho} \times a_{\varphi}=a_{z} \\
& a_{\varphi} \times a_{z}=a_{\rho} \\
& a_{Z} \times a_{\varphi}=a_{\varphi}
\end{aligned}
$$

SPHERICAL CO-ORDINATE SYSTEM

The spherical co-ordinate system is most appropriate when one is dealing with problems having a degree of spherical symmetry. A point \mathbf{P} can be represented as $(\boldsymbol{r}, \boldsymbol{\theta}, \boldsymbol{\varphi})$ and it is illustrated in figüre 1.2.3.

Figure 1.2.3 Point P and unit vector in the spherical co-ordinate

- \mathbf{r} is defines as the distance from the origin to \mathbf{P} or the radius of a sphere entered at the origin and passing through \mathbf{P}.
- $\boldsymbol{\theta}$ (Called the colatitudes) is the angle between the \mathbf{z} - axis and position vector of P.
- $\boldsymbol{\varphi}$ is measured from the \boldsymbol{x} - axis (the same azimuthal angle in cylindrical coordinates)

Considered any point as the intersection of the spherical surfaces (radius $\boldsymbol{r}=\mathbf{c o n s t a n t})$, conical surface $(\boldsymbol{\theta}$, angle between \boldsymbol{r} and $\boldsymbol{z}=\mathbf{c o n s t a n t})$, and plane surface ($\boldsymbol{\varphi}=$ constant $)$.The co-ordinates of spherical system are $\boldsymbol{r}, \boldsymbol{\theta}, \boldsymbol{\varphi}$

A differential volume element may be obtained in spherical co-ordinate by increasing $\boldsymbol{r}, \boldsymbol{\theta}$ and $\boldsymbol{\varphi}$ by $\boldsymbol{d r}, \boldsymbol{d \theta}$ and $\boldsymbol{d} \boldsymbol{\varphi}$ the sides of this volume element are $d r, r d \theta$ and $r \sin \theta d \varphi$. The differential length
The differential area $\quad \begin{aligned} & d l=\sqrt{(d r)^{2}+(r d \theta)^{2}+(r \sin \theta d \varphi)^{2}} \\ & d_{s}=d r \cdot r d \theta=r d r d \theta\end{aligned}$.

$$
\begin{aligned}
& d_{s}=r d \theta \cdot r \sin \theta d \varphi=r^{2} \sin \theta d \theta d \varphi \\
& d_{s}=r \sin \theta d \varphi \cdot d r=r \sin \theta d \varphi d r
\end{aligned}
$$

The differential Volume $\quad \boldsymbol{d}_{\boldsymbol{v}}=\boldsymbol{d r} \cdot \boldsymbol{r d \theta} \boldsymbol{r} \boldsymbol{r} \sin \theta \boldsymbol{d} \varphi$

$$
d_{v}=r^{2} \sin \theta d \theta d \varphi d r
$$

The ranges of the co-ordinate variables are

$$
\begin{aligned}
& \mathbf{0} \leq \boldsymbol{r}<\infty \\
& \mathbf{0} \leq \boldsymbol{\theta}<\pi \\
& \mathbf{0}<\varphi<2 \boldsymbol{\pi}
\end{aligned}
$$

Now the unit vector $\boldsymbol{a}_{r}, \boldsymbol{a}_{\boldsymbol{\theta}}$ and $\boldsymbol{a}_{\boldsymbol{\varphi}}$ are mutually orthogonal: $\boldsymbol{a}_{\boldsymbol{r}}$ being directed along the radius or in the direction of increasing $\boldsymbol{r}, \boldsymbol{a}_{\boldsymbol{\theta}}$ in the direction of increasing θ and $\boldsymbol{a}_{\boldsymbol{\varphi}}$ in the direction of creasing φ.

$$
\begin{gathered}
a_{r} \cdot a_{r}=a_{\theta} \cdot a_{\theta}=a_{\varphi} \cdot a_{\varphi}=1 \\
a_{r} \cdot a_{\theta}=a_{\theta} \cdot a_{\varphi}=a_{\varphi \cdot} \cdot a_{r}=0 \\
a_{r} \times a_{\theta}=a_{\varphi} \\
a_{\theta} \times a_{\varphi}=a_{r} \\
a_{\varphi} \times a_{r}=a_{\theta}
\end{gathered}
$$

TRANSFORMATION OF CO-ORDINATE SYSTEM

It is necessary to transform a vector from one co-ordinate system to another coordinate system. Transformation of a vector between Cartesian and cylindrical coordinate system and Cartesian and spherical system are carried out.
(A) Transformation between Cartesian and cylind rical systems

A vector in Cartesian co-ordinate system can be converted into cylindrical coordinates system.

(i) Conversion of Cartesian to Cylindrical system

The Cartesian co-ordinate system $\boldsymbol{x}, \boldsymbol{y}, \mathbf{z}$ can be converted into cylindrical co-ordinates system. ($\boldsymbol{\rho}, \boldsymbol{\varphi}, \boldsymbol{z}$)

Given

x
y

Z

$$
\rho=\sqrt{x^{2}+y^{2}}
$$

Transform

$$
\varphi=\tan ^{-1}\left(\frac{y}{x}\right)
$$

$$
Z=Z
$$

(ii) Conversion of Cylindrical to Cartesian system

The cylindrical co-ordinates system. ($\boldsymbol{\rho}, \boldsymbol{\varphi}, \mathbf{z}$) can be converted into Cartesian coordinate system $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$

Given	Transform
ρ	$x=\rho \cos \varphi$
φ	$y=\rho \sin \varphi$
z	$z=z$

(B) Transformation between Cartesian and Spherical systems

A vector in Cartesian co-ordinate system can be converted into spherical co-ordinates system.
(i) Conversion of Cartesian to Spherical system

The Cartesian co-ordinate system $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ can be converted inte cylindrical co-ordinates system. ($\boldsymbol{r}, \boldsymbol{\theta}, \boldsymbol{\varphi}$)

Given
\boldsymbol{x}
y

$$
\begin{array}{r}
\theta=\cos ^{-1}\left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right) \\
=\cos ^{-1}(\underset{r}{z})
\end{array}
$$

z

$$
\varphi=\tan ^{-1}\left(\frac{y}{x}\right)
$$

(ii) Conversion of Spherical to Cartesian co-ordinate system

The Cartesian co-ordinate system $\boldsymbol{x}, \boldsymbol{y}, \mathbf{z}$ can be converted into cylindrical co-ordinates system. ($\boldsymbol{r}, \boldsymbol{\theta}, \boldsymbol{\varphi}$)

Given	Transform
r	$x=r \sin \theta \cos \varphi$
θ	$y=r \sin \theta \sin \varphi$
φ	$z=r \cos \theta$

binils.com

1.3 GRADIENT, DIVERGENCE, CURL

Del Operator:

The del operator $(\boldsymbol{\nabla})$, is the vector differential operator. In Cartesian co-ordinates,

$$
\nabla=\frac{\partial}{\partial_{x}} \stackrel{\omega}{a}_{\vec{x}}+\frac{\partial}{\partial_{y}} \stackrel{\omega}{a}_{\vec{y}}+\frac{\partial}{\partial_{z}} \vec{a}_{\vec{z}}
$$

This vector differential operator, otherwise known as the gradient operator.

- The gradient of a scalar \boldsymbol{V}, written as $\boldsymbol{\nabla} \boldsymbol{V}$
- The divergence of a vector \boldsymbol{A}, written as $\boldsymbol{\nabla}$. \mathbf{A}
- The curl of a vector \boldsymbol{A}, written as $\boldsymbol{\nabla} \times \mathbf{A}$
- The Laplacian of a scalar \boldsymbol{V}, written as $\boldsymbol{\nabla}^{\boldsymbol{2}} \boldsymbol{V}$

GRADIENT OF A SCALAR

The gradient of a scalar field \boldsymbol{V} is a vector that represents both the magnitude and the direction of the maximum space rate of increase of \boldsymbol{V}.
The gradient of any scalar function is the maximum space rate of change of that function. If the s scalar \boldsymbol{V} represents electric potential, ∇V represents potential gradient.

$$
\begin{aligned}
\nabla & =\frac{\partial}{\partial_{x}} \stackrel{\omega}{a}_{\vec{x}}+\frac{\partial}{\partial_{y}} \stackrel{\omega}{a}_{\vec{y}}+\frac{\partial}{\partial_{z}} \vec{a}_{\vec{z}} \\
\nabla V & =\frac{\partial V}{\partial_{x}} \stackrel{\rightharpoonup}{a}_{\vec{x}}+\frac{\partial V}{\partial_{y}} \vec{a}_{\vec{y}}+\frac{\partial V}{\partial_{z}} \vec{a}_{\vec{z}}
\end{aligned}
$$

This operation is called the gradient

$$
\nabla \mathrm{V}=\operatorname{grad} V
$$

DIVERGENCE OF A VECTOR

The divergence of \boldsymbol{A} at a given point \boldsymbol{P} is the outward flux per unit volume as the volume shrinks about \boldsymbol{P}.

The divergence of a vector \boldsymbol{A} at any point is defined as the limit of its surface integrated per unit volume as the volume enclosed by the surface shrinks to zero

$$
\nabla . A=\lim _{v \rightarrow 0} \frac{1}{v} \oiint A . \overrightarrow{i v} d s
$$

It can be expressed as

$$
\begin{gathered}
\nabla=\frac{\partial}{\partial_{x}} \vec{a}_{\vec{x}}+\frac{\partial}{\partial_{y}} \vec{a}_{\vec{y}}+\frac{\partial}{\partial_{z}} \vec{a}_{\vec{z}} \\
A=A_{x} \vec{a}_{x}+A_{y} \vec{a}_{y}+A_{z} \vec{a}_{z} \\
\nabla . A=\left(\frac{\partial}{\partial_{x}} \vec{a}_{\vec{x}}+\frac{\partial}{\partial_{y}} \vec{a}_{y}+\frac{\partial}{\partial_{z}} \vec{a}_{z}\right)+\left(A_{x} \vec{a}_{x}+A_{y} \vec{a}_{y}+A_{z} \vec{a}_{z}\right) \\
\nabla . A=\frac{\partial A_{x}}{\partial_{x}}+\frac{\partial A_{y}}{\partial_{y}}+\frac{\partial A_{z}}{\partial_{z}}
\end{gathered}
$$

This operation is called divergence

$$
\nabla \cdot A=\operatorname{div} A
$$

Divergence of a vector is a scalar quantity.

CURL OF A VECTOR

The curl of \mathbf{A} is an axial (or) rotational vector whose magnitude is the maximum circulation of A per unit area as the area tends to zero and whose direction is the normal direction of the area when the area is oriented to make the circulation maximum.

The curl of vector \mathbf{A} at any point is defined as the limit of its surface integral of its cross product with normal over a closed surface per unit volume as the volume shrinks to zero.

$$
|\operatorname{Curl} A|=\lim _{v \rightarrow 0} \frac{1}{v} \oiint \vec{t} \times A d s
$$

It can expressed as

$$
\begin{aligned}
& \nabla=\frac{\partial}{\partial_{x}} \vec{a}_{\vec{x}}+\frac{\partial}{\partial_{y}} \vec{a}_{\vec{y}}+\frac{\partial}{\partial_{z}} \vec{a}_{\vec{z}} \\
& A=A_{x} \vec{a}_{x}+A_{y} \vec{a}_{y}+A_{z} \vec{a}_{z}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\nabla \times \mathrm{A}=\begin{array}{ccc}
\vec{a}_{x} & \vec{a}_{y} & \vec{a}_{z} \\
\frac{\partial}{\partial_{x}} & \frac{\partial}{\partial_{y}} & \frac{\partial}{\partial_{z}}
\end{array} \right\rvert\, \\
& \begin{array}{lll}
\boldsymbol{A}_{\boldsymbol{x}} & \boldsymbol{A}_{\boldsymbol{y}} & \boldsymbol{A}_{z}
\end{array}
\end{aligned}
$$

This operation is called curl.

$$
\nabla \times A=C u r l A
$$

SOLENOIDAL AND IRROTATIONAL VECTORS

- A vector $\overrightarrow{\boldsymbol{A}}$ is said to be solenoidal if its divergence is zero.
i.e $\nabla \cdot \overrightarrow{\boldsymbol{A}}=0$, then $\overrightarrow{\boldsymbol{A}}$ is said to be solenoidal.
- A vector $\overrightarrow{\boldsymbol{A}}$ is said to be irrotational if its curl is zero.
i.e $\boldsymbol{\nabla} \times \overrightarrow{\boldsymbol{A}}=\mathbf{0}$, then $\overrightarrow{\boldsymbol{A}}$ is said to be irrotational.

1.4 THEOREMS AND APPLICATIONS

DIVERGENCE THEOREM:

Divergence of a Vector

The divergence of \boldsymbol{A} at a given point \boldsymbol{P} is the outward flux per unit volume as the volume shrinks about \boldsymbol{P}.

The divergence of a vector \boldsymbol{A} at any point is defined as the limit of its surface integrated per unit volume as the volume enclosed by the surface shrinks to zero

$$
\nabla . A=\lim _{v \rightarrow 0} \frac{1}{v} \oiint A \cdot \vec{z} d s
$$

It can be expressed as

$$
\begin{gathered}
\nabla=\frac{\partial}{\partial_{x}} \vec{a}_{\vec{x}}+\frac{\partial}{\partial_{y}} \vec{a}_{\vec{y}}+\frac{\partial}{\partial_{z}} \vec{a}_{\vec{z}} \\
A=A_{x} \vec{a}_{x}+A_{y} \vec{a}_{y}+A_{z} \vec{a}_{z} \\
\nabla . A=\left(\frac{\partial}{\partial_{x}} \vec{a}_{\vec{x}}+\frac{\partial}{\partial_{y}} \vec{a}_{\vec{y}}+\frac{\partial \vec{a}_{z}}{\partial_{z}}\right)+\left(A_{x} \vec{a}_{x}+A_{y} \vec{a}_{y}+A_{z} \vec{a}_{z}\right) \\
\nabla . A=\frac{\partial A_{x}}{\partial_{x}}+\frac{\partial A_{y}}{\partial_{y}}+\frac{\partial A_{z}}{\partial_{z}}
\end{gathered}
$$

This operation is called divergence

$$
\nabla \cdot A=\operatorname{div} A
$$

Divergence of a vector is a scalar quantity.

DIVERGENCE THEOREM

The volume integral of the divergence of a vector field over a volume is equal to the surface integral of the normal component of this vector over the surface bounding the volume.

$$
\iiint \nabla \cdot A d v=\oiint A \cdot d s
$$

Figure 1.4.1 Illustration of the divergence of a vector at P
[Source: "Elements of Electromagnetics" by Matthew N.O.Sadiku, page-72]

Proof:

The divergence of any vector \boldsymbol{A} is given by

$$
\begin{gathered}
\nabla=\frac{\partial}{\partial_{x}} \vec{a}_{\vec{x}}+\frac{\partial}{\partial_{y}} \vec{a}_{\vec{y}}+\frac{\partial}{\partial_{z}} \vec{a}_{\vec{z}} \\
A=A_{x} \vec{a}_{x}+A_{y} \vec{a}_{y}+A_{z} \vec{a}_{z} \\
\nabla . A=\left(\frac{\partial}{\partial_{x}} \vec{a}_{\vec{x}}+\frac{\partial}{\partial_{y}} \vec{a}_{y}+\frac{\partial}{\partial_{z}} \vec{a}_{z}\right)+\left(A_{x} \vec{a}_{x}+A_{y} \vec{a}_{y}+A_{z} \vec{a}_{z}\right) \\
\nabla . \mathrm{A}=\frac{\partial A_{x}}{\partial_{x}}+\frac{\partial A_{y}}{\partial_{y}}+\frac{\partial A_{z}}{\partial_{z}}
\end{gathered}
$$

Divergence Theorem

$$
\iiint_{v} \nabla \cdot A d v=\oiint_{s}^{\oiint A \cdot d s}
$$

Take the volume integral on both sides

$$
\iiint_{v} \nabla \cdot A d v=\iiint_{v}\left[\frac{\partial A_{x}}{\partial_{x}}+\frac{\partial A_{y}}{\partial_{y}}+\frac{\partial A_{z}}{\partial_{z}}\right] d_{x} d_{y} d_{z}
$$

That is $\boldsymbol{d}_{\boldsymbol{v}}=\boldsymbol{d}_{\boldsymbol{x}} \boldsymbol{d}_{\boldsymbol{y}} \boldsymbol{d}_{\boldsymbol{z}}$

$$
\begin{aligned}
& \left.\iiint_{\partial A_{x}} \nabla \cdot A d v=\iiint_{v}-d_{x} d_{y} d_{z}+\frac{\partial A_{y}}{\partial_{y}} d_{x} d_{y} d_{z}+\frac{\partial A_{z}}{\partial_{z}} d_{x} d_{y} d_{z}\right] \\
& { }_{v} \partial_{x}
\end{aligned}
$$

$$
\iiint_{v} \nabla \cdot A d v=\iiint_{v}\left[\frac{\partial A_{x}}{\partial x} d_{x} d_{y} d_{z}\right]+\iiint_{v}\left[\frac{\partial A_{y}}{\partial y} d_{x} d_{y} d_{z}\right]+\iiint_{v}\left[\frac{\partial A_{z}}{\partial_{z}} d_{x} d_{y} d_{z}\right]
$$

Considered the first portion of equation

$$
\iiint_{v} \frac{\partial A_{x}}{\partial_{x}} \boldsymbol{d}_{x} \underset{y}{d} \underset{z}{d}
$$

Assume the limit as x_{1} to x_{2}

$$
\begin{gathered}
\iiint_{v \partial_{x}}^{\frac{\partial A_{x}}{d}} \underset{y}{d} d=\iiint_{x 1}^{d} \frac{\partial_{x}}{x_{2}} \frac{\partial A_{x}}{d} \underset{y}{d} d{ }_{z}^{d} d \\
=\iint\left[A_{x}\right]_{x 1}^{x 2} d_{y} d_{z}
\end{gathered}
$$

$$
\left.\iiint_{x 1}^{x_{2}} \frac{\partial A_{x}}{\partial_{x}} \operatorname{x}_{x}{\underset{y}{x}}_{d}^{d} d=\iint A_{x 2}-A_{x 1}\right]{\underset{y}{z}}_{d}^{d}
$$

$$
\left.\iiint_{v \partial_{x}} \frac{\partial A_{x}}{} d d y y_{z} d=\int \not A_{x 2}-A_{x 1}\right] d \underset{y}{d} d
$$

Considered the second portion of equation

$$
\begin{aligned}
& \iiint_{v}\left[\frac{\partial A_{y}}{\partial_{y}} d_{x} d_{y} d_{z}\right] \\
& \iiint_{v}\left[\frac{\partial A_{y}}{\partial_{y}} d_{x} d_{y}^{d}\right]=\iiint_{y 1}^{y_{z}} \frac{\partial A_{y}}{\partial_{y}} \boldsymbol{d} \underset{x}{d} \underset{y}{d} \underset{z}{d} \\
& =\iint\left[A_{y}\right]_{y 1}^{y 2} d_{x} d_{z} \\
& \iiint_{y 1}^{y_{2}} \frac{\partial A_{y}}{\partial_{y}} d_{x} \underset{y}{d} \underset{z}{d}=\iint\left[A_{y 2}-A_{y 1}\right] d_{x} d_{z}
\end{aligned}
$$

Considered the third portion of equation

$$
\begin{aligned}
& \left.\iiint_{\left[\frac{\partial A_{z}}{\boldsymbol{\partial}_{z}}\right.}^{\boldsymbol{d}} \underset{x}{ } \boldsymbol{d}_{\boldsymbol{y}} \boldsymbol{d}_{z}\right] \\
& v \\
& \iiint_{v}\left[\frac{\partial A_{z}}{\partial_{z}} \boldsymbol{d} \underset{x}{\boldsymbol{d}} \underset{y}{\boldsymbol{d}} \underset{z}{d}\right]=\iiint_{z 1}^{z_{2}} \frac{\partial A_{z}}{\partial_{z}} \boldsymbol{d} \underset{x}{\boldsymbol{x}} \underset{y}{d} \underset{z}{d}
\end{aligned}
$$

Substitute the equation in below equation

$$
\begin{gathered}
\iiint_{v} \nabla \cdot A d v=\iiint_{v}\left[\frac{\partial A_{x}}{\partial_{x}} d_{x} d_{y} d_{z}\right]+\iiint_{v}\left[\frac{\partial A_{y}}{\partial y} d_{x} d_{y} d_{z}\right]+\iiint_{v}\left[\frac{\partial A_{z}}{\partial_{z}} d_{x} d_{y} d_{z}\right] \\
\iiint \nabla . A d v==\iint\left\{A_{x 2}-A_{x 1}\right\} d_{y} d_{z}+\iint\left\{A_{y 2}-A_{y 1}\right] d_{x} d_{z}+\iint\left\{A_{z 2}-A_{z 1}\right] d_{x} d_{y}
\end{gathered}
$$

Assume

$$
\begin{gathered}
A_{x 2}-A_{x 1}=A_{x} \\
A_{y 2}-A_{y 1}=A_{y} \\
A_{z 2}-A_{z 1}=A_{z} \\
d_{x} d_{y}=d s_{z} \\
d_{y} d_{z}=d s_{x} \\
d_{z} d_{x}=d s_{y}
\end{gathered}
$$

Then

Sub all these in above equation

$$
\iiint \nabla . A d v==\iint\left[A_{x}\right] d s_{x}+\iint\left[A_{y}\right] d s_{y}+\iint\left[A_{z}\right] d s_{z}
$$

$$
\iiint \nabla \cdot A d v=\iint\left[A_{x}+A_{y}+A_{z}\right] d_{s}
$$

v
Assume

$$
A_{x}+A_{y}+A_{z}=A
$$

Substitute $\boldsymbol{A}_{\boldsymbol{x}}+\boldsymbol{A}_{\boldsymbol{y}}+\boldsymbol{A}_{\boldsymbol{z}}=\boldsymbol{A}$ in above equation

$$
\begin{gathered}
=\oiint_{s} A \cdot d s \\
\iiint_{v} \nabla \cdot A d v=\oiint_{s}^{\oiint} A \cdot d s
\end{gathered}
$$

STROKES THEOREM:

Curl of a Vector

The curl of \mathbf{A} is an axial (or) rotational vector whose magnitude is the maximum circulation of \mathbf{A} per unit area as the area tends to zero and whose direction is the normal direction of the area when the area is oriented to make the circulation maximum.

The curl of vector \mathbf{A} at any point is defined as the limit of its surface integral of its cross product with normal over a closed surface per unit volume as the volume shrinks to zero.

$$
|\operatorname{Curl} A|=\lim _{v \rightarrow 0} \frac{1}{v} \oiint_{s} \overrightarrow{\boldsymbol{t}} \times A d s
$$

It can expressed as

$$
\begin{aligned}
& \nabla=\frac{\partial}{\partial_{x}} \stackrel{\cdots}{a}_{\vec{x}}+\frac{\partial}{\partial_{y}} \stackrel{\rightharpoonup}{a}_{\vec{y}}+\frac{\partial}{\partial_{z}} \vec{a}_{\vec{z}} \\
& A=A_{x} \vec{a}_{x}+A_{y} \vec{a}_{y}+A_{z} \vec{a}_{z}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lll}
\boldsymbol{A}_{\boldsymbol{x}} & \boldsymbol{A}_{\boldsymbol{y}} & \boldsymbol{A}_{z}
\end{array}
\end{aligned}
$$

This operation is called curl.

$$
\nabla \times A=\operatorname{Curl} A
$$

STROKES THEOREM:

Strokes's theorem states that the circulation of a vector field \boldsymbol{A} around a (closed) path \boldsymbol{L} is equal to the surface integral of the curl of \boldsymbol{A} over the open surface \boldsymbol{S} bounded by \boldsymbol{L}, provided \boldsymbol{A} and $\boldsymbol{\nabla} \times \boldsymbol{A}$ are continuous on S.
The line integral of a vector around a closed path is equal to the surface integral of the normal component of its curl over any closed surface.

$$
\oint H \cdot d l=\iint \nabla \times H d s
$$

S
Proof:
Consider an arbitrary surface this is broken up into incremental surface of area $\Delta \boldsymbol{s}$ shown in figure. 1.4.2

Figure 1.4.2 Illustration of Stroke's theorem
[Source: "Elements of Electromagnetics" by Matthew N.O.Sadiku, page-81]
If \boldsymbol{H} is any field vector, then by definition of the curl to one of these incremental surfaces.

$$
\frac{\oint H \cdot d l \Delta s}{\Delta s}=(\nabla \times H)_{N}
$$

Where N indicates normal to the surface and $d l \Delta s$ indicate that the closed path of an incremental area $\Delta \boldsymbol{s}$

The curl of \boldsymbol{H} normal to the surface can be written as

$$
\begin{aligned}
\frac{\oint H \cdot d l \Delta s}{\Delta s} & =(\nabla \times H) \cdot a_{N} \\
\oint H \cdot d l \Delta s & =(\nabla \times H) \cdot a_{N} \Delta s \\
\oint H \cdot d l \Delta s & =(\nabla \times H) \cdot \Delta s
\end{aligned}
$$

Where $\boldsymbol{a}_{\boldsymbol{N}}$ is the unit vector normal to $\Delta \boldsymbol{s}$
The closed integral for whole surface \boldsymbol{S} is given by the surface integral of the normal component of curl \boldsymbol{H}

$$
\oint H \cdot d l=\iint \nabla \times H d s
$$

1.5 COULOMB'S LAW

Coulomb's Law:

Coulomb's law is an experimental law formulated in 1785 by Charles Augustin de coulomb. It deals with the force a point charge exerts on another point charge.A point charge means a charge that is located on a body whose dimensions are much smaller than other relevant dimensions.

Charge is generally measured in coulomb (C).One Coulomb is approximately equivalent to $\mathbf{6} \times \mathbf{1 0}^{18}$ electrons. It is very large unit charge because one electron charge $e=-1.6019 \times 10^{-19} C$.

Coulomb's law states that the force between two very small objects separated by a distance which is large compared to their size is proportional to the charge on each and inversely proportional to the square of the distance between them.
The coulomb's law can be stated that "The force of attraction or repulsion between any two point charges is directly proportional to the product of two charges and inversely proportional to the square of the distance between them.'

Consider the two charges Q_{1} and Q_{2} separated by a distance r.This force of interaction between two point charges is given as follows:

$$
\begin{gathered}
F \propto \frac{Q_{1} Q_{2}}{r^{2}} \\
F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon r^{2}} \text { Newtons }
\end{gathered}
$$

Where $\boldsymbol{\varepsilon}$ is permittivity of the medium or dielectric constant which is written as

$$
\varepsilon=\varepsilon_{0} \varepsilon_{r} \text { Farads } / \text { meter }
$$

Relative permittivity of the medium

$$
\begin{gathered}
\varepsilon_{r}=\frac{\varepsilon}{\varepsilon_{0}} \\
\varepsilon_{r}=\frac{\text { Permittivity of the medium }}{\text { Permittivity of the free space (or)vaccum }}=\frac{\varepsilon}{\varepsilon_{0}}
\end{gathered}
$$

binils.com - Anna University, Polytechnic \& Schools

$$
\text { Permittivity of the free space }(\text { or }) \text { vaccum }\left(\varepsilon_{0}\right)=\frac{1}{36 \pi \times 10^{9}}
$$

$$
=8.854 \times 10^{-12} F / m
$$

Coulom's law in vector form:

Figure 1.5.1 Coulomb vector force on point charges Q_{1} and Q_{2}
[Source: "Elements of Electromagnetics" by Matthew N.O.Sadiku, page-107]
binifis':com

Consider two charges $\boldsymbol{Q}_{\mathbf{1}}$ and $\boldsymbol{Q}_{\mathbf{2}}$ at a distance vectors $\boldsymbol{r}_{\boldsymbol{1}}$ and $\boldsymbol{r}_{\mathbf{2}}$ from the origin respectively. \boldsymbol{r}_{12} represents the distant vector form $\boldsymbol{Q}_{\mathbf{1}}$ to $\boldsymbol{Q}_{\mathbf{2}}$

$$
r_{12}=r_{2}-r_{1}
$$

The vector \boldsymbol{F} is the force between $\boldsymbol{Q}_{\mathbf{1}}$ and $\boldsymbol{Q}_{\mathbf{2}}$
The vector form of coulomb's law is

$$
F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon r^{2}} \times \stackrel{\widetilde{a}_{1 z}}{ }
$$

The unit vector

$$
\underset{12}{\stackrel{\ddot{a}_{+}^{\omega}}{ }+=\frac{r_{2}-r_{1}}{\left|r_{2}-r_{1}\right|}}
$$

Substitute $\overrightarrow{\boldsymbol{a}}_{\mathbf{a} \boldsymbol{1 z}}$ vector and ε value in above equation

$$
F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} \varepsilon_{r} r^{2}} \times \stackrel{\vec{a}_{1 z}}{ }
$$

$$
F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} \varepsilon_{r} r^{2}} \times \frac{r_{2}-r_{1}}{\left|r_{2}-r_{1}\right|}
$$

\boldsymbol{r} is the distance between the charge.
The distance between the charges is $\boldsymbol{r}_{\mathbf{1 2}}$

$$
F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} r_{12}^{2}} \times \frac{r_{2}-r_{1}}{\left|r_{2}-r_{1}\right|}
$$

That is

$$
r_{12}=r_{2}-r_{1}
$$

$$
F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0}\left(r_{2}-r_{1}\right)^{2}} \times \frac{r_{2}-r_{1}}{\left|r_{2}-r_{1}\right|}
$$

$$
\begin{aligned}
& r_{2}-r_{1}=\left(x_{2}-x_{1}\right) \vec{a}_{\vec{x}}^{\vec{x}}+\left(y_{2}-y\right) \vec{a}_{\vec{y}}+\left(z_{2}-z_{1}\right) \vec{a}_{\vec{a}} \\
& \left(r_{2}-r_{1}\right)^{2}=\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z\right)_{1}^{2}\right]^{2} \\
& \begin{array}{l}
\left|r_{2}-r_{1}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} \\
F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0}\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]} \times \frac{\left[\left(x_{2}-x_{1}\right) \stackrel{\overrightarrow{a_{\vec{x}}}}{ }+\left(y_{2}-y\right) \vec{a}_{\vec{y}}+\left(z_{2}-z_{1}\right) \overrightarrow{a_{\vec{z}}}\right]}{\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}}
\end{array} \\
& F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0}\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]^{2}} \times \frac{\left[\left(x_{2}-x_{1}\right) \vec{a}_{\vec{x}}+\left(y_{2}-y\right) \vec{a}_{\vec{y}}+\left(z_{2}-z_{1}\right) \vec{a}_{\boldsymbol{a}}\right]}{\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]^{1 / 2}} \\
& F=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0}} \times \frac{\left[\left(x_{2}-x_{1}\right) \overrightarrow{\vec{a}_{\vec{x}}}+\left(y_{2}-y\right) \vec{a}_{\vec{y}}^{\vec{y}}+\left(z_{2}-z_{1}\right) \vec{a}_{\vec{z}}\right]}{\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]^{5 / 2}}
\end{aligned}
$$

The force is attractive if the charges are of opposite sign and is repulsive if the charges are alike in sign

1.6 ELECTRIC FIELD DUE TO DISCRETE AND CONTINUOUS CHARGES

If the charge are distributed instead of concentrated at one point, it is better to define charge distribution in terms of charge density. It is also possible to have continuous charge distribution along line, on a surface or in a volume.
It is customary to denote the line charge density by $\boldsymbol{\rho}_{\boldsymbol{l}} \mathrm{in}(\boldsymbol{C} / \boldsymbol{m})$, surface charge density by $\boldsymbol{\rho}_{\boldsymbol{s}}$ in $\left(\boldsymbol{C} / \boldsymbol{m}^{2}\right)$ and volume charge density by $\boldsymbol{\rho}_{\boldsymbol{v}}$ in $\left(\boldsymbol{C} / \boldsymbol{m}^{3}\right)$ respectively.

LINE OR LINEAR CHARGE DENSITY:

It is defined as the total charge distributed over a line or curve.

$$
\rho_{l}=\lim _{\Delta l \rightarrow 0}\left(\frac{\Delta Q}{\Delta l}\right)
$$

This gives the total charge per length. It is given by

$$
\rho_{l}=\frac{Q}{l} \quad \text { Coulomb } / \operatorname{meter}(c / m)
$$

SURFACE CHARGE DENSITY:

It is defined as the total charge distributed over a surface.

$$
\rho_{s}=\lim _{\Delta s \rightarrow 0}\left(\frac{\Delta Q}{\Delta s}\right)
$$

This gives the total charge per area. It is given by

$$
\rho_{s}=\frac{Q}{S}=\frac{Q}{A} \text { Coulomb } / \text { squaremeter }\left(c / m^{2}\right)
$$

VOLUME CHARGE DENSITY:

It is defined as the total charge distributed over a volume.

$$
\rho_{s v}=\lim _{\Delta v \rightarrow 0}\left(\frac{\Delta Q}{\Delta v}\right)
$$

This gives the total charge per volume. It is given by

$$
\rho_{v}=\frac{Q}{V} \text { Coulomb } / \text { cubicmeter }\left(c / m^{3}\right)
$$

ELECTRIC FILED OR ELECTRIC FIELD INTENSITY:

The electric field or electric field intensity is defined as the electric force per unit charge .It is given by

$$
E=\frac{F}{\boldsymbol{q}}
$$

According to coulomb's law

$$
F=\frac{Q q}{4 \pi \varepsilon r^{2}}
$$

Electric Filed

$$
E=\frac{F}{q}
$$

Substitute \boldsymbol{F} value in above equation

$$
E=\frac{\frac{Q q}{4 \pi \varepsilon r^{2}}}{q}
$$

E=

The another unit of electric field is Volts/meter

ELECTRIC POTENTIAL DIFFERENCE AND POTENTIAL:

Consider a uniform electric field \boldsymbol{E} and a unit positive charge \boldsymbol{q}. There is a force act on the charge due to the electric field. The force is given by

$$
F=q E
$$

There is a movement of charge in the electric field from one point $\boldsymbol{r}_{\mathbf{1}}$ to another $\boldsymbol{r}_{\mathbf{2}}$, there will be work done against the force

$$
\begin{aligned}
& W=-\int_{r_{1}}^{r_{2}} q E . d r \\
& W=-q \int_{r_{1}}^{r_{2}} E . d r
\end{aligned}
$$

Potential difference (\boldsymbol{V}) is defined as the work done in moving a unit positive charge from one point to another in an electric field.

Work done on unit positive charge per charges

$$
V=\frac{W}{q}
$$

$$
V=-\int_{r_{1}}^{r_{2}} E \cdot d \quad \text { Joules /Coulomb }
$$

But

$$
E=\frac{Q}{4 \pi \varepsilon r^{2}}
$$

Substitute \boldsymbol{E} in \boldsymbol{V}

$$
\begin{gathered}
V=-\frac{Q}{4 \pi \varepsilon} \int_{r 1}^{r 2} \frac{1}{r^{2}} d r \\
V=-\frac{Q}{4 \pi \varepsilon}\left[\frac{1}{r}\right]_{r_{1}}^{r_{2}} \\
V=-\frac{Q}{4 \pi \varepsilon}\left[\frac{1}{r_{2}}-\frac{1}{r_{1}}\right] \\
V=\frac{Q}{4 \pi \varepsilon}\left[\frac{1}{r_{1}}-\frac{1}{r_{2}}\right] \quad \text { Volts }
\end{gathered}
$$

This is the potential difference between two points r_{1} and r_{2}

$$
\begin{gathered}
V=\left[\frac{Q}{4 \pi \varepsilon r_{1}}-\frac{Q}{4 \pi \varepsilon r_{2}}\right] \quad \text { Volts } \\
V_{1}=\frac{Q}{4 \pi \varepsilon r_{1}} \\
V_{2}=\frac{Q}{4 \pi \varepsilon r_{2}} \\
V=V_{1}+V_{2}
\end{gathered}
$$

If the charge is moving form infinity to a given point in the electric filed

$$
V_{2}=\mathbf{0}
$$

Then

$$
\begin{gathered}
V=V_{1}+0 \\
V=V_{1}
\end{gathered}
$$

Absolute potential or potential at a point is defined s the work done in moving a unit positive charge from infinity to a given point in an electric field.

$$
V=\frac{Q}{4 \pi \varepsilon r} \text { Volts }
$$

Any field where the closed line integral of the field is zero, is said to be a conservative field

$$
\text { E. } d r=0
$$

Thus the electric field strength at any points just the negative of the potential gradient at that point. The negative sign shows that the direction of E is opposite to the direction in which V increases.

$$
E=-\nabla V
$$

binils.com

1.7 ELECTRIC FIELD INTENSITY

ELECTRIC FILED OR ELECTRIC FIELD INTENSITY:

The electric field or electric field intensity is defined as the electric force per unit charge .It is given by

$$
E=\frac{F}{q}
$$

According to coulomb's law

$$
F=\frac{Q q}{4 \pi \varepsilon r^{2}}
$$

Electric Filed

$$
E=\frac{F}{q}
$$

Substitute \boldsymbol{F} value in above equation

$$
\begin{gathered}
E=\frac{\frac{Q q}{4 \pi \varepsilon r^{2}}}{q} \\
E=\frac{Q q}{4 \pi \varepsilon r^{2} q} \\
E=\frac{Q}{4 \pi \varepsilon r^{2}} V / m
\end{gathered}
$$

The another unit of electric field is Volts/meter

ELECTRIC FIELD INTENSITY DUE TO LINE CHARGE:

Considered uniformly charged line of length \boldsymbol{L} whose linear charge density is $\boldsymbol{\rho}_{\boldsymbol{l}}$ Coulomb/meter. Consider a small element $\boldsymbol{d} \boldsymbol{l}$ at a distance \boldsymbol{l} from one end of the charged line as shown in figure 1.7.1 . Let \boldsymbol{P} be any point at a distance \boldsymbol{r} from the element $\boldsymbol{d} \boldsymbol{l}$.

Figure 1.7.1 Evaluation of the E field due to a line charge
[Source: "Elements of Electromagnetics" by Matthew N.O.Sadiku, page-114]
The electric field at a point \boldsymbol{P} due to the charge element $\boldsymbol{\rho} \boldsymbol{d} \boldsymbol{l}$ is given

$$
d E=\frac{\rho_{l} d l}{4 \pi \varepsilon r^{2}}
$$

The \boldsymbol{x} and \boldsymbol{y} components of electric field $\boldsymbol{d} \boldsymbol{E}$ are given by

From the above diagram find $\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$ and $\cos \boldsymbol{\theta}$

$$
\begin{gathered}
\sin \theta=\frac{d E_{x}}{d E} \\
d E_{x}=d E \sin \theta \\
\cos \theta=\frac{d E_{y}}{d E} \\
d E_{y}=d E \cos \theta
\end{gathered}
$$

Substitute $\boldsymbol{d} \boldsymbol{E}$ expression in $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{x}}$

$$
\begin{aligned}
& d E_{x}=\frac{\rho_{l} d l \sin \theta}{4 \pi \varepsilon r^{2}} \\
& d E_{y}=\frac{\rho_{l} d l \cos \theta}{4 \pi \varepsilon r^{2}}
\end{aligned}
$$

From the above diagram find $\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}$

$$
\begin{aligned}
& \tan \theta=\frac{h}{x-l} \\
& x-l=\frac{h}{\tan \theta} \\
& x-l=h \cot \theta
\end{aligned}
$$

Differentiate above equation on both sides

$$
\begin{aligned}
& \text { ve equation on both sides } \\
& 0-d l=h\left(-\operatorname{cosec}^{2} \theta\right) \\
& -d l=-h\left(\operatorname{cosec}^{2} \theta\right) \\
& d l=h\left(\operatorname{cosec}^{2} \theta\right) \cdot d \theta
\end{aligned}
$$

From the above diagram find $\sin \boldsymbol{\theta}$

$$
\begin{gathered}
\sin \theta=\frac{h}{r} \\
r=\frac{h}{\sin \theta} \\
r=h \operatorname{cosec} \theta
\end{gathered}
$$

Substitute $\boldsymbol{d} \boldsymbol{l}$ and \boldsymbol{r} value in $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{x}}$

$$
\begin{gathered}
d E_{x}=\frac{\rho_{l} d l \sin \theta}{4 \pi \varepsilon r^{2}} \\
d E_{x}=\frac{\rho_{l} h\left(\operatorname{cosec}^{2} \theta\right) d \theta \sin \theta}{4 \pi \varepsilon(h \operatorname{cosec} \theta)^{2}}
\end{gathered}
$$

binils.com - Anna University, Polytechnic \& Schools

$$
\begin{gathered}
d E_{x}=\frac{\rho_{l} h\left(\operatorname{cosec}^{2} \theta\right) d \theta \sin \theta}{4 \pi \varepsilon h^{2} \operatorname{cosec}^{2} \theta} \\
d E_{x}=\frac{\rho_{l} \sin \theta d \theta}{4 \pi \varepsilon h}
\end{gathered}
$$

Integrate the above equation $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{x}}$ considered the limit as $\boldsymbol{\alpha}_{\boldsymbol{1}}$ to $\boldsymbol{\pi}-\boldsymbol{\alpha}_{\mathbf{2}}$

The electric field $\boldsymbol{E}_{\boldsymbol{x}}$ due to the entire length of line charge is given by

$$
\begin{gathered}
\int d E_{x}=\int_{\alpha_{1}}^{\pi-\alpha_{2}} \frac{\rho_{l} \sin \theta d \theta}{4 \pi \varepsilon h} \\
E_{x}=\int_{\alpha_{1}}^{\pi-\alpha_{2}} \frac{\rho_{l} \sin \theta d \theta}{4 \pi \varepsilon h} \\
E_{x}=\frac{\rho_{l}}{4 \pi \varepsilon h} \int \sin \theta d \theta \\
E_{x}=\frac{\rho_{l}}{4 \pi \varepsilon h}\left[-\cos \left(\pi-\alpha_{2}\right)-\left(\cos \alpha_{1}\right)\right] \\
E_{x}=\frac{\rho_{l}}{4 \pi \varepsilon h}[-\cos \theta]_{\alpha_{1}}^{\pi-\alpha 2} \\
E_{x}=\frac{\rho_{l}}{4 \pi \varepsilon h}\left[\left(\cos \alpha_{2}\right)+\left(\cos \alpha_{1}\right)\right] \\
E_{x} \\
\left.\alpha_{1}\left(\cos \alpha_{2}\right)\right]
\end{gathered}
$$

Substitute $\boldsymbol{d} \boldsymbol{l}$ and \boldsymbol{r} value in $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{x}}$

$$
\begin{aligned}
& d E_{y}=\frac{\rho_{l} h\left(\operatorname{cosec}^{2} \theta\right) d \theta \cos \theta}{4 \pi \varepsilon(h \operatorname{cosec} \theta)^{2}} \\
& d E_{y}=\frac{\rho_{l} h\left(\operatorname{cosec}^{2} \theta\right) d \theta \cos \theta}{4 \pi \varepsilon h^{2} \operatorname{cosec}^{2} \theta} \\
& d E_{y}=\frac{\rho_{l} h\left(\operatorname{cosec}^{2} \theta\right) d \theta \cos \theta}{4 \pi \varepsilon h^{2} \operatorname{cosec}^{2} \theta}
\end{aligned}
$$

$$
\begin{aligned}
& d E_{y}=\frac{\rho_{l} d \theta \cos \theta}{4 \pi \varepsilon h} \\
& d E_{y}=\frac{\rho_{l} \cos \theta d \theta}{4 \pi \varepsilon h}
\end{aligned}
$$

Similarly for \boldsymbol{y} component of \boldsymbol{E}
Integrate the above equation $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{y}}$ considered the limit as $\boldsymbol{\alpha}_{\boldsymbol{1}}$ to $\boldsymbol{\pi}-\boldsymbol{\alpha}_{\boldsymbol{2}}$
The electric field $\boldsymbol{E}_{\boldsymbol{y}}$ due to the entire length of line charge is given by

$$
\begin{gathered}
\int d E_{y}=\int_{\alpha_{1}}^{\pi-\alpha_{2}} \frac{\rho_{l} \cos \theta d \theta}{4 \pi \varepsilon h} \\
E_{y}=\int_{\alpha_{1}}^{\pi-\alpha_{2}} \frac{\rho_{l} \cos \theta d \theta}{4 \pi \varepsilon h} \\
E_{y}=\frac{\rho_{l}}{4 \pi \varepsilon h} \int_{\alpha_{1}}^{\pi-\alpha_{2}} \cos \theta d \theta \\
E_{y}=\frac{\rho_{l}}{4 \pi \varepsilon h}[\sin \theta]_{\alpha_{1}}^{\pi-\alpha 2} \\
\rho_{l} \\
E_{y}=\frac{\rho_{l}}{4 \pi \varepsilon h}\left[\sin \left(\pi-\alpha_{2}\right)-\left(\sin \alpha_{1}\right)\right] \\
{\left[\left(\sin \alpha_{2}\right)-\left(\sin \alpha_{1}\right)\right]}
\end{gathered}
$$

Case (i): If the point \boldsymbol{P} is at bisector of a line, then $\boldsymbol{\alpha}_{\mathbf{1}}=\boldsymbol{\alpha}_{\mathbf{2}}=\boldsymbol{\alpha}$ $\boldsymbol{E}_{\boldsymbol{y}}=\mathbf{0} \quad \boldsymbol{E}$ becomes $\boldsymbol{E}_{\boldsymbol{x}}$

$$
\begin{gathered}
E_{x}=\frac{\rho_{l}}{4 \pi \varepsilon h}\left[\left(\cos \alpha_{1}\right)+\left(\cos \alpha_{2}\right)\right] \\
E_{x}=\frac{\rho_{l}}{4 \pi \varepsilon h}[(\cos \alpha)+(\cos \alpha)] \\
E_{x}=\frac{\rho_{l}}{4 \pi \varepsilon h}(2 \cos \alpha)
\end{gathered}
$$

$$
\begin{gathered}
E_{x}=\frac{\rho_{l}}{2 \pi \varepsilon h}(\cos \alpha) \\
E_{y}=\frac{\rho_{l}}{4 \pi \varepsilon h}\left[\left(\sin \alpha_{2}\right)-\left(\sin \alpha_{1}\right)\right]
\end{gathered}
$$

Substitute $\alpha_{1}=\alpha_{2}=\alpha$

$$
\begin{gathered}
E_{y}=\frac{\rho_{l}}{4 \pi \varepsilon h}[(\sin \alpha)-(\sin \alpha)] \\
E_{y}=\frac{\rho_{l}}{4 \pi \varepsilon h}[0] \\
E_{y}=0
\end{gathered}
$$

\boldsymbol{E} becomes $\boldsymbol{E}_{\boldsymbol{x}}$

$$
\begin{gathered}
E=E_{x} \\
E=E_{x}=\frac{\rho_{l}}{2 \pi \varepsilon h}(\cos \alpha) \\
E=\frac{\rho_{l}}{2 \pi \varepsilon h}(\cos \alpha)
\end{gathered}
$$

Case (ii): If the line is infinitely long then $\boldsymbol{\alpha}_{\boldsymbol{1}}=\boldsymbol{\alpha}_{\mathbf{2}}=\boldsymbol{\alpha}=\mathbf{0}$
$\boldsymbol{E}_{\boldsymbol{y}}=\mathbf{0} \quad \boldsymbol{E}$ becomes $\boldsymbol{E}_{\boldsymbol{x}}$

$$
\begin{gathered}
E_{x}=\frac{\rho_{l}}{4 \pi \varepsilon h}\left[\left(\cos \alpha_{1}\right)+\left(\cos \alpha_{2}\right)\right] \\
E_{x}=\frac{\rho_{l}}{4 \pi \varepsilon h}[(\cos 0)+(\cos 0)] \\
E_{x}=\frac{\rho_{l}}{4 \pi \varepsilon h}[(1)+(1)] \\
E_{x}=\frac{\rho_{l}}{4 \pi \varepsilon h}[2] \\
E_{x}=\frac{\rho_{l}}{2 \pi \varepsilon h} \\
E_{y}=\frac{\rho_{l}}{4 \pi \varepsilon h}\left[\left(\sin \alpha_{2}\right)-\left(\sin \alpha_{1}\right)\right]
\end{gathered}
$$

Substitute $\alpha_{1}=\alpha_{2}=\alpha=\mathbf{0}$

$$
\begin{gathered}
E_{y}=\frac{\rho_{l}}{4 \pi \varepsilon h}[(\sin 0)-(\sin 0)] \\
E_{y}=\frac{\rho_{l}}{4 \pi \varepsilon h}[(0)-(0)] \\
E_{y}=\frac{\rho_{l}}{4 \pi \varepsilon h}[0] \\
E_{y}=0
\end{gathered}
$$

\boldsymbol{E} becomes $\boldsymbol{E}_{\boldsymbol{x}}$

$$
E=E_{\boldsymbol{x}}
$$

$$
E=E_{x}=\frac{\rho_{l}}{2 \pi \varepsilon h}
$$

$$
E=\frac{\rho_{l}}{2 \pi \varepsilon h}
$$

ELECTRIC FIELD INTENSITY DUE TO CIRCULAR DISC:

Consider a circular disc of radius \boldsymbol{R} is charged uniformly with a charge density of $\boldsymbol{\rho}_{\boldsymbol{s}}$ coulomb $/ \boldsymbol{m}^{2}$.Let \boldsymbol{P} be any point on the axis of the disc at a distance from the centre. Consider an annular ring of radius \boldsymbol{r} and of radial thickness $\boldsymbol{d} \boldsymbol{r}$ as shown in figure 1.7.2.The area of the annular ring is $d s=2 \pi r d r$.

Figure 1.7.2 Evaluation of the E field due to a charged ring

The field intensity at point \boldsymbol{P} due to the charged annular ring is given by

$$
d E=\frac{\rho_{S} d s}{4 \pi \varepsilon d^{2}}
$$

Since the horizontal component of electric field intensity is zero, The horizontal components and vertical components are $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{x}}$ and $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{y}}$
The horizontal components of angular ring is zero

$$
\begin{gathered}
d E_{x}=\mathbf{0} \\
E_{x}=\mathbf{0}
\end{gathered}
$$

The horizontal components of angular ring $\boldsymbol{E}_{\boldsymbol{y}}$ have to find for circular ring. the vertical component is given by

$$
d E_{y}=\frac{\rho_{S} d s \cos \theta}{4 \pi \varepsilon d^{2}}
$$

From the above diagram find $\tan \theta$ and $\sin \theta$

$$
\begin{gathered}
\tan \theta=\frac{r}{h} \\
r=h \tan \theta \\
\sin \theta=\frac{r}{d} \\
d=\frac{r}{\sin \theta}
\end{gathered}
$$

Assume

$$
\begin{gathered}
d s=2 \pi r d r \\
d E_{y}=\frac{\rho_{s} d s \cos \theta}{4 \pi \varepsilon d^{2}}
\end{gathered}
$$

Substitute $\boldsymbol{d} \boldsymbol{s}$ in $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{y}}$

$$
d E_{y}=\frac{\rho_{s} 2 \pi r d r \cos \theta}{4 \pi \varepsilon d^{2}}
$$

binils.com - Anna University, Polytechnic \& Schools

$$
r=h \tan \theta
$$

Differentiate above equation

$$
d r=h \sec ^{2} \theta d \theta
$$

Substitute $\boldsymbol{d} \boldsymbol{r}$ and \boldsymbol{d} in $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{y}}$

$$
\begin{gathered}
d E_{y}=\frac{\rho_{S}(2 \pi r) h \sec ^{2} \theta d \theta \cos \theta}{4 \pi \varepsilon d^{2}} \\
d E_{y}=\frac{\rho_{S}(2 \pi r) h \sec ^{2} \theta d \theta \cos \theta}{4 \pi \varepsilon\left(\frac{r}{\sin \theta}\right)^{2}} \\
d E_{y}=\frac{\rho_{S}(2 \pi r)\left(h \sec ^{2} \theta\right) d \theta \cos \theta \sin ^{2} \theta}{4 \pi \varepsilon r^{2}} \\
d E_{y}=\frac{\rho_{S}(2 \pi r)\left(h \sec ^{2} \theta\right) \sin ^{2} \theta \cos \theta d \theta}{4 \pi \varepsilon r^{2}} \\
d E_{y}=\frac{\rho_{S}(2 \pi r)(h) \sin ^{2} \theta \cos \theta d \theta}{4 \pi \varepsilon r^{2} \cos ^{2} \theta} \\
d E_{y}=\frac{\rho_{S}(2 \pi r)(h) \sin ^{2} \theta d \theta}{4 \pi \varepsilon r^{2} \cos \theta} \\
d E_{y}=\frac{\rho_{S}(2 \pi r)(h) \tan \theta \sin \theta d \theta}{4 \pi \varepsilon r^{2}} \\
d E_{y}=\frac{\rho_{S}(2 \pi r)(h) \tan \theta \sin \theta d \theta}{4 \pi \varepsilon r^{2}} \\
d E_{y}=\frac{\rho_{S}(h) \tan \theta \sin \theta d \theta}{2 \varepsilon r}
\end{gathered}
$$

Substitute \boldsymbol{r} in $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{y}}$

$$
\begin{gathered}
d E_{y}=\frac{\rho_{S}(h) \tan \theta \sin \theta d \theta}{2 \varepsilon r} \\
d E_{y}=\frac{\rho_{S}(h) \tan \theta \sin \theta d \theta}{2 \varepsilon h \tan \theta} \\
d E_{y}=\frac{\rho_{S} \sin \theta d \theta}{2 \varepsilon}
\end{gathered}
$$

Integrate the above equation $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{y}}$ considered the limit as $\mathbf{0}$ to $\boldsymbol{\alpha}$

$$
\begin{gathered}
\int d E_{y}=\int_{0}^{\alpha} \frac{\rho_{s} \sin \theta d \theta}{2 \varepsilon} \\
\int d E_{y}=\frac{\rho_{S}}{2 \varepsilon} \int_{0}^{\alpha} \sin \theta d \theta \\
E_{y}=\frac{\rho_{S}}{2 \varepsilon}[-\cos \theta]_{0}^{\alpha} \\
E_{y}=\frac{\rho_{S}}{2 \varepsilon}[(-\cos \alpha)-(-\cos 0)] \\
E_{y}=\frac{\rho_{S}}{2 \varepsilon}[(-\cos \alpha)+(1)] \\
E_{y}=\frac{\rho_{S}}{2 \varepsilon}[(1)+(-\cos \alpha)]
\end{gathered}
$$

The total electric field
bintism

$$
E=E_{x}+E_{y}
$$

$$
\begin{gathered}
E=E_{x}+E_{y} \\
E_{x}=0 \\
E=\frac{\rho_{S}}{2 \varepsilon}[1-\cos \alpha] \\
E+\frac{\rho_{s}}{2 \varepsilon}[1-\cos \alpha] \\
E=\frac{\rho_{S}}{2 \varepsilon}[1-\cos \alpha]
\end{gathered}
$$

ELECTRIC FIELD INTENSITY DUE TO INFINITE SHEET OF CHARGE:

Consider an infinite plane sheet which is uniformly charged with a charge density of $\boldsymbol{\rho}_{s}$ Coulom $/ \boldsymbol{m}^{2}$ as shown in figure 1.7.3.

Figure 1.7.2 Evaluation of the E field due to an infinite sheet of charge "OHMtS:COHA"
The field intensity at any point \boldsymbol{P} due to infinite plane sheet of charge can be evaluated by applying expression of charged circular disc.

The field intensity at point \boldsymbol{P} due to the charged annular ring is given by

$$
d E=\frac{\rho_{S} d s}{4 \pi \varepsilon d^{2}}
$$

Since the horizontal component of electric field intensity is zero, The horizontal components and vertical components are $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{x}}$ and $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{y}}$
The horizontal components of angular ring is zero

$$
\begin{gathered}
d E_{x}=\mathbf{0} \\
\boldsymbol{E}_{\boldsymbol{x}}=\mathbf{0}
\end{gathered}
$$

The horizontal components of angular ring $\boldsymbol{E}_{\boldsymbol{y}}$ have to find for circular ring. the vertical component is given by

$$
d E_{y}=\frac{\rho_{s} d s \cos \theta}{4 \pi \varepsilon d^{2}}
$$

From the above diagram find $\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}$ and $\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$

$$
\begin{gathered}
\tan \theta=\frac{r}{h} \\
r=h \tan \theta \\
\sin \theta=\frac{r}{d} \\
d=\frac{r}{\sin \theta}
\end{gathered}
$$

Assume

$$
d s=2 \pi r d r
$$

Substitute $d s$ in $d E_{y}$

$$
r=h \tan \theta
$$

Differentiate above equation

$$
d r=h \sec ^{2} \theta d \theta
$$

Substitute $\boldsymbol{d} \boldsymbol{r}$ and \boldsymbol{d} in $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{y}}$

$$
\begin{gathered}
d E_{y}=\frac{\rho_{S}(2 \pi r) h \sec ^{2} \theta d \theta \cos \theta}{4 \pi \varepsilon d^{2}} \\
d E_{y}=\frac{\rho_{S}(2 \pi r) h \sec ^{2} \theta d \theta \cos \theta}{4 \pi \varepsilon\left(\frac{r}{\sin \theta}\right)^{2}} \\
d E_{y}=\frac{\rho_{S}(2 \pi r)\left(h \sec ^{2} \theta\right) d \theta \cos \theta \sin ^{2} \theta}{4 \pi \varepsilon r^{2}}
\end{gathered}
$$

$$
\begin{gathered}
d E_{y}=\frac{\rho_{S}(2 \pi r)\left(h \sec ^{2} \theta\right) \sin ^{2} \theta \cos \theta d \theta}{4 \pi \varepsilon r^{2}} \\
d E_{y}=\frac{\rho_{S}(2 \pi r)(h) \sin ^{2} \theta \cos \theta d \theta}{4 \pi \varepsilon r^{2} \cos ^{2} \theta} \\
d E_{y}=\frac{\rho_{S}(2 \pi r)(h) \sin ^{2} \theta d \theta}{4 \pi \varepsilon r^{2} \cos \theta} \\
d E_{y}=\frac{\rho_{S}(2 \pi r)(h) \tan \theta \sin \theta d \theta}{4 \pi \varepsilon r^{2}} \\
d E_{y}=\frac{\rho_{S}(2 \pi r)(h) \tan \theta \sin \theta d \theta}{4 \pi \varepsilon r^{2}} \\
d E_{y}=\frac{\rho_{S}(h) \tan \theta \sin \theta d \theta}{2 \varepsilon r}
\end{gathered}
$$

Substitute \boldsymbol{r} in $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{y}}$

$$
\begin{gathered}
d E_{y} \equiv \frac{\rho_{S}(h) \tan \theta \sin \theta d \theta}{2 \varepsilon r} \\
d E_{y}=\frac{\rho_{S}(h) \tan \theta \sin \theta d \theta}{2 \varepsilon h \tan \theta} \\
d E_{y}=\frac{\rho_{S} \sin \theta d \theta}{2 \varepsilon}
\end{gathered}
$$

Integrate the above equation $\boldsymbol{d} \boldsymbol{E}_{\boldsymbol{y}}$ consider the limit as $\mathbf{0}$ to $\boldsymbol{\alpha}$

$$
\begin{gathered}
\int d E_{y}=\int_{0}^{\alpha} \frac{\rho_{s} \sin \theta d \theta}{2 \varepsilon} \\
\int d E_{y}=\frac{\rho_{S}}{2 \varepsilon} \int_{0}^{\alpha} \sin \theta d \theta \\
E_{y}=\frac{\rho_{S}}{2 \varepsilon}[-\cos \theta]_{0}^{\alpha} \\
E_{y}=\frac{\rho_{S}}{2 \varepsilon}[(-\cos \alpha)-(-\cos 0)]
\end{gathered}
$$

binils.com - Anna University, Polytechnic \& Schools

$$
\begin{aligned}
E_{y} & =\frac{\rho_{S}}{2 \varepsilon}[(-\cos \alpha)+(1)] \\
E_{y} & =\frac{\rho_{S}}{2 \varepsilon}[(1)+(-\cos \alpha)] \\
E_{y} & =\frac{\rho_{S}}{2 \varepsilon}[1-\cos \alpha]
\end{aligned}
$$

The total electric field

$$
\begin{gathered}
E=E_{x}+E_{y} \\
E=E_{x}+E_{y} \\
E_{x}=0 \\
E_{y}=\frac{\rho_{S}}{2 \varepsilon}[1-\cos \alpha] \\
E=0+\frac{\rho_{S}}{2 \varepsilon}[1-\cos \alpha] \\
E=\frac{\rho_{S}}{2 \varepsilon}[1-\cos \alpha]
\end{gathered}
$$

The electric field due to infinite uniformly charge sheet $\alpha=90^{\circ}$

$$
\begin{gathered}
E=\frac{\rho_{S}}{2 \varepsilon}[1-\cos \alpha] \\
E=\frac{\rho_{S}}{2 \varepsilon}\left[1-\cos 90^{\circ}\right] \\
E=\frac{\rho_{S}}{2 \varepsilon}[1-0] \\
E=\frac{\rho_{S}}{2 \varepsilon}[1] \\
E=\frac{\rho_{S}}{2 \varepsilon}
\end{gathered}
$$

1.8 GAUSS'S LAW AND ITS APPLICATIONS

ELECTRIC FLUX (\boldsymbol{x})

If the test charge is moved towards the charge \boldsymbol{Q}, the test charge will experience force due to the main charge \boldsymbol{Q}.The lines of force can be designated as electric flux which is equal to the charge itself. The electric flux (\boldsymbol{x}) eminates from electric charge \boldsymbol{Q}.

$$
\boldsymbol{x}=\boldsymbol{Q}
$$

ELECTRIC FLUX DENSITY(D):

Electric flux density or Displacement density is defined as the electric flux per unit area

$$
D=\frac{Q}{A} \quad \text { Coulomb } / \text { metre }^{2}
$$

For sphere surface area

$$
A=4 \pi r^{2}
$$

Substitute \boldsymbol{A} in \boldsymbol{D}

$$
\bigcirc \quad D=\frac{Q}{4 \pi r^{2}} \bigcirc \cap
$$

But

$$
E=\frac{Q}{4 \pi \varepsilon r^{2}}
$$

Substitute \boldsymbol{D} in \boldsymbol{E}

$$
\begin{aligned}
E & =\frac{D}{\varepsilon} \\
D & =\varepsilon E
\end{aligned}
$$

GAUSS'S LAW:

The gauss law states that the electric flux passing through any closed surface is equal to the total charge enclosed by the surface.

Figure 1.8.1 Illustration of Gauss's law
[Source: "Elements of Electromagnetics" by Matthew N.O.Sadiku, page-128]
Consider a small element of area $\boldsymbol{d} \boldsymbol{s}$ in a plane surface having a charge \boldsymbol{Q} and \boldsymbol{P} be a point in the element. At every point on the surface the electric flux density \boldsymbol{D} will have value $\boldsymbol{D}_{\boldsymbol{s}}$. Let $\boldsymbol{D}_{\boldsymbol{s}}$ make an angle $\boldsymbol{\theta}$ with $\boldsymbol{d} \boldsymbol{s}$ as shown in figure 1.8.1.The flux crossing $\boldsymbol{d} \boldsymbol{s}$ is the product of the normal component $\boldsymbol{D}_{\boldsymbol{s}}$ and $\boldsymbol{d} \boldsymbol{s}$.

$$
\begin{aligned}
& \text { of the normal component } D_{s} \text { and } d s \\
& \qquad \begin{array}{c}
d x=D_{\text {snormal }} d s \\
D_{s \text { normal }}=D_{s} \cos \theta \\
d x=D_{s} \cos \theta d s
\end{array}
\end{aligned}
$$

For dot product

$$
d x=D_{s} \cdot d s
$$

a small element of area $\boldsymbol{d} \boldsymbol{s}$ can also be written as $\boldsymbol{d} \boldsymbol{A}$

$$
d x=D_{s} \cdot d A
$$

The total flux passing through the closed surface is given by

$$
\begin{gathered}
x=\int d x=\oint_{s} D_{s} \cdot d A \\
x=D_{s} A
\end{gathered}
$$

Substitute $\boldsymbol{D}_{\boldsymbol{s}}$ value in above equation

$$
D_{s}=\frac{Q}{A}
$$

$$
\begin{gathered}
x=\frac{Q}{A} A \\
x=Q
\end{gathered}
$$

Proof:

Consider a charge \boldsymbol{Q} at the origin of a spherical co-ordinate system, whose co-ordinates as $\boldsymbol{r}, \boldsymbol{\theta}, \boldsymbol{\varphi}$ as shown in figure 1.8.2.The radius of the sphere is \boldsymbol{r}.

The electric flux density due to the charge \boldsymbol{Q} is

$$
D=\frac{Q}{A} \quad \text { Coulomb } / \text { metr }^{2}
$$

For sphere surface area

$$
A=4 \pi r^{2}
$$

Substitute \boldsymbol{A} in \boldsymbol{D}

$$
D=\frac{Q}{4 \pi r^{2}}
$$

But

Substitute \boldsymbol{D} in \boldsymbol{E}

$$
\text { Q } \quad \frac{Q}{4 \pi \varepsilon r^{2}} \bigcirc \bigcirc \cap
$$

$$
\begin{aligned}
E & =\frac{D}{\varepsilon} \\
D & =\varepsilon E
\end{aligned}
$$

$$
E=\frac{Q}{4 \pi \varepsilon r^{2}}
$$

Figure 1.8.2 Surface element ds in the spherical co-ordinate

Consider a small element of area $\boldsymbol{d} \boldsymbol{s}$ on the surface of the sphere at a distance \boldsymbol{r} from the origin as shown in figure. The sides of spherical co-ordinate system are $d r, r d \theta$ and $r \sin \theta d \varphi$.

The differential area

$$
\begin{aligned}
& d_{s}=d r \cdot r d \theta=r d r d \theta \\
& d_{s}=r d \theta \cdot r \sin \theta d \varphi=r^{2} \sin \theta d \theta d \varphi \\
& d_{s}=r \sin \theta d \varphi \cdot d r=r \sin \theta d \varphi d r
\end{aligned}
$$

For dot product

$$
d x=D_{s} . d s
$$

Integrate the above equation on both sides

$$
\begin{gathered}
\int d x=\int D_{s} \cdot d s \\
\int d x=\iint_{s} \cdot d s
\end{gathered}
$$

Substitute \boldsymbol{D}_{s} in above equation

$$
\begin{gathered}
D_{s}=\frac{Q}{4 \pi r^{2}} \\
\int d x=\iint_{s} \frac{Q}{4 \pi r^{2}} \cdot d s
\end{gathered}
$$

Substitute $\boldsymbol{d} \boldsymbol{s}$ in above equation

$$
\begin{gathered}
d_{s}=r^{2} \sin \theta d \theta d \varphi \\
\int_{4 \pi r^{2}} d x=\iint_{s} \frac{Q}{} \cdot r^{2} \sin \theta d \theta d \varphi \\
x=\iint_{s} \frac{Q}{4 \pi r^{2}} \cdot r^{2} \sin \theta d \theta d \varphi
\end{gathered}
$$

binils.com - Anna University, Polytechnic \& Schools

$$
x=\iint_{s} \frac{Q}{4 \pi} \cdot \sin \theta d \theta d \varphi
$$

The limit for $\boldsymbol{\theta}$ is $\mathbf{0}$ to $\boldsymbol{\pi}$
The limit for $\boldsymbol{\varphi}$ is $\mathbf{0}$ to $\mathbf{2 \pi}$
First integrate with respect to $\boldsymbol{\theta}$

$$
\begin{aligned}
& x=\iint \frac{Q}{4 \pi} \cdot \sin \theta d \theta d \varphi \\
& S \\
& x=\frac{Q}{4 \pi} \int_{\varphi=0}^{\varphi=2 \pi} \int_{\theta=0}^{\theta=\pi} \sin \theta d \theta d \varphi \\
& x=\frac{Q}{4 \pi} \int_{\varphi=0}^{\varphi=2 \pi}[-\cos \theta]_{0}^{\pi} d \varphi \\
& x=\frac{Q}{4 \pi} \int_{\varphi=0}^{\varphi=2 \pi}[(-\cos \pi)-(-\cos 0)] d \varphi \\
& x=\frac{Q}{4 \pi} \int_{\varphi=0}^{\varphi=2 \pi}[-(-1)-(-1)] d \varphi \\
& x=\frac{Q}{4 \pi} \int_{\varphi=0}^{\varphi=2 \pi}[(1)+(1)] d \varphi \\
& x=\frac{Q}{4 \pi} \int_{\varphi=0}^{\varphi=2 \pi}[(2)] d \varphi \\
& x=\frac{Q}{2 \pi} \int_{\varphi=0}^{\varphi=2 \pi} d \varphi
\end{aligned}
$$

$$
x=\frac{Q}{2 \pi} \int_{\varphi=0}^{\varphi=2 \pi} d \varphi
$$

Next integrate with respect to $\boldsymbol{\varphi}$

$$
\begin{gathered}
x=\frac{Q}{2 \pi} \int_{\varphi=0}^{\varphi=2 \pi} d \varphi \\
x=\frac{Q}{2 \pi}[\varphi]_{0}^{2 \pi} \\
x=\frac{Q}{2 \pi}[(2 \pi)-(0)] \\
x=\frac{Q}{2 \pi}[(2 \pi)] \\
x=Q
\end{gathered}
$$

The electric flux crossing the surface is equal to the charge enclosed by the surface. The gauss's law can be stated in the point form as follows.
The divergence of electric flux density is equal to the volume charge density.

$$
\nabla . D=\rho_{v}
$$

APPLICATION OF GAUSS'S LAW:

The surface over which the gauss law is applied is called as Gaussian surface. The gauss law is applied to the surface in following condition.

- The surface is closed
- The electric flux density \boldsymbol{D} is either normal to the surface at each other.
- The electric flux density \boldsymbol{D} is constant over the part of the surface.

INFINITE LINE CHARGE:

The infinite line of uniform charge $\boldsymbol{\rho}_{\boldsymbol{l}} \boldsymbol{c} / \boldsymbol{m}$ lies along the \boldsymbol{Z}-axis. The line charge act on $\boldsymbol{x}, \boldsymbol{y}$ - axis is zero. To determine \boldsymbol{D} at a point \boldsymbol{P}. Choose a cylindrical surface containing \boldsymbol{P} to satisfy the symmetry condition as shown in figure 1.8.3.The electric flux density \boldsymbol{D} is constant on and normal to the cylindrical Gaussian surface.
Consider a cylindrical surface .The axis of cylindrical are $(\boldsymbol{x}, \boldsymbol{y}, \mathbf{z})$.The line charge act on the cylinder is $\boldsymbol{\rho}_{l}$.

Figure 1.8.3 Gaussian surface about infinite line charge
[Source: "Elements of Electromagnetics" by Matthew N.O.Sadiku, page-129]
The electric flux density

$$
\begin{aligned}
D & =\frac{Q}{A} \\
Q & =D A
\end{aligned}
$$

Surface area can be written as

$$
A=\iint d s
$$

Substitute \boldsymbol{A} in \boldsymbol{Q}

$$
Q=\iint D d s
$$

Substitute

$$
\begin{gathered}
D=D_{s} \\
Q=\iint D_{s} d s \\
\boldsymbol{Q}=\iint \boldsymbol{D}_{s} d \boldsymbol{s}+\iint \boldsymbol{D}_{s} d s+\iint \boldsymbol{D}_{s} d \boldsymbol{s} \\
\text { (Side) } \quad \text { (Top) } \quad \text { (Front) }
\end{gathered}
$$

The electric flux density in \boldsymbol{x} and \boldsymbol{y} direction is zero.
The electric flux density only occur in the side of the cylinder

$$
\begin{gathered}
Q=\iint D_{s} d s+0+0 \\
Q=\iint D_{s} d s
\end{gathered}
$$

The sides of cylindrical co-ordinate systems are $\boldsymbol{d r}, \boldsymbol{r} \boldsymbol{d} \boldsymbol{\varphi}$ and $\boldsymbol{d z}$
The differential area $d_{s}=d r \cdot r d \varphi=r d r d \varphi$

$$
\text { area } \begin{aligned}
d_{s} & =d r \cdot r d \varphi=r d r d \varphi \\
d_{s} & =r d \varphi d z \\
d_{s} & =d z d r=d r d z
\end{aligned}
$$

Consider

$$
d_{s}=r d \varphi d z
$$

Substitute $\boldsymbol{d}_{\boldsymbol{s}}$ in \boldsymbol{Q}

$$
\begin{aligned}
Q & =\iint D_{s} r d \varphi d z \\
Q & =D_{s} \iint r d \varphi d z
\end{aligned}
$$

The limit for the \mathbf{Z} is $\mathbf{0}$ to \boldsymbol{l}
The limit for the $\boldsymbol{\varphi}$ is $\mathbf{0}$ to $\mathbf{2 \pi}$
binils.com - Anna University, Polytechnic \& Schools

$$
Q=D_{s} \int_{z=0}^{z=l} \int_{\varphi=0}^{\varphi=2 \pi} r d \varphi d z
$$

$$
Q=D_{s} r \int_{z=0}^{z=l} \int_{\varphi=0}^{\varphi=2 \pi} d \varphi d z
$$

$$
Q=D_{s} r \int_{z=0}^{z=l}[\varphi]_{0}^{2 \pi} d z
$$

$$
z=l
$$

$$
Q=D_{s} r \int[(2 \pi)-(0)] d z
$$

$$
z=0
$$

$$
\begin{gathered}
Q=D_{s} r \int_{z=0}^{z=l}[(2 \pi)] d z \\
Q=D_{s} r \int_{z=0}^{z=l} 2 \pi d z \\
Q=2 \pi D_{s} r \int_{z=0}^{z=l} d z \\
Q=2 \pi D_{s} r[z]_{0}^{l} \\
Q=2 \pi D_{s} r[(l)-(0)] \\
Q=2 \pi D_{s} r[(l)] \\
Q=2 \pi r l D_{s}
\end{gathered}
$$

binils.com - Anna University, Polytechnic \& Schools

$$
D_{s}=\frac{Q}{2 \pi r l}
$$

Area of Cylinder

$$
A=2 \pi r l
$$

The line charge density

$$
\begin{gathered}
\rho_{l}=\frac{Q}{l} \quad \text { Coulomb } / \text { meter }(c / m) \\
\rho_{l}=\frac{Q}{l} \\
Q=\rho_{l} l
\end{gathered}
$$

Substitute \boldsymbol{Q} value in $\boldsymbol{D}_{\boldsymbol{s}}$ equation

$$
\begin{aligned}
& D_{s}=\frac{Q}{2 \pi r l} \\
& D_{s}=\frac{\rho_{l} l}{2 \pi r l} \\
& D_{s}=\frac{\rho_{l}}{2 \pi r}
\end{aligned}
$$

The electric field for infinite line charge

$$
D=\varepsilon E
$$

Substitute

$$
D=D_{s}
$$

$$
D_{s}=\varepsilon E
$$

$$
E=\frac{D_{s}}{\varepsilon}
$$

$$
\varepsilon=\varepsilon_{0} \varepsilon_{r}
$$

$$
E=\frac{D_{s}}{\varepsilon_{0} \varepsilon_{r}}
$$

Relative Permitivity $\left(\varepsilon_{r}\right)=1$

$$
E=\frac{D_{s}}{\varepsilon_{0} \times 1}
$$

$$
E=\frac{D_{s}}{\varepsilon_{0}}
$$

Substitute $\boldsymbol{D}_{\boldsymbol{s}}$ value in \boldsymbol{E} equation

$$
\begin{gathered}
E=\frac{\frac{\rho_{l}}{2 \pi r}}{\varepsilon_{0}} \\
E=\frac{\rho_{l}}{\varepsilon_{0} \times 2 \pi r} \\
E=\frac{\rho_{l}}{2 \pi r \varepsilon_{0}}
\end{gathered}
$$

COAXIAL CYLINDER

Consider the two coaxial cylindrical conductors forming a coaxial cable. The radius of the inner cylinder is \boldsymbol{a} while the radius of the outer cylinder is \boldsymbol{b}.The coaxial cable is shown in figure 1.8.4.The length of cable is \boldsymbol{L}.

The line charge density of inner cylinder is $\boldsymbol{\rho}_{l}$. The line chargedensity of inner cylinder is $-\boldsymbol{\rho}_{l}$.

Figure 1.8.4 Coaxial Cable
[Source: "Electromagnetic Theory" by U.A.Bakshi, page-3.19]
In outer side the integral of electric flux density over a space is equal to charge.

$$
\int D d_{s}=Q
$$

The line charge density

$$
\begin{gathered}
\rho_{l}=\frac{Q}{l} \quad \text { Coulomb } / \text { meter }(c / m) \\
\rho_{l}=\frac{Q}{l} \\
Q=\rho_{l} l
\end{gathered}
$$

Substitute \boldsymbol{Q}-in $\int \boldsymbol{D} \boldsymbol{d}_{\boldsymbol{s}}$

$$
\begin{aligned}
& \int D d_{s}=Q \\
& \int D d_{s}=\rho_{l} l
\end{aligned}
$$

Substitute \boldsymbol{D} `in $\int \boldsymbol{D} \boldsymbol{d}_{\boldsymbol{s}}$ equation

$$
\begin{gathered}
D=\varepsilon E \\
\int \varepsilon E d_{s}=\rho_{l} \\
\varepsilon E \int d_{s}=\rho_{l} l \\
\int d_{s}=S=A
\end{gathered}
$$

Substitute $\int \boldsymbol{d}_{\boldsymbol{s}}$ `value in above equation

$$
\begin{gathered}
\varepsilon E A=\rho_{l} l \\
E=\frac{\rho_{l} l}{\varepsilon A}
\end{gathered}
$$

Area of Cylinder

$$
\begin{aligned}
A & =2 \pi r l \\
E & =\frac{\rho_{l} l}{\varepsilon 2 \pi r l} \\
E & =\frac{\rho_{l}}{\varepsilon 2 \pi r}
\end{aligned}
$$

binils.com - Anna University, Polytechnic \& Schools

$$
E=\frac{\rho_{l}}{2 \pi \varepsilon r}
$$

INFINITE SHEET OF CHARGE

Consider an infinite sheet of uniform charge $\boldsymbol{\rho}_{\boldsymbol{S}} \boldsymbol{C} / \boldsymbol{m}^{2}$ lying on the $\boldsymbol{Z}=\mathbf{0}$ plane.To determine \boldsymbol{D} at point \boldsymbol{P}. Choose rectangular box that is cut symmetrically by the sheet of charge and has two of its faces parallel to the sheet as shown in figure 1.8.5.As \boldsymbol{D} is normal to the sheet.

Figure 1.8.5 Gaussian surface about an infinite line sheet of charge
[Source: "Elements of Electromagnetics" by Matthew N.O.Sadiku, page-130]

$$
Q=\iint D d s
$$

Substitute

$$
\begin{gathered}
\boldsymbol{D}=\boldsymbol{D}_{\boldsymbol{s}} \\
\boldsymbol{Q}=\iint \boldsymbol{D}_{\boldsymbol{s}} \boldsymbol{d} \boldsymbol{s} \\
\boldsymbol{Q}=\iint \boldsymbol{D}_{\boldsymbol{s}} \boldsymbol{d} \boldsymbol{s}+\iint \boldsymbol{D}_{\boldsymbol{s}} \boldsymbol{d} \boldsymbol{s}+\iint \boldsymbol{D}_{\boldsymbol{s}} \boldsymbol{d} \boldsymbol{s} \\
\text { (Side) } \quad \text { (Top) } \quad \text { (Front) }
\end{gathered}
$$

The electric flux density in \boldsymbol{x} and \boldsymbol{y} direction is zero.
The electric flux density only occur in the side of the infinite sheet

$$
\begin{gathered}
Q=\iint D_{s} d s+0+0 \\
Q=\iint D_{s} d s
\end{gathered}
$$

The sides of rectangular co-ordinate systems are $\boldsymbol{d x}, \boldsymbol{d y}, \boldsymbol{d z}$
The differential area

$$
\begin{aligned}
d_{s} & =d_{x} d_{y} \\
d_{s} & =d_{y} d_{z} \\
d_{s} & =d_{z} d_{x}
\end{aligned}
$$

Consider

$$
d_{s}=d_{x} d_{y}
$$

Substitute $\boldsymbol{d}_{\boldsymbol{s}}$ in \boldsymbol{Q}

$$
\begin{gathered}
Q=D_{s} \iint d_{x} d_{y} \\
\iint d_{x} d_{y}=A
\end{gathered}
$$

Substitute $\iint \boldsymbol{d}_{\boldsymbol{x}} \boldsymbol{d}_{\boldsymbol{y}}$ in \boldsymbol{Q}

$$
\begin{gathered}
Q=D_{s} A \\
Q=\iint D_{s} d_{x} d_{y}+\iint D_{s} d_{x} d_{y} \\
(\text { Top) } \quad(\text { Bottom) } \\
Q=\iint D_{s} d_{x} d_{y}+\iint D_{s} d_{x} d_{y}
\end{gathered}
$$

Substitute $\iint \boldsymbol{d}_{\boldsymbol{x}} \boldsymbol{d}_{\boldsymbol{y}}$ in \boldsymbol{Q}

$$
\iint d_{x} d_{y}=A
$$

$$
\begin{gathered}
Q=D_{s} A+D_{s} A \\
Q=2 D_{s} A
\end{gathered}
$$

Surface charge density:

$$
\begin{gathered}
\rho_{s}=\frac{Q}{S}=\frac{Q}{A} \text { Coulomb/squaremeter }\left(c / m^{2}\right) \\
\rho_{s}=\frac{Q}{S}=\frac{Q}{A} \\
Q=\rho_{S} S=\rho_{s} A
\end{gathered}
$$

Substitute \boldsymbol{Q} value in above \boldsymbol{Q} equation

$$
\begin{gathered}
Q=2 D_{s} A \\
\rho_{s} A=2 D_{s} A \\
\rho_{s}=2 D_{s}
\end{gathered}
$$

Substitute \boldsymbol{D}_{s} value in \boldsymbol{E}

$$
D_{s}=\frac{\rho_{s}}{2} \bigcirc \bigcirc
$$

$$
\begin{gathered}
D=\varepsilon E \\
E=\frac{D}{\varepsilon}
\end{gathered}
$$

Consider

$$
\begin{aligned}
D & =D_{s} \\
E & =\frac{D_{s}}{\varepsilon} \\
E & =\frac{D_{s}}{\varepsilon_{0} \varepsilon_{r}}
\end{aligned}
$$

$\varepsilon=\varepsilon_{0} \varepsilon_{r} \quad \varepsilon_{r}=1$

$$
\begin{gathered}
E=\frac{D_{s}}{\varepsilon_{0} \times 1} \\
E=\frac{D_{s}}{\varepsilon_{0}}
\end{gathered}
$$

Substitute $\boldsymbol{D}_{\boldsymbol{s}}$ equation in \boldsymbol{E}

$$
\begin{aligned}
& D_{s}=\frac{\rho_{s}}{2} \\
& E=\frac{\rho_{s}}{2 \varepsilon_{0}}
\end{aligned}
$$

UNIFORMLY CHARGED SPHERE

Consider a sphere of radius \boldsymbol{a} with a uniform charge $\boldsymbol{\rho}_{\boldsymbol{v}} \boldsymbol{C} / \boldsymbol{m}^{3}$. To determine \boldsymbol{D} everywhere. Construct a Gaussian surfaces for case $\boldsymbol{r} \leq \boldsymbol{a}$ and $\boldsymbol{r} \geq \boldsymbol{a}$ separately. Since charge has spherical symmetry. It is obvious that a spherical surface is an appropriate Gaussian surface.

Figure 1.8.6 Gaussian surface for a uniformly charged sphere
[Source: "Elements of Electromagnetics" by Matthew N.O.Sadiku, page-131]
Case (i): The point \boldsymbol{P} is outside the sphere $(\boldsymbol{r}>a)$
The Gaussian surface passing through through point \boldsymbol{P} is a spherical surface of radius \boldsymbol{r} The sides of spherical co-ordinate system aredr, $\boldsymbol{r d \theta}$ and $\boldsymbol{r} \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta} \boldsymbol{d} \varphi$.

The differential area

$$
\begin{aligned}
& d_{s}=d r \cdot r d \theta=r d r d \theta \\
& d_{s}=r d \theta \cdot r \sin \theta d \varphi=r^{2} \sin \theta d \theta d \varphi \\
& d_{s}=r \sin \theta d \varphi \cdot d r=r \sin \theta d \varphi d r
\end{aligned}
$$

Consider differential area

$$
d_{s}=r^{2} \sin \theta d \theta d \varphi
$$

$$
\begin{gathered}
x=\boldsymbol{Q} \\
Q=\iint D d s \\
x=Q=\iint D d s
\end{gathered}
$$

The limit for $\boldsymbol{\theta}$ is $\mathbf{0}$ to $\boldsymbol{\pi}$
The limit for $\boldsymbol{\varphi}$ is $\mathbf{0}$ to $\mathbf{2 \pi}$
First integrate with respect to $\boldsymbol{\theta}$

$$
x=Q=\iint D d s
$$

$$
Q=\iint D r^{2} \sin \theta d \theta d \varphi
$$

$$
\varphi=2 \pi \quad \theta=\pi
$$

$$
Q=D r^{2} \iint_{\varphi=0} \int_{\theta=0} \sin \theta d \theta d \varphi
$$

$$
\boldsymbol{Q}=\boldsymbol{D} \boldsymbol{r}^{2} \int[-\cos \theta]_{0}^{\pi} d \varphi
$$

$$
\varphi=0
$$

$$
\varphi=2 \pi
$$

$$
Q=D r^{2} \int[(-\cos \pi)-(-\cos 0)] d \varphi
$$

$$
\varphi=0
$$

$$
\begin{gathered}
\boldsymbol{Q}=\boldsymbol{D} \boldsymbol{r}^{2} \int_{\varphi=0}^{\varphi=2 \pi}[-(-1)-(-1)] d \varphi \\
\boldsymbol{Q}=D \boldsymbol{r}^{2} \int_{\varphi=0}^{\varphi=2 \pi}[(1)+(1)] d \varphi \\
Q=D \boldsymbol{r}^{2} \int_{\varphi=0}^{\varphi=2 \pi}[(2)] d \varphi
\end{gathered}
$$

binils.com - Anna University, Polytechnic \& Schools

$$
\begin{gathered}
Q=2 D r^{2} \int_{\varphi=0}^{\varphi=2 \pi} d \varphi \\
Q=2 D r^{2} \int_{\varphi=0}^{\varphi=2 \pi} d \varphi
\end{gathered}
$$

Next integrate with respect to $\boldsymbol{\varphi}$

$$
\begin{gathered}
Q=2 D r^{2} \int_{\varphi=0}^{\varphi=2 \pi} d \varphi \\
x=\frac{Q}{2 \pi}[\varphi]_{0}^{2 \pi} \\
Q=2 D r^{2}[(2 \pi)-(0)] \\
Q=2 D r^{2}[(2 \pi)] \\
Q=4 \pi D r^{2} \\
D=\frac{Q}{4 \pi r^{2}}
\end{gathered}
$$

Consider

$$
\begin{gathered}
D=\varepsilon E \\
E=\frac{D}{\varepsilon}
\end{gathered}
$$

$\varepsilon=\varepsilon_{0} \varepsilon_{r} \quad \varepsilon_{r}=1$

$$
E=\frac{D}{\varepsilon_{0} \varepsilon_{r}}
$$

$$
\begin{gathered}
E=\frac{D}{\varepsilon_{0} \times 1} \\
E=\frac{D}{\varepsilon_{0}}
\end{gathered}
$$

Substitute \boldsymbol{D} in \boldsymbol{E}

$$
\begin{aligned}
& D=\frac{Q}{4 \pi r^{2}} \\
& E=\frac{Q}{4 \pi r^{2}} \\
& \varepsilon_{0} \\
& E=\frac{Q}{4 \pi r^{2} \varepsilon_{0}}
\end{aligned}
$$

Total charge enclosed by volume

$$
\boldsymbol{Q}=\int_{v}^{0} \boldsymbol{\rho}_{v} d v
$$

The sides of spherical co-ordinate system are $d r, r d \theta$ and $r \sin \theta d \varphi$.

The differential Volume $\quad \boldsymbol{d}_{\boldsymbol{v}}=\boldsymbol{d r} \cdot \boldsymbol{r d \theta} \cdot \boldsymbol{r} \sin \theta \boldsymbol{d} \varphi$
Substitute d_{v} in $Q d_{v}=r^{2} \sin \theta d \theta d \varphi d r$

$$
\begin{gathered}
Q=\int_{v}^{0} \rho_{v} d v \\
Q=\int_{v}^{0} \rho_{v} r^{2} \sin \theta d \theta d \varphi d r \\
Q=\int_{\varphi=0}^{\varphi=2 \pi} \int_{\theta=0} \int_{r=0} \rho_{v} r^{2} \sin \theta d \theta d \varphi d r
\end{gathered}
$$

The limit for $\boldsymbol{\theta}$ is $\mathbf{0}$ to $\boldsymbol{\pi}$
The limit for $\boldsymbol{\varphi}$ is $\mathbf{0}$ to $\mathbf{2 \pi}$
The limit for \boldsymbol{r} is $\mathbf{0}$ to \boldsymbol{a}
First integrate with respect to $\boldsymbol{\theta}$
binils.com - Anna University, Polytechnic \& Schools

$$
\begin{aligned}
& \varphi=2 \pi \quad \theta=\pi \quad r=a \\
& Q=\rho_{v} \int \quad \int \quad \int r^{2} \sin \theta d \theta d \varphi d r \\
& \varphi=0 \quad \theta=0 \quad r=0 \\
& \varphi=2 \pi \quad \theta=\pi \quad r=a \\
& Q=\rho_{v} \int_{\varphi=0} \int_{\theta=0} \int_{r=0} r^{2} \sin \theta d \theta d \varphi d r \\
& \varphi=2 \pi \quad r=a \\
& Q=\rho_{v} \iint[-\cos \theta]_{0}^{\pi} d \varphi r^{2} d r \\
& \varphi=0 \quad r=0 \\
& \varphi=2 \pi \quad r=a \\
& Q=\rho_{v} \int_{\varphi=0} \int_{r=0}[(-\cos \pi)-(-\cos 0)] d \varphi r^{2} d r \\
& \varphi=2 \pi \quad r=a \\
& Q=\rho_{v} \iint[[-(-1)-(-1)]] d \varphi r^{2} d r \\
& \varphi=0 \quad r=0 \\
& \left.Q=\rho_{v} \int_{\quad}^{\varphi=2 \pi} \quad \int(1)+(1)\right] d \varphi r^{2} d r \\
& \varphi=0 \quad r=0 \\
& \varphi=2 \pi \quad r=a \\
& Q=\rho_{v} \iint[(2)] d \varphi r^{2} d r \\
& \varphi=0 \quad r=0 \\
& \varphi=2 \pi \quad r=a \\
& Q=2 \rho_{v} \int_{\varphi=0} \int_{r=0} d \varphi r^{2} d r
\end{aligned}
$$

Next integrate with respect to $\boldsymbol{\varphi}$

$$
\begin{gathered}
\boldsymbol{Q}=2 \rho_{v} \int_{\varphi=0}^{\varphi=2 \pi} \int_{r=0}^{r=a} d \varphi r^{2} d r \\
Q=2 \rho_{v} \int_{r=a}^{r=a}[\varphi]_{0}^{2 \pi} r^{2} d r \\
r=0
\end{gathered}
$$

binils.com - Anna University, Polytechnic \& Schools

$$
\begin{gathered}
Q=2 \rho_{v} \int_{r=0}^{r=a}[(2 \pi)-(0)] r^{2} d r \\
Q=2 \rho_{v} \int_{r=0}^{r=a}[(2 \pi)-(0)] r^{2} d r \\
Q=2 \rho_{v} \int_{r=a}^{r=0}[(2 \pi)-(0)] r^{2} d r \\
Q=2 \rho_{v} \int[(2 \pi)] r^{2} d r \\
r=0 \\
Q=4 \pi \rho_{v} \int_{r=0}^{r=a} r^{2} d r \\
r=0
\end{gathered}
$$

Next integrate with respect to \boldsymbol{r}

$$
\begin{gathered}
Q=4 \pi \rho_{v} \int_{r=0}^{r=a} r^{2} d r \\
Q=4 \pi \rho_{v}\left[\frac{r^{3}}{3}\right]_{0}^{a} \\
Q=4 \pi \rho_{v}\left[\left(\frac{a^{3}}{3}\right)-\left(\frac{0^{3}}{3}\right)\right] \\
Q=4 \pi \rho_{v}\left[\left(\frac{a^{3}}{3}\right)-0\right] \\
Q=4 \pi \rho_{v}\left[\left(\frac{a^{3}}{3}\right)\right] \\
Q=\frac{4 \pi \rho_{v} a^{3}}{3}
\end{gathered}
$$

Consider electric field

$$
E=\frac{Q}{4 \pi \varepsilon r^{2}}
$$

$\varepsilon=\varepsilon_{0} \varepsilon_{r} \quad \varepsilon_{r}=1$

$$
\begin{gathered}
E=\frac{Q}{4 \pi \varepsilon_{0} \varepsilon_{r} r^{2}} \\
E=\frac{Q}{4 \pi \varepsilon_{0} \times 1 \times r^{2}} \\
E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}
\end{gathered}
$$

Substitute \boldsymbol{Q} in \boldsymbol{E}

$$
\begin{gathered}
E=\frac{\frac{4 \pi \rho_{v} a^{3}}{3}}{4 \pi \varepsilon_{0} r^{2}} \\
E=\frac{4 \pi \rho_{v} a^{3}}{3 \times 4 \pi \varepsilon_{0} r^{2}} \\
E=\frac{\rho_{v} a^{3}}{\mathbf{z}_{0} r^{2}}
\end{gathered}
$$

Electric flux density

$$
D=\varepsilon E
$$

$\varepsilon=\varepsilon_{0} \varepsilon_{r} \quad \varepsilon_{r}=1$

$$
\begin{gathered}
D=\varepsilon_{0} \varepsilon_{r} E \\
D=\varepsilon_{0} \times 1 \times E \\
D=\varepsilon_{0} E
\end{gathered}
$$

Substitute \boldsymbol{E} in \boldsymbol{D}

$$
\begin{gathered}
E=\frac{\rho_{v} a^{3}}{3 \varepsilon_{0} r^{2}} \\
D=\varepsilon_{0} E
\end{gathered}
$$

$$
\begin{gathered}
D=\varepsilon_{0} \frac{\rho_{v} a^{3}}{3 \varepsilon_{0} r^{2}} \\
D=\frac{\rho_{v} a^{3}}{3 r^{2}}
\end{gathered}
$$

Case (ii): The point P on the sphere $r=a$
Gaussian surface is same as the surface of the charged sphere

$$
D=\frac{\rho_{v} a^{3}}{3 r^{2}}
$$

Substitute $\boldsymbol{r}=\boldsymbol{a}$ in above equation

$$
\begin{array}{r}
D=\frac{\rho_{v} a^{3}}{3 r^{2}} \\
D=\frac{\rho_{v} a^{3}}{3 a^{2}} \\
D=\frac{\rho_{v} a}{3}
\end{array}
$$

Case (ii): The point \boldsymbol{P} is inside the sphere $r<a$
Gaussian surface is spherical surface of the \boldsymbol{r} where $\boldsymbol{r}<a$
The differential area

$$
\begin{aligned}
& d_{s}=d r \cdot r d \theta=r d r d \theta \\
& d_{s}=r d \theta \cdot r \sin \theta d \varphi=r^{2} \sin \theta d \theta d \varphi \\
& d_{s}=r \sin \theta d \varphi \cdot d r=r \sin \theta d \varphi d r
\end{aligned}
$$

Consider differential area

$$
\begin{gathered}
d_{s}=r^{2} \sin \theta d \theta d \varphi \\
x=Q \\
Q=\iint D d s
\end{gathered}
$$

binils.com - Anna University, Polytechnic \& Schools

$$
x=Q=\iint D d s
$$

The limit for $\boldsymbol{\theta}$ is $\mathbf{0}$ to $\boldsymbol{\pi}$
The limit for $\boldsymbol{\varphi}$ is $\mathbf{0}$ to $\mathbf{2 \pi}$
First integrate with respect to $\boldsymbol{\theta}$

$$
\begin{aligned}
& \boldsymbol{x}=\boldsymbol{Q}=\iint \boldsymbol{D} d s \\
& Q=\iint D r^{2} \sin \theta d \theta d \varphi \\
& \varphi=2 \pi \quad \theta=\pi \\
& Q=D r^{2} \iint_{\theta=0} \sin \theta d \theta d \varphi \\
& \varphi=2 \pi \\
& Q=D r^{2} \int[-\cos \theta]_{0}^{\pi} d \varphi \\
& \text { Q } \\
& Q=D r^{2} \int[(-\cos \pi)-(-\cos 0)] d \varphi \\
& \varphi=0 \\
& \varphi=2 \pi \\
& Q=D r^{2} \int[-(-1)-(-1)] d \varphi \\
& \varphi=0 \\
& \varphi=2 \pi \\
& Q=D r^{2} \int[(\mathbf{1})+(\mathbf{1})] d \varphi \\
& \varphi=0 \\
& \varphi=2 \pi \\
& \boldsymbol{Q}=\boldsymbol{D} \boldsymbol{r}^{2} \int[(2)] d \varphi \\
& \varphi=0 \\
& \varphi=2 \pi \\
& Q=2 D r^{2} \int d \varphi \\
& \varphi=0
\end{aligned}
$$

binils.com - Anna University, Polytechnic \& Schools

$$
Q=2 D r^{2} \int_{\varphi=0}^{\varphi=2 \pi} d \varphi
$$

Next integrate with respect to $\boldsymbol{\varphi}$

$$
\begin{gathered}
\boldsymbol{Q}=2 \boldsymbol{D} \boldsymbol{r}^{2} \int_{\varphi=0}^{\varphi=2 \pi} d \varphi \\
\boldsymbol{x}=\frac{\boldsymbol{Q}}{2 \pi}[\varphi] \sigma^{2 \pi} \\
\boldsymbol{Q}=2 \boldsymbol{D} \boldsymbol{r}^{2}[(2 \pi)-(0)] \\
\boldsymbol{Q}=2 \boldsymbol{D} \boldsymbol{r}^{2}[(2 \pi)] \\
\boldsymbol{Q}=4 \pi \boldsymbol{D} r^{2} \\
\boldsymbol{D}=\frac{\boldsymbol{Q}}{4 \pi r^{2}}
\end{gathered}
$$

Consider \boldsymbol{D} equation as

$$
E=\frac{D}{\varepsilon}
$$

$\varepsilon=\varepsilon_{0} \varepsilon_{r} \quad \varepsilon_{r}=1$

$$
\begin{gathered}
E=\frac{D}{\varepsilon_{0} \varepsilon_{r}} \\
E=\frac{D}{\varepsilon_{0} \times 1} \\
E=\frac{D}{\varepsilon_{0}}
\end{gathered}
$$

Substitute \boldsymbol{D} in \boldsymbol{E}

$$
D=\frac{Q}{4 \pi r^{2}}
$$

$$
\begin{gathered}
E=\frac{\frac{Q}{4 \pi r^{2}}}{\varepsilon_{0}} \\
E=\frac{Q}{4 \pi r^{2} \varepsilon_{0}}
\end{gathered}
$$

Electric flux density

$$
D=\varepsilon E
$$

$\varepsilon=\varepsilon_{0} \varepsilon_{r} \quad \varepsilon_{r}=1$

$$
\begin{gathered}
D=\varepsilon_{0} \varepsilon_{r} E \\
D=\varepsilon_{0} \times 1 \times E \\
D=\varepsilon_{0} E
\end{gathered}
$$

Substitute \boldsymbol{E} value in above equation

$$
\begin{gathered}
D=\varepsilon_{0} E \\
E=\frac{Q}{4 \pi r^{2} \varepsilon_{0}} \\
D=\varepsilon_{0} \frac{Q}{4 \pi r^{2} \varepsilon_{0}} \\
D=\frac{Q}{4 \pi r^{2}}
\end{gathered}
$$

The enclosed by the sphere of radius \boldsymbol{r} only and not by the entire sphere. The charge outside the Gaussian surface will not affectD.

Total charge enclosed by volume

$$
Q=\int_{v}^{0} \rho_{v} d v
$$

The sides of spherical co-ordinate system are $\boldsymbol{d r}, \boldsymbol{r d \theta}$ and $r \sin \theta d \varphi$.
The differential Volume $\quad d_{v}=\boldsymbol{d r} \cdot \boldsymbol{r d \theta} \cdot \boldsymbol{r} \sin \theta d \varphi$

$$
d_{v}=r^{2} \sin \theta d \theta d \varphi d r
$$

Substitute $\boldsymbol{d}_{\boldsymbol{v}}$ in \boldsymbol{Q}

$$
\boldsymbol{Q}=\int^{0} \rho_{v} d v
$$

v

$$
\begin{gathered}
Q=\int_{v}^{0} \rho_{v} r^{2} \sin \theta d \theta d \varphi d r \\
Q=\int_{\varphi=0}^{\varphi=2 \pi} \int_{\theta=0} \int_{r=0} \rho_{v} r^{2} \sin \theta d \theta d \varphi d r
\end{gathered}
$$

The limit for $\boldsymbol{\theta}$ is $\mathbf{0}$ to $\boldsymbol{\pi}$
The limit for $\boldsymbol{\varphi}$ is $\mathbf{0}$ to $\mathbf{2 \pi}$
The limit for \boldsymbol{r} is $\mathbf{0}$ to \boldsymbol{r}
First integrate with respect to $\boldsymbol{\theta}$

$$
\begin{gathered}
Q=\rho_{v} \int_{\varphi=0}^{\varphi=2 \pi} \int_{\theta=0}^{\theta=\pi} \int_{r=0}^{r=r} r^{2} \sin \theta d \theta d \varphi d r \\
Q=\rho_{v} \int_{\varphi=0}^{\varphi=2 \pi} \int_{\theta=0}^{\theta=\pi} \int_{r=0}^{r=r} r^{2} \sin \theta d \theta d \varphi d r \\
Q=\rho_{v} \int_{\varphi=0} \int_{\varphi=2}[-\cos \theta]_{0}^{\pi} d \varphi r^{2} d r \\
\varphi=2 \pi \\
\rho_{v} \int_{\varphi=0} \int_{r=0}[(-\cos \pi)-(-\cos 0)] d \varphi r^{2} d r
\end{gathered}
$$

binils.com - Anna University, Polytechnic \& Schools

$$
\begin{aligned}
& \varphi=2 \pi \quad r=r \\
& Q=\rho_{v} \iint[[-(-1)-(-1)]] d \varphi r^{2} d r \\
& \varphi=0 \quad r=0 \\
& \varphi=2 \pi \quad r=r \\
& Q=\rho_{v} \int_{\varphi=0} \int_{r=0}[(1)+(1)] d \varphi r^{2} d r \\
& \varphi=2 \pi \quad r=r \\
& Q=\rho_{v} \iint[(2)] d \varphi r^{2} d r \\
& \varphi=0 \quad r=0 \\
& \varphi=2 \pi \quad r=r \\
& Q=2 \rho_{v} \iint d \varphi r^{2} d r \\
& \varphi=0 \quad r=0
\end{aligned}
$$

Next integrate with respect to $\boldsymbol{\varphi}$

$$
\begin{gathered}
Q=2 \rho_{v} \int_{\varphi=0}^{\varphi=2 \pi} \int_{r=0}^{r=r} d \varphi r^{2} d r \\
Q=2 \rho_{v} \int_{r=0}^{r=r}[\varphi]_{0}^{2 \pi} r^{2} d r \\
Q=r \\
Q=2 \rho_{v} \int_{r=0}^{r=r}[(2 \pi)-(0)] r^{2} d r \\
Q=2 \rho_{v} \int[(2 \pi)-(0)] r^{2} d r \\
r=0 \\
Q=2 \rho_{v} \int_{r=0}^{r=r} \\
r=0
\end{gathered}
$$

binils.com - Anna University, Polytechnic \& Schools

$$
\begin{gathered}
Q=2 \rho_{v} \int_{r=0}^{r=r}[(2 \pi)] r^{2} d r \\
Q=4 \pi \rho_{v} \int_{r=0}^{r=r} r^{2} d r
\end{gathered}
$$

Next integrate with respect to \boldsymbol{r}

$$
\begin{gathered}
Q=4 \pi \rho_{v} \int_{r=0}^{r=r} r^{2} d r \\
Q=4 \pi \rho_{v}\left[\frac{r^{3}}{3}\right]_{0}^{r} \\
Q=4 \pi \rho_{v}\left[\left(\frac{r^{3}}{3}\right)-\left(\frac{0^{3}}{3}\right)\right] \\
Q=4 \pi \rho_{v}\left[\left(\frac{r^{3}}{3}\right)-0\right] \\
Q=4 \pi \rho_{v}\left[\left(\frac{r^{3}}{3}\right)\right] \\
Q=\frac{4 \pi \rho_{v} r^{3}}{3}
\end{gathered}
$$

Substitute \boldsymbol{Q} in \boldsymbol{D}

$$
\begin{gathered}
D=\frac{Q}{4 \pi r^{2}} \\
Q=\frac{4 \pi \rho_{v} r^{3}}{3} \\
D=\frac{1}{4 \pi r^{2}} \frac{4 \pi \rho_{v} r^{3}}{3} \\
D=\frac{\rho_{v} r}{3}
\end{gathered}
$$

Electric flux density

$$
D=\varepsilon E
$$

$\varepsilon=\varepsilon_{0} \varepsilon_{r} \quad \varepsilon_{r}=1$

$$
\begin{gathered}
D=\varepsilon_{0} \varepsilon_{r} E \\
D=\varepsilon_{0} \times 1 \times E \\
D=\varepsilon_{0} E
\end{gathered}
$$

Substitute \boldsymbol{D} value in above equation

$$
\begin{aligned}
D & =\varepsilon_{0} E \\
\frac{\rho_{v} r}{3} & =\varepsilon E \\
E & =\frac{\rho_{v} r}{3 \varepsilon_{0}}
\end{aligned}
$$

