www.binils.com
 Anna University | Polytechnic | Schools

Reg. No. : \square

Question Paper Code : 40436

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2021.

Third Semester
Electronics and Communication Engineering
EC 8352 - SIGNALS AND SYSTEMS

(Common to : Biomedical Engineering / Computer and Communication Engineering / Electronics and Telecommunication Engineering / Medical Electronics)
(Regulations 2017)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.

$$
\text { PART A }-(10 \times 2=20 \text { marks })
$$

1. Evaluate the following integral ${ }^{5}$ $\int_{-3}^{5} e^{-t} \delta(2 t-2) d t$
2. Consider a discrete time signal $x(n)=\operatorname{Sin}\left(\frac{\pi}{4} n\right) \operatorname{Sin}\left(\frac{\pi}{8} n\right)$. If signal is periodic, calculate the fundamental time period.
3. If $x(j \omega)$ is the fourier transform of a signal $x(t)$. What is the fourier transform of the signal $x(5 t-3)$ in terms of $x(j \omega)$?
4. Find the initial and final value of the function $F(S)=\frac{2(s+1)}{s^{2}+4 s+7}$.
5. Consider two continuous time signals $x(t)=e^{-t}$ and $y(t)=e^{-2 t}$ which exist for $t>0$, Find the convolution of $z(t)=x(t) * y(t)$.
6. The impulse response of a system is $h(t)=t u(t)$. If input of the system is $u(t-1)$, Find the output of system.
7. Determine the fourier transform of $x[n]=u[n]-u[n-N]$.
8. State the sampling theorem.

www.binils.com

Anna University | Polytechnic | Schools

9. The system function of LTI system is $H(z)=\frac{z}{(z-2)^{2}}$. Find the difference equation representation of system.
10. Two discrete time systems with impulse responses $h_{1}[n]=\delta[n-1]$ and $h_{2}[n]=\delta[n-3]$ are connected in cascade. Find overall impulse response of the cascaded system.

$$
\text { PART B }-(5 \times 13=65 \text { marks })
$$

11. (a) (i) For the signal $x(t)$ shown in Fig 11 (a), sketch and label each of the following signals:
(1) $x(3 t-1)$
(2) $x(t)\{u(t)-u(t-1.5)\}$
(3) $\quad x(t) \delta\left(t-\frac{8}{5}\right)$

(ii) Determine the energy and power signals of the signals $x[n]=(-0.4)^{n} u[n]$.
(iii) Check whether the given system is linear or not $y[n]=x[n]+7$.

Or

(b) (i) A discrete-time signal $x[n]$ is shown in Fig. 11 (b). Sketch and label each of the following signals
(1) $x[n] u[1-n]$
(2) $x[n]\{u[n+2]-u[n]\}$
(3) $\quad x[n] \delta[n+1]$

Fig. 11 (b)

www.binils.com

Anna University | Polytechnic | Schools

(ii) Consider the continuous time signal $x(t)=\delta(t+5)-\delta(t-5)$.

Calculate the Energy for the signal $y(t)=\int_{-\infty}^{t} x(\tau) d \tau$.
(iii) Check whether the given system is time invariant or not $y(t)=[6+2 \sin t] x(t)$.
12. (a) Consider a continuous time signal $f(t)$ shown in Figure 12 (a). Determine the fourier transform of signal. Also plot the magnitude and phase spectrum.

NMMN. Figure 12 (a) Or $^{\text {Fan }}$
(b) (i) Determine the laplace transform of the continuous time signals $x(t)=e^{-4|t|}$ and sketch its ROC.
(ii) Determine the fourier series of the square wave shown in Fig 12 (b).

Fig 12 (b)

www.binils.com

Anna University | Polytechnic | Schools
13. (a) Consider a continuous-time LTI system for which input $x(t)$ and output $\mathrm{y}(\mathrm{t})$ is related by differential equation:
$\frac{d^{2} y(t)}{d t^{2}}+\frac{d y(t)}{d t}-2 y(t)=x(t)$
Find the impulse response $h(t)$ for each of the following cases:
(i) The system is causal
(ii) The system is stable
(iii) The system is neither stable nor causal

Or

(b) Determine the convolution integral for the given signal.
$x(t)=\left\{\begin{array}{lc}0 ; & t<0 \\ \frac{t}{4} ; & 0 \leq t \leq 4 \\ 0 ; & t>4\end{array}\right.$ and $h(t)=\left\{\begin{array}{cc}0 ; & t<-1 \\ 1 ; & -1 \leq t \leq 1 \\ 0 ; & t>1\end{array}\right.$
14. (a) (i) Determine the Z transform and ROC of the given sequence $\mathrm{x}[\mathrm{n}]$.
$x[n]=(0.5)^{n} u[n]-(0.8)^{n} u[-n-1]$.
(ii) Use parseval's property to calculate the energy of given signal

$$
\begin{equation*}
x[n]=\sum_{n=-\infty}^{\infty} \frac{\sin ^{2}(4 n)}{\pi^{2} n^{2}} \tag{7}
\end{equation*}
$$

Or
(b) (i) Let $X\left(e^{j \omega}\right)$ denotes the fourier transform of given signal $x[n]$.
$x[n]=(-1,0,1,2,1,0,1,2,1,0,-1)$
(1) Evaluate $X\left(e^{j o}\right)$
(2) Evaluate $\int_{-\pi}^{\pi}\left|X\left(e^{j \omega}\right)\right|^{2} d \omega$
(ii) Consider a discrete time signal
$x[n]=\left\{\begin{array}{cc}a^{n}, & 0 \leq n \leq N-1 \quad a>0 \\ 0, & \text { otherwise }\end{array}\right.$
Find the $\mathrm{X}(\mathrm{z})$ and plot the pole zero constellation diagram.

www.binils.com
 Anna University | Polytechnic | Schools

15. (a) (i) Consider a LTI system with impulse response, $h_{1}[n]=\left(\frac{1}{3}\right)^{n} u[n]$ is connected in parallel with another causal LTI system with impulse response $h_{2}[\mathrm{n}]$. The resulting parallel interconnections has the frequency response,
$H\left[e^{j \omega}\right]=\frac{-12+5 e^{-j w}}{12-7 e^{-j \omega}+e^{-j 2 \omega}}$
Determine $h_{2}[\mathrm{n}]$.
(ii) Consider a causal LTI system that is characterized by the difference equation:
$y[n]-3 / 4 y[n-1]+1 / 8 y[n-2]=2 x[n]$
Determine the impulse response of the system.
Or
(b) (i) For the system described by the difference equation:
$3 y[n]-4 y[n-1]+y[n-2]=x[n]$
Find the frequency response of the system.
(ii) An LTI system has the impulse response $h[n]=a^{n} u[n]$ with $|a|<1$. The input to the system is $x[n]=\beta^{n}(u[n]-u[n-7])$ with no restriction on the value of β. Find the general closed form equation for the system output $y[n]$.

$$
\text { PART C }-(1 \times 15=15 \text { marks })
$$

16. (a) The following facts are given facts about an LTI system with impulse response $h[n]$ and frequency response $H\left(e^{j \omega}\right)$:
(i) For the input $\left(\frac{1}{2}\right)^{n} u[n]$ the corresponding output is $g[n]$, where $g[n]=0$ for $\mathrm{n}<0$ and $\mathrm{n} \geq 2$.
(ii) $H\left(e^{j \frac{\pi}{2}}\right)=1$
(iii) $\quad H\left(e^{j \omega}\right)=H\left(e^{j(\omega-\pi)}\right)$

Determine $h[n]$

Or

www.binils.com
 Anna University | Polytechnic | Schools

(b) (i) Consider a signal $x(t)$ with fourier transform $X(j \omega)$. Following facts are given,
(1) $x(t)$ is real and non-negative.
(2) $\operatorname{IFT}\{(1+j \omega) X(j \omega)\}=A e^{-2 t} u(t)$ where A in independent of t, and IFT denotes inverse fourier transform
(3) $\int_{-\infty}^{\infty}|X(j \omega)|^{2} d \omega=2 \pi$

Determine the closed-form expression of $x(t)$
(ii) Consider a system with impulse response
$h[n]=\left[(1 / 2)^{n} \cos \pi n / 2\right] u[n]$
If $x[n]=\cos \left(\frac{\pi n}{2}\right)$. Determine that system output $y[n]$.

www.binils.com

