binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

Catalog

NON LINERAR DATA STRUCTURES «+ -+ttt triiiiiiiii ittt s st a i ta s a e 1
Where data StrucCtures are USEQ? -« -r-rrrrerrrrarariraiaraaisirarasarasaraisaranrasanns 1
Classification of data StrUCTUIE -+« -+ = srrrrarmtraiiiii ittt it st a et aaaaas 1
MODULARITY vttt i i i e ittt i st a e a et s it a e aaeanas 3
ABSTRACT DATA TYPE +xeeneeneeueautantautttttteteatetaeae et aeaereaean 3
[Benefits of using ADTs or Why ADT S s rrrrrrrrrrrara it iaraatraatrasaaasararananas 4
L ST A T+ v rrrrerrara ettt it ittt e e a e 5
0 |mp|ementation OF LISt AD T ++rvrvrrerrrrnraiai ittt it it i et i it s i naaaaaas 5
ARRAY IMPLEMENTATION OF LIST ADT «++veesvessteieasiaieaienisaieiisinanan, 5
ST A K vttt ettt ettt ettt 9
D iNITION « v v v v e e v e et et i i e i e e a e 9
0] Operations ON SEACKS -+ - v v e e e e e 9
L] CONAITIONS -+ rrrrrrerrnraraasaeataaeatasasassasatsasasasaransasastnsarsnsararasarssaransnns 9
APPLICATIONS OF STACKS 1ttt it ettt i et st i s s a i a e 11
0] |mp|ementations Of StACK -+ v v e 11
[] Array im |ementation Of StaACK «+-vvrrrrrrrr e e 11
Push peraﬂon .. 15

Pop Operation ... 16

INTIX NOTATION “++ v v v et et i i et a s e a s sananaas 17
PrefiXx NOTATioN -« - r e ettt e it i ettt et e it e i s i aaeanaaaas 17
Postfix NOtatlon -« -« cacerrert i e i 17
Parsing Expressions ... 18
Postfix Evaluation A|gor|thm ... 19
QUEUE .. 20
QUEUE QUEUE ... 20
] Types of Queues ... 20
(] Operations on Queue ... 20
0] Conditions..: ... 20
0] |mp|ementat|on of .Queue L P PP P PP PP P TP RTPTRTRTTITITE 20
0 Arra |mp|ementat|on of Linear Queue ... 20
LINKED LIST svrvvrrrrerraarnatnunratntratmanraasanssassassasiatsasranratsansansraraarraratratranranns 26
LINKED LIST +rvvrrererrnraranraeataaatiasatansaeatsasatansatassarasasatrnsatansaratsasasnsanns 26
Why LINKEO LIST? -+ -vrrerermmrammta ittt ittt et i et i et a e i aaeanaaaas 27
Advantages OfF LIiNKed LiSte- rrrrrrerreremaiiiii ittt i et et i s i a i aaeaaas 27
Disadvantages Of LiNked LiSt::«c«cscsesesauauaunuurararararasuasuasasuasuasuasasasasasasasasasasss 27
Operations ON LiNKed LiSt -« rvrrrrerrmriiiaii it i ittt et 27
Types OFf lINKEA LISt ++ v vrvrrerrera i i i s et et s a e 27
L] DETINTION «# v v v evevesesununununununununesesssesssusususussssssssssssssssrsrsrsrsrsrsrsssssssss 28
[SentiNEINOOE - - vt i i it sttt et st a e aea e 28
(] Advantages .. 28
0] Disadvantages .. 28
0] |nserti.on R T T TP PP PP PP PT PR P PRTPE 28
b. Inserting a node to the front Of list -+« «-vvvvevrninii 28
d. Inserting a node to the end Of liSt +« -« vevvevevinini 30

bRIE R UNETsity App on Play Store ™ *°

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

C. De|eting the last NOdE - - v rrrrri i e ittt 30
T = aile AR T 32
Insert at Beginning .. 32
b_|nserting anodeinthe middle ---+ - vrrrrmmmii s 33
c.Inserting a node to the end Of liSt -+« -vvvreverneii 33
[] Dl -+ v v v v rrrrara e ta ettt ittt e i a st a e et e e 34
Delete at Beginning ... 34
De|eting the middle node:- -« c v e 34
De|eting the |ast NOE -+ -+ v v s s st e 34

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

CIRCULAR LINKED LIST +reerreerrrntrnantinatanansisanssanssastssansiaassastssaissastaanns 34
[DiSAQVANTAQES - -+ r-rrrrrrrrrarrnraranaaeaniasansasanassasansasansasaransarasararasansnnns 35
] DefiNITionN (L) - v rrrrmrmrmmaaii ittt it e it st i et st a s aataaeaeaaaas 35
] Definition (2 [RECITITE R PR R R LR C R R R TRTERYE 35
0 Why doub|y liNKed lIST? ««+vvrvrrei i i e st i et 35
(] Advantages .. 35
(] D|Sadvantages (1) ... 36
L1 Why doublv circular inked liSt? -« orrrrmrmimmii et a i n e 36
(] DeflNition () ---cccrererrmrmimaiiiii it i i i e s e a et s et st i 36
APPLICATIONS OF LINKED LIST srrrrrrrrrerrarrarsanmarsarranmarrarsarsarrarranranmans 36
Linked list implementation of stack ««-«« xvvevmrn 36
Push Operation ... 37
Linked list implementation of Linear QUEUE -+« -« -vereeriie, 38
APPL|CAT|ONS OF STACKS ... 42
Conversion of infix expression iNto POStfiX @XPresSSIioN -« -« ovvrvrevnin., 42
[1 Evaluation of postﬁx expression .. 43
[] Ba|ancing AMENTNESIS -+ v v v v rrrr ittt e it ittt i et 44
[POIVNOMIAL ADT - vrrrerrrrari it it it e it st a et a i a i s a e aaaas 45
YT T 46
Evaluation of Infix expressions ... 47
EVALUATION OF EXPRESSION IN Crevrrrrrrenies 47
Evaluation of Infix expressions .. 47
Evaluation of Postfix. Expressions (Polish Postfix notation) ««««-««--«voovvevineenns 50

Postfix notation-is, a motation for writing arithmetic.expressioens,in which the
operands appear before their operators. There are no precedence rules to learn,
and parentheses are never needed."Because of this simplicity.

.. 50

Evaluation of Postfix Expressions (Polish Postfix notation) (1) -««--oxeeeeeeeene. 52

Evaluation of Prefix Expressions (Polish Notation) -+« -« ««-oevevevierninin, 54
POLYNOMIAL ADDITION :reeernuteeeutateittee ittt ittt 57

POLYNOMIAL ADDITION - cteeunteeeutie ettt ittt 57

P0|yn0mia| AITION <o v e 57

Type Declaration: StrUCt NOOE -« -+« vrrrrmrmi i e et it a i 57

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

UNIT-1I
NON LINERAR DATA STRUCTURES

Arrays and its representations — Stacks and Queues - Linked lists — Linked
list-basedimplementation of Stacks and Queues — Evaluation of Expressions —
Linked list based

polynomial addition.

Definition:
Data structure is a particular way of organizing, storing and retrieving data, so that it
can be used efficiently. It is thestructural representation of logical relationships
between elements ofdata.

Where data structures are used?
Data structures are used in almost every program or software system. Different kinds
of data structures are suited to different kinds of applications, and some are highly
specialized to specific tasks.
Applications in which data structures are applied extensively
o Compiler design (Hash tables),

Operating system,

Database management system(B+Trees),

Statistical analysis package,

Numerical analysis (Graphs),

Graphics,

Artificial intelligence,

Simulation

O O O O O O O

Classification of data structure
Data sltruu:’ture
| |

Primitive Data Structure MNon-primitive Data Structure
I

—— Character
— Integer Linear Data Structure Mon-linear Data Structure
— 5tring
—— Float — Stack Trees
——— Pointer —— Queue Graph

— Arrays

—— List

Primitive Data Structure - Primitive data structures are predefined types of data,
which are supported by the programming language. These are the basic data
structures and are directly operated upon by the machine instructions, which is in a
primitive level.

w~en DINIS - ANna University AppsQidfl@) oadh@ruresnc

binils.com - Anna University, Polytechnic & Schools

o Free PDF Study Materials _
Non-Primitive Data Structure - Non-primitive data structures are not defined by the

programming language, but are instead created by the programmer. It is a more
sophisticateddata structure emphasizing on structuring of a group of homogeneous
(same type) or heterogeneous (different type) data items.

1 Linear data structure- only two elements are adjacent to each other. (Each node/elemen

w~en DINIS - ANna University AppsQidfl@) oadh@ruresnc

binils.com - Anna University, Polytechnic & Schools
. Free PDF Study Materials
single successor)

o Restricted list (Addition and deletion of data are restricted to the ends of the list)
v Stack (addition and deletion at top end)
v Queue (addition at rear end and deletion from front end)

o General list (Data can be inserted or deleted anywhere in the list: at the
beginning, in themiddle or at the end)

Non-linear data structure- One element can be connected to more than two

adjacentelements.(Each node/elementcan have more than one successor)
o Tree (Each node could have multiple successors but just one predecessor)
o Graph (Each node may have multiple successors as well as multiple predecessors)

Note - Array and Linked list are the two basic structures for implementing all other ADTs.

w~en DINIS - ANna University AppsQidfl@) oadh@ruresnc

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

R eene

Array List
Tree Graph
To
g Queue Queue
front rear
[E]==TE
[E]==]s]
mEn [0 (1] [2 (3] (4 (5] [6] [7] [8)
Stack Queue

MODULARITY
Module- A module is a self-contained component of a larger software system.Each
moduleis a logical unit and doesa specific job. Its size kept small by calling other
modules.
Modularity is the degree to which a system's components may be separated and
recombined.Modularity refers tobreaking down software into different parts called
modules.
Advantages of modularity

O

O
O
O
O

UNIT-1II

It is easier to debug small routines than large routines.

Modules are easy to modify and to maintain.

Modules can be tested independently.

Modularity provides reusability.

It is easier for several people to work on a modular program simultaneously.

binils - Anna University ApRa@iddml@) oodhGuresimc

binils.com - Anna University, Polytechnic & Schools

Free PDF Study Materials
ABSTRACT DATA TYPE

What is Abstract Data Type (ADT)?
ADT is a mathematical specification of the data, a list of operations that can be carried
out onthat data. Itincludesthe specification of what it does, but excludes the
specification of how itdoes. Operations on set ADT: Union, Intersection, Size and
Complement.
The primary objective is to separate the implementation of the abstract data types
from theirfunction. The program must know what the operations do, but it is actually
better off not knowing how it is done. Three most common used abstract data types
are Lists, Stacks, and Queues.
ADT is an extension of modular design. The basic idea is that the implementation
of these operations is written once in the program, and any other part of the
program that needs to

w~en DINIS - ANna University AppsQidfl@) oadh@ruresnc

binils.com - Anna University, Polytechnic & Schools

_ Free PDF Study Materials _ _
perform an operation on the ADT can do soby calling the appropriate function. If for

some reason implementation details need to change, it should be easy to do so by
merely changing the routines that perform the ADT operations. This change, in a
perfect world, would be completely transparent to the rest of the program.

Examples of ADT: Stack, Queue, List, Trees, Heap, Graph, etc.

Benefits of using ADTs or Why ADTs

w~en DINIS - ANna University AppsQidfl@) oadh@ruresnc

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials
o Code is easier to understand. Provides modularity and reusability.

o Implementations of ADTs can be changed without requiring changes to the program
that usesthe ADTSs.
LIST ADT

List is a linear collection of ordered elements. The general form of the list of size N is: AQ,
A1,
...y AN-1
o Where A1 - First element
AN -
Last
Element N

Size of the list
o Ifthe element at position 'i" is Ai then its successor is Ai+1 and its predecessor is Ai-1.
Various operations performed on a List ADT
o Insert (X,5) - Insert the element X after the position 5.
Delete (X) - The element X is deleted.
Find (X) - Returns the position of X
Next (i) - Returns the position of its successor element i+1.
Previous (i) - Returns the position of its Predecessor element i-1.
PrintList - Displays the List contents.
MakeEmpty -:-Makes the Listiempty.

O O O O O O

Implementation of List ADT
o Array implementation
o Linked List implementation
o Cursor implementation

ARRAY IMPLEMENTATION OF LIST ADT

An array is a collection of homogeneous data elements described by a single name.
Each element of an array is referenced by a subscripted variable or value, called
subscript or indexenclosed in parenthesis. In array implementation, elements of listare
stored in contiguous cellsof an array. Find K" operation takes constant time. Print

List, Find operations take linear time.
Advantages - Searching an array for anindividual element can be very efficient - Fast,
randomaccess of elements.

Limitations - Array implementation has some limitations such as

1. Maximum size must be known in advance, even if it is dynamically allocated.

2. The size of array can’t be changed after its declaration (static data structure). i.e.,
the size isfixed.

3. Data are stored in continuous memory blocks.

4. The running time for Insertion and deletion of elements is so slow. Inserting and
deletion requires shifting other data in the array. For example, inserting at position
0 requires first pushing the entire array down one spot to make room, whereas
deleting the first element requires shifting all the elements in the list up one, so the
waorst case of these operations isO(n), On average, half the list needs to be moved

wrn piNils - Anna Univessityefegns oom fiaynstore

binils.com - Anna University, Polytechnic & Schools

_ _ Free PDF Study Materials
for either operation, so linear time is stillrequired.

wrn - pinils - Anna Univessityefegns oo fiasnstore

binils.com - Anna University, Polytechnic & Schools

_ Free PDF Study Materials
5. Memory is wasted, as the memory remains allocated to the array throughout the

program

Item to be
deleted

.

@ 1 2 3 4 5 6 T 8 9

B4 61 15 73 26 38 11 49 53 32

SRS
o o (3] 1]

@ 1 2 3 4 5 G 7 8

B84 61 15 73 26 11 49 53 32 Contents
shifted

down

execution even few nodes are stored.
Deleting an item

wrn - pinils - Anna Univessityefegns oo fiasnstore

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

Type Declarations#define Max 10
int A[Max],N;

Routine to insert an Element in the specified position
void insert(int x, int p, int A[], int N)

{
int i; If(p==N)
printf(“Array Overflow”);
else

{
for(IZN-1’|>:p_1’|__)A[|+1]:A[I]’
Alp-1]=x;N=N+1;

}
}

Routine to delete an Element in the specified
int deletion(int p, int A[],int N)

{
int Temp;
If(p==N)
Temp=A[p-
1];else

{
Temp=A[p-1]; For(i=p-1;i<=N-
1;i++)A[il=A[i+1];

}
N=N-1;
return Temp;

}

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTUESIN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

Find Routine
void Find (int X)
{
int i,f=0; for(i=0;i<N;i++)if(a[i]==x)
{f=1;

break;

}

if (f==1)

printf(“Element
found”);else
printf(“Element not found”);

}

UNIT-1II

EC8393-FUNDAMENTALS OF DATA STRUCTUES IN C

binils - Anna University App on Play Store

Definition

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Mat&GHENI COLLEGE OF ENGINEERING
STACK AND TECHNOLOGY

Stack is a linear list in which elements are added and removed from only one end,

called the top. It is a "last in, first out” (LIFO) data structure. At the logical level, a stack
is an orderedgroup of homogeneous items or elements. Because items are added and
removed only from the top of the stack, the last element to be added is the first to be
removed. Stacks are also referred as "piles" and "push-down lists".

Stack of Books

v v a
.-"z -\\'- _.-"z -H\\-._
II.I" Push "l.. .I.l" Pop "".
v / v
Top —J 5
4 i 1
Popis Pushi®, 5
o) Stack § —

Top(s)
Stack model : Input bto a Stack is by push, output is by pop

> Operations on stacks

Push - Inserts new item to the top of the stack. After the push, the new item
becomes thetop.

Pop - Deletes top item from the stack. The next older item in the stack becomes the
top.

Top - Returns a copy of the top item on the stack, but does not delete it.
MakeEmpty - Sets stack to an empty state.

Boolean ISsEmpty - Determines whether the stack is empty. ISEmpty should
compare topwith -1.

Boolean IsFull - Determines whether the stack is full. IsFull should compare top with
MAX_ITEMS - 1.

Conditions

Stack overflow - The condition resulting from trying to push an element onto a full
stack.

Stack underflow - The condition resulting from trying to pop an element from an
empty system.

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

<

Top —» 49
Top —» 27 27
14 14
3 3
92 92
64 B4

New item pushed on Stack

binils.com

UNIT-Ill EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

27 Top

14 14
3 3
g2 92
B4 B4

Top —s

27 Ve —

14

3

g2

64

Two items popped from Stack

APPLICATIONS OF STACKS

Recursion - Example, Factorial, Tower of Hanoi.
Balancing Symbols, i.e., finding the unmatched/missing parenthesis. For
example, ((A+B)/C and (A+B)/C). Compilersoften use stacks to perform

syntax analysis oflanguage statements.

Conversion of infix expression to postfix expression and decimal number to binary

number.
Evaluation of pastfix expression.

Backtracking- Ferexample, 8-Queensproblem:
Function calls - When a call is made to a new function, all the variables local to the
calling routine need to be saved by the system, since otherwise the new function will
overwrite the calling routine's variables. Similarly the current location in the routine
must be saved so that the new function knows where to go after it is done. For
example, the main program calls operation A, which in turn calls operation B, which in
turn calls operation C. When C finishes,control returns to B; when B finishes, control
returns to A; and so on. The call-and-return sequence is essentially a LIFO sequence,
S0 a stack is the perfect structure for tracking it.

> Implementations of stack
1. Array implementation of stack

2. Linked list implementation of stack

> Array implementation of stack

Stack can be represented using one dimensional array and it is probably the more
popular solution.Here the stack is of fixed size. That is maximum limit for storing
elements is specified. Once the maximum limit is reached, it is not possible to store the
elements into it. So array implementation is not flexible and not an efficient method when

resource optimization is concerned.

UNIT-1II

EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

Top=-1
(0] (1] (2] [3] (4]
Initially
A Top=0
(0] (1] 2] (3] (4]
Push ('A")
A B Top=1
(0] (1] (2] [3] (4]
Push ('B')
A Top=0
(0] (1] (2] (3] (4]
Pop()

binils.com

UNIT-Ill EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

PUSH AND POP OPERATION

#include<stdio.h>
#include<conio.h
>#define MAX 5

void push();

void pop();

void

display();

int stack[MAX], top=-1,
item;void push()

if(top == MAX-1)
printf("Stack is full");

els
e
{ printf("Enter item:
");
scanf("%d",&item)
;lop++;
stack[top] = item;
printf("Item pdshed =
Y %d
}
void pop()
{
if(top == -1)
printf("Stack
isempty");
else
{ .
item =
stack[top];top--;
printf("ltem popped = %d", item);
}
}
void display()
L
int.1;

UNIT-1II

EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

if(top ==-1)

else

{

printf("Stack is empty");

for(i=top; i>=0; i--)
printf("\n %d", stack{i]);

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

binils.com

UNIT-Ill EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

Push Operation

The process of putting a new data element onto stack is known as a Push
Operation.Push operation involves a series of steps —

« Step 1 - Checks if the stack is full.

. Step 2 - If the stack is full, produces an error and exit.

. Step 3 - If the stack is not full, increments top to point next empty space.
. Step 4 - Adds data element to the stack location, where top is pointing.

. Step 5 - Returns success.

If the linked list is used to implement the stack, then in step 3, we need to
allocatespace dynamically.

Algorithm for PUSH Operation
A simple algorithm for Push operation can be derived as follows -

Implementation of this algorithm in.C, is very easy. See the following code -
Example

begin procedure push: stack, data

if stack is fullreturn
null

top — top + 1
stack[top] <« data

void push(int data) {
if(tisFull()) {
top = top + 1;
stack[top] = data;
}else {
printf("Could not insert data, Stack is full.\n");
}

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

}

Pop Operation

Accessing the content while removing it from the stack, is known as a Pop
Operation. In an array implementation of pop() operation, the data element
Is not actually removed, instead top is decremented to a lower position in
the stack to point to the next value. But in linked-list implementation, pop()
actually removes data element and deallocates memory space.

A Pop operation may involve the following steps -
. Step 1 - Checks if the stack is empty.
. Step 2 - If the stack is empty, produces an error and exit.

. Step 3 - If the stack is not empty, accesses the data element at
which top ispointing.

. Step 4 - Decreases the value of top by 1.
« Step 5 — Returns success.

Algorithm for Pap Operation
A simple algorithm for Pop operation can be derived as follows -

Implementation of this algorithm in C, is as follows -
Example

int pop(int data)
{

begin procedure pop: stack

if stack is empty
return null
endif

data < stack|[top]
top < top -1
return data

UNIT-III

EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

data =
stack[top];top =
top - 1; return
data,;
}else {
printf("Could not retrieve data, Stack is empty.\n");

}

The way to write arithmetic expression is known as a notation. An
arithmetic expression can be written in three different but equivalent
notations, i.e., without changing the essence or output of an expression.
These notations are -

« Infix Notation
. Prefix (Polish) Notation
. Postfix (Reverse-Polish) Notation

These notations are named as how they use operator in expression. We
shall learn the same here in;this chapter.

Infix Notatiop

We write expression in infix notation, e.g..a- bw+/C, where operators are
used in- between operands. It is easy for us humans to read, write, and speak
in infix notation but the same does not go well with computing devices. An
algorithm to process infix notation could be difficult and costly in terms of
time and space consumption.

Prefix Notation

In this notation, operator is prefixed to operands, i.e. operator is written
ahead of operands. For example, +ab. This is equivalent to its infix notation
a + b. Prefix notation is also known as Polish Notation.

Postfix Notation

This notation style is known as Reversed Polish Notation. In this notation
style, the operator is postfixed to the operands i.e., the operator is written
after the operands. For example, ab+. This is equivalent to its infix notation
a+hb.

The following table briefly tries to show the difference in all three notations -

Sr.No. Infix Notation Prefix Notation Postfix Notation

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

1 a+b +ab ab+

2 (a+b)=*c *+abc ab+c=x

3 ax(b+c) xa+bc abc+=x

4 alb+c/d +/ab/cd ab/cd/+

5 (a+b)x(c+ *+ab+c ab+cd+
d) d *

6 ((a+b)=*c)- -x+abc ab+cxd
d d -

Parsing Expressions

As we have discussed, it is not a very efficient way to design an algorithm
or program to parse infix notations. ‘instead, thése infix notations are first
converted into either postfix or prefix notationsyand then computed.

To parse any arithmetic expression, we need to take care of operator
precedence and associativity also.

Precedence

When an operand is in between two different operators, which operator will
take the operand first, is decided by the precedence of an operator over
others. For example -

As multiplication operation has precedence over addition, b * ¢ will be
evaluatedfirst. A table of operator precedence is provided later.

Associativity

Associativity describes the rule where operators with the same precedence
appear in an expression. For example, in expression a + b — ¢, both + and
— have the sameprecedence, then which part of the expression will be
evaluated first, is determinedby associativity of those operators. Here, both
+ and - are left associative, so the expression will be evaluated as (a + b)
-cC.

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

Precedence and associativity determines the order of evaluation of an
expression. Following is an operator precedence and associativity table
(highest to lowest) -

Sr.No Operator Precedence Associativity
1 Exponentiation » Highest Right
Associative
2 Multiplication (*) & Division (/ Second Left Associative
) Highest
3 Addition (+) & Subtraction (-) Lowest Left Associative

The above table shows the default behavior of operators. At any point of
time in expression evaluation, the order can be altered by using parenthesis.
For example -

In a + b*c, the-expression part b*e-will be evaluated, firstywithymultiplication

as precedence over addition. We=here use parenthesis for a + b to be
evaluated firstysike (a'+ b)*c.

Postfix Evaluation Algorithm

We shall now look at the algorithm on how to evaluate postfix

notation —Step 1 — scan the expression from left to right

Step 2 - if it is an operand push it to stack

Step 3 - if it is an operator pull operand from stack and perform
operationStep 4 - store the output of step 3, back to stack

Step 5 - scan the expression until all operands are
consumedStep 6 — pop the stack and perform operation

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

QUEUE UEUE

A queue is an ordered group%FWnogeneous items or elements, in which new
elements are added at one end (the “rear’) and elements are removed from the other
end (the “front”). It is a "First in, first out" (FIFO) linear data structure. Example, a line of
students waiting to pay for their textbooks at a university bookstore.

CIF R,

Queue of People _
D] Engueue|q)
equeus{Q) Queue Q q)

Model of Queue

Dequeue (Deletion) +—— #—— Engqueue {Insertion)

T T

Front Rear

> Types of Queues o _
There are three major variations in a simple queue. They are
= Linear queue

= Circular queue

= Double ended queue (Deque)
o Input restricted deque
o Output restricted deque

Priority queue

» Operations on Queue

Enqueue -Insertsan itemat the rear end of the queue.

= Dequeue- Deletesan item at the front end of the queue and returns.

> Conditions
= Queue overflow - The condition resulting from trying to enqueue an element onto a full
Queue.
= Queue underflow - The condition resulting from trying to dequeue an element from an
empty Queue.

> Implementation of
Queue
1. Array implementation
2. Linked list implementation
o Array and linked list implementations give fast O(1) running times for every
operation

UNIT-II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

> Array implementation of Linear Queue

0 1 2 3 4
Empty Queue F=R =-1

10
0 1 2 3 4

JAYAY

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
————Free PDFStudy-Materials——————————————————————

FR
After Enqueue (10)

10| 3
o 1 2 3 4

N

F R
After Enqueue (3)

10| 3 | 41
1 2 3 4

AN

F R
AfterlEnqueue (41)

3 | 41
o 1 2 3 4

N N

F R

After Dequeue ()

3 | 41| 76
o 1 2 3 4

F R
After Enqueue (76)

3 | 41| 76| 66

N

UNIT-II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

F R
After Enqueue (66)

41| 76| 66

UNIT-II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

F R
After Dequeue ()

There is one potential problem with array implementation. From the
above queue, now if we attempt to add moreelements, even though 2 queue
cells are free, the elements cannot be inserted. Because in a queue,
elements are always inserted at the rear end and hence rear points to last
location of the queue array Q[4]. That is queue is full(overflow condition)
though it is empty.

The simple solution is that whenever front or rear gets to the end of
the array, it is wrapped around to thebeginning. This is known as a circular
array implementation.

Array implementation of Linear Queue

Arra¥/ Implementation
of Linear Queue

binilé - Anna University A-pp on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

#include
<stdio.h>
#include<co
nio.h>

#define MAX 3

void enqueue(); void
dequeue(); void

displa
int gueB{J(()e MAX], rear=-1,

front=-1, [tem void
nqueueo

il(rear == MAX-

rintf("Queue
p fullg)QeIse

printf(" Enter

item :

scanf("%d",

&item);

if grear ==-1 && front == -1) rear
ront = 0;else

rear =rear + 1;

queuefrear] = item;

g)rlntf(Item enqueued

(item);

void dequeue()
|{ (front ==-1) printf("Queue is empty"); else

item = queue[front]; if
(front ==rear)front =rear

elsg
ront f
frcl)ntf(dequeued %d", item);

void display()
inti;

if(front == -1)
printf("Queue is
empty"); else
for(i=front;
i<=rear; i++)
printf("%d ",
qgueueli]);

UNIT-II

EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

Circular Queue

In circular queues the elements Q[0],Q[1],Q[2] Q[n — 1] is represented in a
circularfashion with Q[1]

following
Q[n]. A circulargueue is one in which the insertion of a newelementis done at

the very first location of the queue ifthe last location at the queue isfull.
Initially Front = Rear = -1. That is, front and rear are at the same position.
At any time the position of the element to be inserted will be calculated by therelation:

Rear = (Rear + 1) % SIZE

UNIT-II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

= After deleting an element from circular queue the position of the front end is
calculatedby the relation:

Front=(Front + 1) % SIZE.

= After locating the position of the new element to be inserted, rear, compare it
withfront. If Rear = Front, the queueis full and cannot be inserted anymore.
= No of elements in a queue = (Rear — Front + 1) % N

oo Deque - Double Ended QUEeue
> Definition

A deque is a homogeneous list in which inserted and
deleted operations are performed at either ends of the
gueue. That is, we can add a new element at the rear
or front end and also we can remove an element from
both frontand rear end. Hence it is called double
ended queue. The most common ways of

Ir_e;%resenting deque are: doubly linked list, circular
ist.

Dequeue (Deletion) —» <+— Enqueue (Insertion)
Enqueue (Insertion) «— — Dequeue (Deletion)

Bront Rear

Deque

> Types of deques
1. Input restricted deque
2. Output restricted d

Dequeue (Deletion) —» <+— Enqueue (Insertion)
— Dequeue (Deletion)

Front Rear
Input restricted deque

Dequeue [Deletion) —» . __—
—
Enqueue (Insertion) «— nqueue (Insertion)

Front Rear
Output restricted deque

v An input restricted deque is a deque, which allows insertion at only 1 end,
rear end, but allows deletion atbothends, rear and front end of the lists.

UNIT-II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

v An output-restricted deque is a deque, which allows deletion at only
one end, front end, but allowsinsertion atboth ends, rear and front ends,
of the lists.

UNIT-II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

binils.com

UNIT-II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials
UNIT Il LINEAR DATA STRUCTURES

LINKED LIST
Definition
Linked list is a dynamic data structure which is an Nede
ordered collection of homogeneous data elements called [mfo | nNext ep>
nodes, in which each element contains two parts:data or Info Loclﬁon
and one or more links. The data holds the application data to be
processed.

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

UNIT-111 EC8393-FUNDAMENTALS OF DATASTRUCTURES IN C

binils.com

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

Why Linked List?

Even though searching an array for an individual element can be very efficient,
array has some limitations. So arraysare generally not used to implement Lists.

Advantages of Linked List

1.

Linked list are dynamic data structures - The size is not fixed. They can grow or
shrink during the execution of a program.

Efficient memory utilization - memory is not pre-allocated. Memory is allocated,
whenever it is required and it is de-allocated whenever it is not needed. Data are
stored in non-continuous memory blocks.

Insertion and deletion of elements are easier and efficient. Provides flexibility. No
need to shift elements of a linked list to make room for a new element or to delete
an element.

Disadvantages of Linked List

1.
2.

More memory - Needs space for pointer (link field).
Accessing arbitrary element is time consuming. Only sequential search is supported not
binary search.

Operations on Linked List
The primitive operations performed on the linked list are as follows

1.

Creation- This operation is,used to.create a.linked.list. Once,a linked list is
created with one nade, insertion operation can be used to add more elements in a
node.

Insertion- This operation is used to insert a new node at any specified location in
the linked list. A new node may be inserted,

v At the beginning of the linked list,

v At the end of the linked list,

v At any specified position in between in a linked list.

Deletion- This operation is used to delete an item (or node) from the linked list. A node
may be deleted from the,

v Beginning of a linked list,

v End of a linked list,

v Specified location of the linked list.

Traversing - It is the process of going through all the nodes from one end to another
end of a linked list. In a singly linked list we can visit the nodes only from left to right
(forward traversing). But in doubly linked list forward and backward traversing is
possible.

Searching- Itis the process finding a specified node in a linked list.

6. Concatenation- Itis the process of appending the second list to the end of the first list.

Consider a list A having n nodes and B with m nodes. Then the operation
concatenation will place the 1st node of B in the (n+1) the node in A. After
concatenation A will contain (name) nodes.

UNIT-II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools

. _ Free PDF Study Materials
Types of linked list

1. Singlylinked list or Linear list or One-waylist
Doubly linked list or Two-way list

Circular linked list

Doubly circular linked list

W

UNIT-II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

SINGLY LINKED LIST
> Definiti

on

In singly linked list, each element (except the first one) has a unique predecessor,
and each element (except the last one) has a unique successor. Each node contains two
parts: data or Info and link. The data holds the application data to be processed. The
link contains the address of the next node in the list. That is, each node has a single
pointer to the next node. The last node contains a NULL pointer indicating the end of the
list.

Elementl |» | Element2 | *+—| Element3| e4+—| Element

> SentinelNode
It is also called as Header nodeor Dummy node.
= Advantages
o Sentinel node is used to solve the following problems

v First, there isnoreallypobvious way todnsert-at thefront of the list from the
definitions given.

v Second, deleting from the front.of thelist is.aspecial case, because it
changes the start of the list; carelesscoding will lose the list.

v A third problem concerns deletion in general. Although the pointer moves
above are simple, the deletionalgorithm requires us to keep track of the cell
before the one that we want to delete.

= Disadvantages
o It consumes extra space.

> Insertion
a. Creating a newnode from empty List

CR - N

L L Newnode

Before creation After creation

Creating a linked list

b. Inserting a node to the front of list

c. Inserting a node in the middle

UNIT-II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

I 10 L — 30 m ot = 10 ':%"‘ 30 m
%

L P ! A

' |

, [

20 . = 20 .|

Newnode Newnode
Before insertion After insertion
Insertion in the middle

UNIT-11I EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

d. Inserting a node to the end of list

B—» 10 = 20 s 30 H

L
Before insertion

40 .
B—> 10 » - 20 - 30 -
|_ |
|
After insertion |
- 40
Insertion at the end !

> Deletion _
a. Inserting a node to the front of list

E—r— 10 [20 [B 30 - = A0 m

Befare deletingfirst node (10)

= i S

E%- 10 X 20 |et—| 30 |et— 40 m

b. Deleting the middle nodefter deleting first node (10)

B—> 10 - 20 - 30 -— 40 m

Eefore deleting middle node (30)

B—» 10 e 20 o X~ 30 -

L P Temp
After deleting middle node (30)

Xy

“]

UNIT-II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

10 — 20 - 30 - 40 m

Before deleting last node [40)

10 - 20 [30 0—*.— 40 m

After deleting last node [40)

4
..)

c. Deleting the last node

UNIT-II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

Type Declarations
struct node

int data;

struct node *next;
}*head=NULL.:
typedef struct Node *position;
Routine to check whether the List is empty
/* Returns 1 if List is empty */int ISEmpty
(position head)

if (head->next == NULL)return();

Routine to check whether thé current position is last
[* Returns 1 if P iS'the lastposition in"C#*/int IsCast (position p)

{
if (p->Next== NULL)return(1);
}
Find Routine
/* Returns the position of X in L; NULL if not found */Position Find (int
X)
{
position p;
P = head->next;
while((p!= NULL) && (p->data !'= X))p
= p->next;return P;
}
B—» 10 —— 20 —— 30 |f
L P, X
Find(20)
UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDFE Study Materials

Singly
linked list
FindPrevious Routine _
/* Returns the previous position of X in L */
implementation
UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

: Fre
Inserting a node to the front oﬁ

binils.com - Anna University, Polytechnic & Schools
SPtDF Study Materials

|
LB_, 30 LB—X—» 30

| ¥ 0
10 - 10 - :
Newnode Newnode
Before insertion After insertion

Insertion at the beginning

Insert at Beginning

void Insert_beg (int X)

{

UNIT-II

position NewNode;
NewNode = malloc (sizeof(struct Node))

EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Matestim|oLLEGE OF ENGINEERING AND TECHNOLOGY
if(NewNode != NULL)

{
NewNode->data =
X; NewNode->next
= L->Next; head-

} >next = NewNode;

B—» 10 [s—| 30 B—» 10 [eP-| 30
A

L L P ____. ! A
; 1

1

20 e > 20 e}
Newnode Newnode

Before insertion After insertion

Insertion in the middle
b.Inserting a node in the middle
Insertion at Middle
[* Insert element X after
position P */void
Insert_mid (int X, position
P)

{ .
position NewNode;
NewNode = malloc
(sizeof(struct Node));
if(NeWNode !'= NULL)
{
NewNode->data =
X; NewNode->next
= P->next; P->next
= NewNode;
}
}
c.Inserting a node to the end of listinsert at Last
void Insert_last (int X)

position NewNode,P;
NewNode = malloc
(sizeof(struct Node));
if(NewNode '= NULL)
{
while(P-
>next!=NULL)
P = P->next;
NewNode-

binitstAXnna University App on Play Store

binils.com - Anna University, Polytechnic & Schools

Free PDF Study [Vl & teotm| SOLLEGE OF ENGINEERING AND TECHNOLOGY
NewNode->next

= NULL; P->next
= NewNode;

UNIT-IIIEC8393-FUNDAMENTALS OF DATASTRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

}

> Deletion

10 - o> 20 - = 30 - > 40

-
!

Before deleting first node (10)

- T

o - 10 o> 20 |et—| 30 |ef— 40
L

After deleting first node (10)

Deleting a node to the front of list

Delete at Beginning

void Delete_beg ()

{
position
TempCell;
if(head-
>next!=NULL)
{

TempCell = head->next;
head->next =
TempCell=>next;
free(TempCell);

}

Deleting the middle node

B—» 10 - 20 - 30 - 40

L

Before deleting middle node (30)

B—»w o> 20 |ePD| 30 |e

L P Temp
After deleting middle node (30)

40

Xy

Delete at Middle Routine
void Delete (int X)
{
position P,
TempCell; P =
FindPrevious(
X); TempCell =
P->next;
P->Next =
TempCell ->Next;
free(TempCell);

}

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

B—— 10 o —>| 20 ol—| 30 . 40
L
Before deleting last node (40)
_——=>NULL
B—— 10 |of—| 20 [eof—| 30 |eiX>| 40
L
After deleting last node (40)

Deleting the last node
Delete at Last
void Delete_last ()

{

position

TempCell,P;
while(P->next-
>nextI=NULL

EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

™ binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

P = P->next;
TempCell = P->next; P-
>next = NULL;
free(TempCell);
}
CIRCULAR LINKED LIST
> Why circular linked list? Or advantages over singly linked list

>

With a singly linked list structure, given a pointer to a node anywhere in the list, we
can access all the nodes that follow but none of the nodes that precede it. We must
always have a pointer to the beginning of the list to be ableto access all the nodes in
the list.In a circular linked list, every node is accessible from a given node.

In deletion of singly linked list, to find the predecessor requires that a search be
carried out by chaining through the nodes from the first node of the list. But this
requirement does not exist for a circular list, since the search for the predecessor of
node X can be initiated from X itself.

Concatenation and splitting becomes more efficient.

Disadvantages

The circular linked list requires extra care to detect the end of the list. It may be
possible to get into aniinfinite loop: So it needs a header node to indicate the start or
end of the list.

Definition

A circular linked list is one, which has no beginning and no end. Circular linked list is
a list in which every node has a successor; the "last" element is succeeded by the
"first" element. We can start at any node in the list and traverse the entire list.

.

\
- A [B L C L D -_—#/ll

DOUBLY LINKED LIST

> Definiti

on
Node

= Doubly linked list is a linked list in which each <—® Back Info Next o>
node is linked to both its successor and its
predecessor. In a doubly linked list, the nodes Location
are linked in both directions. Each node of a
doubly linkedlist contains three parts:

UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools

Free PDF Study Materials
o Info: the data stored in the node

o Next/FLink: the pointer to the following node.
o Back/BLink: the pointer to the preceding node

-—1—% ~—1— B
H A B C
-—] -t

Why doubly linked list?

In singly linked list, it is difficult to perform traversing the list in reverse.

To delete a node, we need find its predecessor of that node.

Advantages

Traversing in reverse is possible.

Deletion operation is easier, since it has pointers to its predecessor and successor.

Y

| | n V | |

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials
Finding the predecessor and successor of a node is easier.

> Disadvantages

A doubly linked list needs more operations while inserting or deleting and it needs
more space (to store the extra pointer). There are more pointers to keep track of in a
doubly linked list. For example, to insert a new node after a given node, in a singly
linked list, we need to change two pointers. The same operation on a doubly linked list
requiresfour pointer changes.

DOUBLY CIRCULAR LINKED LIST
> Why doubly circular

linked list?

The aim of considering doubly circular linked list is to simplify the insertion and deletion
operations performed on doubly linked list.

> Definition
A circular linked list is one, which has no beginning and no end. A doubly circular linked
list is a doubly linked list with circular. structure in which the last node points to the first
node and the first node,points-tothe lastnode andthereare two'links between the nodes
of the linked list. In doubly circular linkedlist, the left link of the leftmost node contains
the address of the rightmost node "and the right [ink of the rightmost node contains the
address of the leftmost node.
All kinds of dynamic allocation related problems can be solved using linked lists.
Some of the applications are given below:

1. Polynomial ADT

Radix sort or Card sort
Multi-list
Stacks and Queues

El

Linked list implementation of stack

The limitations of array implementation can be overcome by dynamically
implementing (is also called linked list representation) the stack using pointers.In linked
list implementation, the stack does not need to be of fixed size. Insertions and deletions
are done more efficiently. Memory space also not wasted, because memory space is
allocated only when it is necessary (when an element is pushed) and is de-allocated
when the element is deleted.

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

A =

_h-.

B

.—

S/

Before push ['D")

!

Top

UNIT-1II

L]

EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDE Study Materials

A o = B > C 'S S D
After push ('D") T
Top

Push operation

A L E -l - C
After pop (] T
Top

Pop operation

Linked list implementation of Stack

void
push(int x);
void pop();
void display();

struct node

int data;
struct node *next;

} *top = NULL;
typedef truct node *
position; void push(int

X)
S
position p;
p =(struct node
*)malloc(sizeof(struct node));if (p
== NULL)
printf("Memory allocation
error \n"); else

{ i{f (top == NULL)

top =(struct node
*)malloc(sizeof(struct node)); p-
>data=x;

p->next =

NULL;top-

U;VIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

Iniis - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials
>next = p;

}

else

{

p->data=x;
p->next = top-
>next; top-
>next=p;

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

Linked list implementation of Linear Queue

A —f = B - C m

T Before enqueue ('D") T

F R
T After enqueue ['D") T
F

B -~ C — D m

T After dequeue [)

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDFE Study Materials

Linked list implementation of Linear Queue

struct node

{

int data;
struct node *next;
} *front = NULL,

*rear=NULL,; typedef
truct node * position;

void
enqueue(int
X);void
dequeue();
void display();
int item;

struct node

int data;
struct node *next;
} *top = NULL;

typedef truct node * position;,

void dequeue()

{

position p;
p = front->next;

if (front == NULL)
printf("Queue is

empty\n");

else

{
printf("\n Dequeued value :
%d\n", p->data); front-
>next=front->next->next;
free(p);

}

}
UNIT-NI EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

void display()
{
position p;
p = front->next;

if (front == NULL)
printf("Queue is
empty\n");
else
{
printf("Queue elements
are : \n");while (p !=
?lULL)

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

printf("%d ",p-
>data); p = p->next;
UNIT-NI EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

binils.com

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

binils.com

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials
APPLICATIONS OF STACKS

Recursion - Example, Factorial, Tower of Hanoi.

= Balancing Symbols, i.e., finding the unmatched/missing parenthesis. For example,
((A+B)/C and (A+B)/C). Compilersoften use stacks to perform syntax analysis of
language statements.

= Conversion of infix expression to postfix expression and decimal number to binary
number.

= Evaluation of postfix expression.

= Backtracking- For example, 8-Queens problem.

= Function calls - When a call is made to a new function, all the variables local to the
calling routine need to be saved by the system, since otherwise the new function will
overwrite the calling routine's variables. Similarly the current location in the routine
must be saved so that the new function knows where to go after it is done. For
example, the main program calls operation A, which in turn calls operation B, which
in turn calls operation C. When C finishes, control returns to B; when B finishes,
control returns to A; and so on. The call-and-return sequence is essentially a LIFO
sequence, so a stack is the perfect structure for tracking it.

Conversion of infix expression inte postfix expression

1. Scan the infix expression.framjleft to-right. Repeat Steps.3+to-6 for each element
of expression until the stack isempty:

2. If an operand is encountered, add'it to-the postfix expression.

3. If an opening parenthesis is encountered, push it onto the stack and do not

remove it until closing parenthesis isencountered.
4. If an operator 'op' is encountered, then

a. Repeatedly pop from stack and add each operator (on the top of stack), which
has the same precedence as, or higher precedence than 'op'.

b. Add 'op' to stack.

5. If a closing parenthesis is encountered, then

a. Repeatedly pop from stack and add to postfix expression (on the top of stack)
until anopening parenthesis isencountered.

b. Remove the opening parenthesis from the stack. [Do not add the opening
parenthesis to postfix expression.]

Operator
precedence
High
est
7 -
+, - Least

UNIT-11I EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

Infix Stack Postfix
A+B*C=-D/E
+B*C-D/E A
B*C-D/E A
+
*C=D/E AB

C-D/E . AB
+

-D/E - ABC

D/E ABC++

fNE ABC+-+D

E I; ABC»+D

! ABC.+DE

ABC-+DE/-

> Evaluation of postfix expression
1. Scan the postfix expression from left to right and repeat steps 2 & 3 for each element of
postfix expression.
2. If an operand is encountered, push it onto the stack.
3. If an operator 'op' is encountered,
a. Pop two elements from the stack, where A is the top element and B is the next top
element.
b. Evaluate B 'op' A.
c. Push the result onto stack.
4. The evaluated value is equal to the value at the top of the stack.
UNIT-III EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

Postfix Stack

246+*
46+*
2
6+*
4
2
&
*
- 4
2
:
10
2
20

Evaluation of postfix expression
> Balancing parenthesis

One common programming problem is unmatched parenthesis in an algebraic

expression. When parentheses areunmatched, two types of errors can occur:
o Opening parenthesis can be missing. For example, [A+B]/C}.
o Closing parenthesis can be missing. For example, {(A+B)/C.

The steps involved in checking the validity of an arithmetic expression

Scan the arithmetic expression from left to right.

If an opening parenthesis is encountered, push it onto the stack.
If a closing parenthesis is encountered, the stack is examined.

a. If the stack is empty, the closing parenthesis does not have an opening
parenthesis. So the expression isinvalid.

b. If the stack is not empty, pop from the stack and check whether the popped
item corresponds to the closing parenthesis. If a match occurs, continue.
Otherwise, the expression is invalid.

4. When the end of the expression is reached, the stack must be empty; otherwise
one or more opening parenthesisdoes not have corresponding closing parenthesis.
So the expression is invalid.

W N

UNIT-11I EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

Exp Stack
{(A+B}*C
(A+B)*C
{
{
+B)*C
) (
{
)*C (
{
*C
{
C
d
Finally, the stack is non-empty.
{ So the expression is invalid.

Balancing parenthesis

> Polynomial ADT

Polynomials are expressions containing terms with non-zero coefficients and exponents.
Linked list is generally used to represent and manipulate single variable polynomials.
Different operations, such as addition, subtraction, division and multiplication of
polynomials can be performed using linked list. In this representation, each term/element

is referred asa node. Each node contains three fields namely,
1. Coefficient - Holds value of the coefficient.of a term
2. Exponent - Holds exponent value of a terr| Coefficient | Exponent Link

3. Link - Holds the address of the next term.

For example,

UNIT-11I EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

> Multi-list

result

i

]

5x4 + 6X3 + 7
poly1
00 208 5
2x3 — 7% + 3x
poly2

]

.—»2

5x4 + 8x3— 7x2 + 3x + 7

1 S

]

—7 2I—>

]

]

Multi-list is the most complicated applications of linked list. It is
useful to maintain student registration in a university, employee
involvement in different prajects etc. The student registrationcontains two
reports. The first report lists the registration:for each class (C) and the
second report lists, by student, the classes'that each student (S) is
registered for. In this implementation, we have combined two lists into
one. All lists use a header and are circular. Circular list saves space but
doesso at the expense of time.

| 4

| &

51

52

¥

| 4

53

L 4

Multi-list implementation for student registration problem

UNIT-1II

EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

EVALUATION OF EXPRESSION IN C

Evaluation of Infix expressions

Infix notation is commonly used in arithmetic formula or statements; theoperators
are written in-between their operands.

Let’s assume the below

Operands are real numbers.
Permitted operators: +,-, *, /, ~(exponentiation)
Blanks are permitted in expression.

e Parenthesis are permitted
Example:

Order of precedence of operations—
1. N (Exponential)
2./
3. +-—
Note: brackets () are used to averride these rules.
Let’s define the Process: (will be used for the main algorithm)
1. Pop-outiiwe values from the,operand stack, let’s Say/it is A and B.
2. Pop-out operation from operator stack. let's say it is ‘+'.
3. Do A + B and push the result to the operand stack.
Algorithm:
Iterate through given expression, one character at a time

1. If the character is an operand, push it to the operand stack.

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

2. If the character is an operator,
1. If the operator stack is empty then push it to the operator stack.
2. Else If the operator stack is not empty,

. If the character’s precedence is greater than or equal to the
precedence of the stack top of the operator stack, then
push thecharacter to the operator stack.

. If the character’s precedence is less than the precedence of the
stacktop of the operator stack then do Process (as explained
above) until character’s precedence is less or stack is not
empty.

3. If the character is “(“, then push it onto the operator stack.
4. If the character is “)”, then do Process (as explained above) until
the corresponding “(” is encountered in operator stack.

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

Infix Expression: 2 * (5 *(3+6)) / 15-2

Operand Stack Operator Stack

2 Push it to operand stack 2
* Push it to operator stack 2 *
{ Push it to operator stack 2 (*
5 Push it to operand stack 52 (*
* Push it to operator stack 52 S
{ Push it to operator stack 52 (*(™
3 Push it to operand stack 352 (="
- Push it to operator stack 352 +(=("
B Push it to operand stack 6352 +(*(*
Pop 6 and 3 from operand stack 52 +(*(*
Pop + from operator stack 52 (=(* o
Do process until (is popped
) Do6+3=9 52 (=(*
from operator stack
Push 9 to operand stack 952 [
Pop (from operator stack 952 = *
Pop 9 and 5 from operand stack 2 = *
Pop * from operator stack 2 { * o
r— -1 Do process until (is popped
) Do 9*5 =45 2 {
: from operator stack
Push 45 into operand stack 45 2 (™
Pop (from operator stack 45 2 *
/! Push / into operator stack 45 2 / *| [hasequal precedence to *
15 Push 15 to operand stack 2
Pop 15 and 45 fror
Pop / from op 2r 2 has lower precedence than /,
Do 45 2 do the process
Push 3 into operand stack 32 *
- Pop 3 and 2 from operand stack *
Pop * from operator stack - has lower precedence than *,
Do3*2=6 do the process
Push 6 into operand stack 6
Push - into operator stack 6 -| - has equal precedence to +
2 Push 2 into operand stack 26 -
Pop 2 and 6 from the operand stack Given expression is iterated, do
Pop - from operator stack Process till operator stack is
Do 6-2 =4 not empty, It will give the final
Push 4 to operand stack 4 result
UNIT-II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

Evaluation of Postfix Expressions(Polish Postfix notation)

Postfix notation is a notation for writing arithmetic expressions in which
the operands appear before their operators. There are no precedence rules
to learn,and parentheses are never needed. Because of this simplicity.
Let’'s assume the below

e Operands are real numbers in single digits. (Read: Evaluation of
PostfixExpressions for any Number)
e Permitted operators: +,-, *, /, ~(exponentiation)
e Blanks are NOT permitted in expression.
e Parenthesis are permitted
Example:
Postfix: 54+

Output: 9
Explanation: Infix expression 5+ 4 which resolves to 9

Postfix: 2536+%%5/2-
Output: 16

Explanation: Infix expression of above postfix is: 2 * (5 *(3+6))/5-2 which
resolves to 16

Approach: Use Stack
Algorithm:
Iterate through given expression, one character at a time

1. If the character is an operand, push it to the operand stack.
2. If the character is an operator,

1. pop an operand from the stack, say it's s1.

2. pop an operand from the stack, say it's s2.

3. perform (s2 operator s1) and push it to stack.

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

https://algorithms.tutorialhorizon.com/evaluation-of-postfix-expressions-polish-postfix-notation-set-2/
https://algorithms.tutorialhorizon.com/evaluation-of-postfix-expressions-polish-postfix-notation-set-2/
https://algorithms.tutorialhorizon.com/evaluation-of-postfix-expressions-polish-postfix-notation-set-2/
https://algorithms.tutorialhorizon.com/stack-java-class-explained/

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

3. Once the expression iteration is completed, The stack will have
the finalresult. Pop from the stack and return the result.
Please see the walkthrough of an example below for more understanding.

Postfix Expression : 2536+**5/2-

2 Push 2 to stack [2]
5 Push 5 to stack [2, 5]
3 Push 3 to stack [2,5, 3]
6 Push 6 to stack [2,5, 3, 6]
Pop 6 from stack [2,5, 3]
+ Pop 3 from stack [2, 5]
Push 3+6 =9 to stack [2,5,9]
Pop 9 from stack [2, 5]
* Pop 5 from stack [2]
Push 5*9=45 to stack [2, 45]
Pop 45 from stack [2]
* Pop 2 from stack [
Push 2*45=90 to,stack [90]
5 Push'5 to stack [90, 5]
Pop 5 from stack [90]
/ Pop 90 from stack [
Push 90/5=18 to stack [18]
2 Push 2 to stack [18, 2]
Pop 2 from stack [18]
- Pop 18 from stack 1
Push 18-2=16 to stack [16]
Result : 16
UNIT-II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

Evaluation of Postfix Expressions(Polish Postfix notation)

Earlier we had discussed how to evaluate postfix expressions where
operands areof single-digit. In this article, we will discuss how to evaluate
postfix expressions for any number (not necessarily single digit.)

Postfix notation is a notation for writing arithmetic expressions in which
theoperands appear before their operators.

Let’'s assume the below

Operands are real numbers (could be multiple digits).
Permitted operators: +,-, *, /, ~(exponentiation)
Blanks are used as a separator in expression.

e Parenthesis are permitted
Example:
Postfix: 500 40+

Output: 540

Explanation: Infix expression,of,above postfix is: 500 + 40 which resolves
to540

Postfix: 20 5086 +™* *300 /2 -
Output: 28

Explanation: Infix expression of above postfix is: 20 * (50 *(3+6))/300-2
which resolves to 28

Approach: Use Stack
Algorithm:
Iterate through given expression, one character at a time

1. If the character is a digit, initialize number = 0
. while the next character is digit

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

https://algorithms.tutorialhorizon.com/evaluation-of-postfix-expressions-polish-postfix-notation-set-1/
https://algorithms.tutorialhorizon.com/evaluation-of-postfix-expressions-polish-postfix-notation-set-1/
https://algorithms.tutorialhorizon.com/evaluation-of-postfix-expressions-polish-postfix-notation-set-1/
https://algorithms.tutorialhorizon.com/stack-java-class-explained/

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

1. do number = number*10 + currentDigit
« push number to the stack.
2. If the character is an operator,
« pop operand from the stack, say it's s1.
« pop operand from the stack, say it's s2.
. perform (s2 operator s1) and push it to stack.

3. Once the expression iteration is completed, The stack will have
the finalresult. pop from the stack and return the result.
Please see the walkthrough of an example below for more understanding.

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools

Evaluation of Prefix Expressions(Polish Notation)

Free PDF Study Materials

Earlier we had discussed how to evaluate prefix expression where

Postfix Expression:205036+**300/2-
Token Action Stack
2 Push 20 to stack [20]
5 Push 50 to stack [20, 50]
3 Push 3 to stack [20, 50, 3]
6 Push 6 to stack (20, 50, 3, 6]
Pop 6 from stack [20, 50, 3]
+ Pop 3 from stack [20, 50]
Push 346 =9 to stack [20, 50, 9]
Pop 9 from stack [20, 50]
* Pop 50 from stack [20]
Push 50%8=450 to stack [20, 450]
Pop 450 frem stack [20]
* Pop 20 froms$tack [
Push 20*450=9000 to stack [9000]
300 Push 300 to stack (9000, 300]
Pop 300 from stack [9000]
/ Pop 9000 from stack 1]
Push 9000/300=30 to stack [30]
2 Push 2 to stack [30, 2]
Pop 2 from stack [30]
Pop 30 from stack [
Push 30-2=28 to stack [28]
Result : 28

operands are ofsingle-digit. Here we will discuss how to evaluate prefix

expression for any number (not necessarily single digit.)

UNIT-1II

EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

https://algorithms.tutorialhorizon.com/evaluation-of-prefix-expressions-polish-notation-set-1/
https://algorithms.tutorialhorizon.com/evaluation-of-prefix-expressions-polish-notation-set-1/
https://algorithms.tutorialhorizon.com/evaluation-of-prefix-expressions-polish-notation-set-1/
https://algorithms.tutorialhorizon.com/evaluation-of-prefix-expressions-polish-notation-set-1/

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

Prefix notation is a notation for writing arithmetic expressions in which the
operands appear after their operators. Let's assume the below
e Operands are real numbers (could be multiple digits).
e Permitted operators: +,-, *, /, (exponentiation)
e Blanks are used as a separator in expression.
e Parenthesis are permitted
Example:
Postfix: + 500 40

Output: 540

Explanation: Infix expression of the above prefix is: 500 + 40 which
resolvesto 540

Postfix: - /*20* 50 + 3 6 300 2
Output: 28

Explanation: Infix expressiomofiabove prefix is: 20 * (50 *(3+6))/300-2 which
resolves to 28

Approach: Use"Stack
Algorithm:
Reverse the given expression and Iterate through it, one character at a time

1. If the character is a digit, initialize String temp;

. Wwhile the next character is not a digit
. do temp =temp + currentDigit

. convert Reverse temp into Number.
« push Number to the stack.

2. If the character is an operator,
. pop the operand from the stack, say it's s1.
. pop the operand from the stack, say it's s2.
. perform (sl operator s2) and push it to stack.

3. Once the expression iteration is completed, The stack will have
the finalresult. Pop from the stack and return the result.

Please see the walkthrough of an example below for more understanding.

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

https://algorithms.tutorialhorizon.com/stack-java-class-explained/

binils.com - Anna University, Polytechnic & Schools

Free PDF Study Materials

Prefix Expression : -/ *20*50+ 363002
Reversed Prefix Expression: 200363 +05*02* /-
Token Action Stack
2 Reverse 2, Push 2 to stack [2]
003 Reverse 003, Push 300 to stack [2, 300]
6 Reverse 6, Push b6 to stack [2, 300, 6]
3 Reverse 3, Push 3 to stack [2, 300, 6, 3]
Pop 3 from stack [2, 300, 6]
+ Pop 6 fram stack [2, 300]
Push 3+6 =9 to stack [2, 300, 9]
05 Reverse 05, Push 50 to stack [2, 300, 9, 50]
Pop 50 from stack [2, 300, 9]
. Pop 9 from stack [2, 300]
Push 50*9=450 to stack [2, 300, 450]
02 Reverse 02, Push 20 to stack [2, 300, 450, 20]
Pop 20 from stack [2, 300, 450]
» Pap 450 from stack [2, 300]
Push 20*450=9000 to stack [2, 300, 5000]
Pop 9000 from stack [2, 300]
/ Pop 300 from stack [2]
Push 9000/300=30 to stack [2, 30]
Pop 30 from stack [2]
- Pop 2 from stack [l
Push 30-2=28 to stack [28]
Result : 28

UNIT-1II

EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

POLYNOMIAL ADDITION

Given two polynomial numbers represented by a linked list. Write a
function that add these lists means add the coefficients who have same
variable powers.Example:

Input:

1st number = 5x2 + 4x1 +
2x02nd number = -5x1 -

5x0
Output:
5x2-1x1-3x0
Input:
1st number = 5x3 + 4x2 +
2x02nd number = 5x”1 -
5x"0
Output:
5x3 # 4x2 +5x1 - 3x0

tst1] s | 2 —>| 2| 1 515 | o | > o
+
1

—>| s | o —> NULL

List 2 5

Resultant List 0
1

5 2 % 9

% 7]o0 — NULL

NODE

STRUCTURE | Coefficient | Power Address of

next node

Polynomial Addition

Type Declaration:struct node
{int coeff;int pow;

struct node *next;
J*poly1=NULL,*poly2=NULL,*poly=NULL;

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

void polyadd(struct node *poly1,struct node *poly2,struct node *poly)

{
while((polyl->next I=NULL)&& (poly2->next!=NULL))

{
if(polyl->pow > poly2->pow)
{

pol->pow=poly1-

>pow; pol-

>coeff=poly1l-

>coff;

poll=polyl-

>next;

}
else if(?oly1—>pow<po|y2—>pow)

poly-
>pow=poly2>po

w; pol-
>coeff=poly2-
>coeff;poly2=poly2-
>next;

else

{
poly-
>pow=polyl-
>pow; poly-
>coeff=poly1-
>coeff+poly2-
>coeff;
polyl=po
lyl-
>next;
poly2=poly2->next;

poly->next=(struct node
*)malloc(sizeof(struct
node)); poly=poly-
>next;
poly->next=NULL,;

}

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

while(poly1l->next I=NULL)
{

poly->pow=polyl-

>pow; poly-

>coeff=poly1-

>coeff;

polyl=polyl-

>next;

\}/vhile(poly2—>next!=NULL)
{poly->pow=poly2-

>pow; poly-
>coeff=poly2-

>coeff;

poly2=poly2-

>next;

}

}

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

Addition of polynomials can be solved in two methods.

(i) By arranging the like terms together and then add.
For example:

1. Add: 5x + 3y, 4x —4y + zand -3x + 5y + 2z

First we need to write in the addition

form.Thus, the required addition

=(5x +3y)+ (4x -4y +z) + (-3x + 5y + 22)
=5X+3y+4x—-4y+2z-3x+5y+2z

Now we need to arrange all the.like terms and then all the like terms are added.
=5X+4x-3Xx+3y -4y +5y+z+2z2

=6X + 4y + 3z

2. Add: 3a% + ab — b?, -a? + 2ab + 3b? and 3a% - 10ab + 4b?
First we need to write in the addition form.

Thus, the required addition

= (3a2 + ab — b2) + (-a2 + 2ab + 3b2) + (3a2 — 10ab + 4b2)
=3a2 +ab—b2 - a2 + 2ab + 3b2 + 332 — 10ab +

4b2Here, we need to arrange the like terms and then

add

=3a2 - a2 +3a2 + ab + 2ab — 10ab — b2 + 3b2 + 4b2
UNIT-HI EC8393-FUNDAMENTALS OF DATA STRUCTURESIN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

= 5a2 — 7ab + 6b2

(i) By arranging expressions in lines so that the like terms with their
signs are one below the other i.e. like terms are in same vertical column
and then add the differentgroups of like terms.

For example:

1. Add: 7a + 5b, 6a—6b + 3c and -5a + 7b + 4c

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

binils.com - Anna University, Polytechnic & Schools
Free PDF Study Materials

First we will arrange the three expressions one
below the other, placing thelike terms in the same
column.

Now the like terms are added by adding their coefficients with their
signs.

Therefore, adding 7a + 5b, 6a — 6b + 3c and -5a + 7b + 4c is 8a + 6b + 7c.

2. Add: 3x3=5x2+ 8x + 10, 15x° — 6x — 23, 9x? — 4x + 15 and -8x3 +
2x2% = 7X.

First we will arrange the like terms in the
vertical column and thenthe like terms are
added by adding their coefficients with their
signs.

Therefore, adding 3x3 — 5x2 + 8x.+ 10, 15%3 = 6x — 23, 9%2 — 4x + 15
and -8x3 + 2x2 — 7x is 10x3 + 6x2 — 9x + 2.

Thus, we have learnt how to solve addition of polynomials in both the methods.

UNIT-1II EC8393-FUNDAMENTALS OF DATA STRUCTURES IN C

binils - Anna University App on Play Store

