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13. CLOSEST-PAIR AND CONVEX-HULL PROBLEMS. 
 

The two-dimensional versions of the closest-pair problem and the convex-hull problem 

problems can be solved by brute-force algorithms in θ(n2) and O(n3) time, respectively. The 

divide-and-conquer technique provides sophisticated and asymptotically more efficient 

algorithms to solve these problems. 

The Closest-Pair Problem 

Let P be a set of n >1 points in the Cartesian plane. The points are ordered in non- 

decreasing order of their x coordinate. It will also be convenient to have the points sorted (by 

merge sort) in a separate list in non-decreasing order of the y coordinate and denote such a list 

byQ.If 2 ≤ n ≤ 3, the problem can be solved by the obvious brute-force algorithm. If n >3, we 
 

can divide the points into two subsets Pl and Pr of ]n/2] and𝗁n/2]points, respectively, by 

drawing a vertical line through the median m of their x coordinates so that ]n/2] points lie the 

left of or on the line itself, and ]n/2]points lie to the right of or on the line. Then we can solve 

the closest- pair problem recursively for subsets Pland Pr .Let dland drbe the smallest distances 

between pairs of points in Pl and Pr, respectively, and let d = min{dl,dr}. 

FIGURE 2.13 (a) Idea of the divide-and-conquer algorithm for the closest-pair problem. binils.com
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(a) Rectangle that may contain points closer than dmin to point p. 

 

 
Note that d is not necessarily the smallest distance between all the point pairs 

because points of a closer pair can lie on the opposite sides of the separating line. 

Therefore, as a step combining the solutions to the smaller sub problems, we need to 

examine such points. Obviously, we can limit our attention to the points inside the 

symmetric vertical strip of width 2d around the separating line, since the distance between 

any other pair of points is at least d (Figure2.13a). 

 
 

Let S be the list of points inside the strip of width 2d around the separating line, 

obtained from Q and hence ordered in non-decreasing order of their y coordinate. We will 

scan this list, updating the information about dmin, the minimum distance seen so far, if 

we encounter a closer pair of points. Initially, dmin = d, and subsequently dmin ≤ d. Let p(x, 

y) be a point on this list. 

For a point p (x, y) to have a chance to be closer to p than dmin, the point must 

follow p on list S and the difference between their y coordinates must be less than dmin. 

Geometrically, this means that p must belong to the rectangle shown in Figure 

2.13b. The principal insight exploited by the algorithm is the observation that the rectangle 

can contain just a few such points, because the points in each half (left and right) of the 

rectangle must be at least distance d apart. 

It is easy to prove that the total number of such points in the rectangle, including 

p, does not exceed 8. A more careful analysis reduces this number to 6. Thus, the algorithm 

can consider no more than five next points following p on the list S, before moving up to 

the next point. 

Here is pseudocode of the algorithm. We follow the advice given in to avoid 

computing square roots inside the innermost loop of the algorithm. 
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return sqrt(dminsq) 

The algorithm spends linear time both for dividing the problem into two problems half 

the size and combining the obtained solutions. Therefore, assuming as usual that n is a power 

of 2, we have the following recurrence for the running time of the algorithm: 

T (n) = 2T (n/2) + f (n), 

 
where f (n) ∈ Θ(n). Applying the Master Theorem (with a= 2, b = 2, and d = 1), we get 

T(n)∈Θ (nlogn).Thenecessitytopresortinputpointsdoesnotchangetheoverallefficiencyclass if 

sorting is done by a O(nlogn)algorithm such as merge sort. In fact, this is the best efficiency 
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12. MULTIPLICATION OF LARGE INTEGERS 

 

 

Some applications like modern cryptography require manipulation of integers that 

are over 100 decimal digits long. Since such integers are too long to fit in a single word of a 

modern computer, they require special treatment. 

In the conventional pen-and-pencil algorithm for multiplying two n-digit integers, each 

of the n digits of the first number is multiplied by each of the n digits of the second number 

for the total of n2 digit multiplications. 

The divide-and-conquer method does the above multiplication in less than n2 digit 

multiplications. 

 

 
Example: 23 ∗ 14 = (2 · 101 + 3 · 100) ∗ (1 · 101 + 4 ·100) 

 

= (2 ∗ 1)102 + (2 ∗ 4 + 3 ∗ 1)101 + (3 ∗ 4)100 
 

= 2· 102 + 11· 101 + 12·100 
 

= 3· 102 + 2· 101 + 2·100 
 

= 322 
 

The term (2∗1+3∗4)computed as2∗4+3∗1=(2+3)∗(1+4)–(2∗1)−(3∗4).Here 

(2∗1)and(3∗4)arealreadycomputedused.Soonlyonemultiplicationonlywehavetodo. 

For any pair of two-digit numbers a = a1a0 and b = b1b0, their product c can be computed 

by the formula c = a ∗ b = c2102 + c1101 + c0, 

where 
 

c2 = a1∗ b1 is the product of their first digits, 
 

c0 = a0∗ b0 is the product of their second digits, 

c1=(a1+a0)∗(b1+b0)−(c2+c0)is the product of the sum of the 

a’s digits and the sum of the b’s digits minus the sum of c2 andc0. 
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Now we apply this trick to multiplying two n-digit integers a and b where n is a positive 

even number. Let us divide both numbers in the middle to take advantage of the divide-and- 

conquer technique. 

We denote the first half of the a’s digits by a1 and the second half by a0; for b, the 

notations are b1 and b0, respectively. In these notations, a = a1a0 implies that a = a110n/2 + a0 

and b = b1b0 implies that b = b110n/2 + b0. Therefore, taking advantage of the same trick we 

used for two-digit numbers, we get 

C = a ∗ b = (a110n/2 + a0) * (b110n/2 + b0) 
 

= (a1 * b1)10n + (a1 * b0 + a0 * b1)10n/2 + (a0 * b0) 
 

= c210n + c110n/2 + c0, 
 

where 
 

c2 = a1* b1 is the product of their first halves, 

c0== a0* b0 is the product of their second halves, 

c1 = (a1 + a0) * (b1 + b0) − (c2 + c0) 

 
 

If n/2 is even, we can apply the same method for computing the products c2, c0, and c1. 

Thus, if n is a power of 2, we have a recursive algorithm for computing the product of two n- 

digit integers. In its pure form, the recursion is stopped when n becomes 1. It can also be 

stopped when we deem n small enough to multiply the numbers of that size directly. 

 

 
The multiplication of n-digit numbers requires three multiplications of n/2-digit numbers, 

the recurrence for the number of multiplications M(n) is M(n) = 3M(n/2) for n >1, M(1) 

=1.Solving it by backward substitutions for n = 2kyields 

 

 
M(2k) = 3M(2k−1) 

 
= 3[3M(2k−2)] 
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= 32M(2k−2) 

 
= . . . 

 
= 3iM(2k−i) 

 
= . . . 

 
= 3kM(2k−k) 

 
= 3k. 

 
(Since k = log2n) 

 

M(n) =
2  

3log
2 

n = nlog 3 ≈ n1.585. 

 
 

(On the last step, we took advantage of the following property of logbarithmsb: alogc= cloga.) 

Let A(n) be the number of digit additions and subtractions executed by the above 

algorithm in multiplying two n-digit decimal integers. Besides 3A(n/2) of these operations 

needed to compute the three products of n/2-digit numbers, the above formulas require 

five additions and one subtraction. Hence, we have the recurrence 

A(n) = 3· A(n/2) + cn for n >1, A(1) = 1. 

 
By using Master Theorem, we obtain A(n) ∈Θ(nlog

2
3), 

 

which means that the total number of additions and subtractions have the same 

asymptotic order of growth as the number of multiplications. 

 

 
Example: For instance: a = 2345, b = 6137, 

i.e., n=4. Then C = a * b = 

(23*102+45)*(61*102+37) 

C = a ∗ b = (a110n/2 + a0) * (b110n/2 + b0) 
 

= (a1 * b1)10n + (a1 * b0 + a0 * b1)10n/2 + (a0 * b0) 
 

= (23 * 61)104 + (23 * 37 + 45 * 61)102 + (45 * 37) 
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= 1403•104 + 3596•102 + 1665 
 

= 14391265 

 

 

 

 

STRASSEN’S MATRIX MULTIPLICATION 

 

 

The Strassen’s Matrix Multiplication find the product C of two 2 × 2 matrices A and B 
 

with just seven multiplications as opposed to the eight required by the brute-force algorithm. 

where 

 

 

 

Thus, to multiply two 2 × 2 matrices, Strassen’s algorithm makes 7 multiplications and 

18 additions/subtractions, whereas the brute-force algorithm requires 8 multiplications and 

4 additions. These numbers should not lead us to multiplying 2 × 2 matrices by Strassen’s 

algorithm. Its importance stems from its asymptotic superiority as matrix order n goes to 

infinity. 

 

 
Let A and B be two n × n matrices where n is a power of 2. (If n is not a power of 
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2, matrices can be padded with rows and columns of zeros.) We can divide A, B, and their 

product C into four n/2 × n/2 submatrices each as follows: 

 

 
 

 

 

 
 

The value C00 can be computed either as A00 * B00 + A01 * B10 or as M1 + M4 − M5 

+ M7 where M1, M4, M5, and M7 are found by Strassen’s formulas, with the numbers 

replaced by the corresponding submatrices. The seven products of n/2 × n/2 matrices are 

computed recursively by Strassen’s matrix multiplication algorithm. 

 

 
The asymptotic efficiency of Strassen’s matrix multiplication algorithm 

 

If M(n) is the number of multiplications made by Strassen’s algorithm in 

multiplying two n×n matrices, where n is a power of 2, The recurrence relation is M(n) = 

7M(n/2) for n > 1, M(1)=1. 

 

 
Since n = 2k, 

 
M(2k) = 7M(2k−1) 

 
= 7[7M(2k−2)] 

 
= 72M(2k−2) 

 
= . . . 

 
 
 

= 7iM(2k−i) 

 
= . . . 
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2 

 

= 7kM(2k−k) = 7kM(20) = 7kM(1)= 7k(1) (Since M(1)=1) 

 
M(2k) = 7k. 

 
Since k = log2n, 

M(n) = 7logn 

= nlog 7 2 

 

≈n2.807 

 

which is smaller than n3 required by the brute-force algorithm. 

 

 
Since this savings in the number of multiplications was achieved at the expense of 

making extra additions, we must check the number of additions A(n) made by Strassen’s 

algorithm. To multiply two matrices of order n>1, the algorithm needs to multiply seven 

matrices of order n/2 and make 18 additions/subtractions of matrices of size n/2; when n 

= 1, no additions are made since two numbers are simply multiplied. These observations 

yield the following recurrence relation: 

A(n) = 7A(n/2) + 18(n/2)2 for n >1, A(1) = 0. 

 
By closed-form solution to this recurrence and the Master Theorem, A(n) ∈ Θ(nlog7). which is 

2 

a 
 

better efficiency class than Θ(n3)of the brute-force method. 
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A[m+1]...A[n−1] 

 

11. BINARY SEARCH 
 

A binary search is efficient algorithm to find the position of a target (key) value 

within a sorted array. 

• The binary search algorithm begins by comparing the target value to the value 

of the middle element of the sorted array. If the target value is equal to the 

middle element's value, then the position is returned and the search is finished. 

• If the target value is less than the middle element's value, then the search 

continues on the lower half of the array. 

• if the target value is greater than the middle element's value, then the search 

continues on the upper half of the array. 

• This process continues, eliminating half of the elements, and comparing the 

target value to the value of the middle element of the remaining elements - until 

the target value is either found (position is returned). 

 

 
 

Binary search is a remarkably efficient algorithm for searching in a sorted array 

(Say A). It works by comparing a search key K with the array’s middle element A[m]. If 

they match, the algorithm stops; otherwise, the same operation is repeated recursively for 

the first half of the array if K <A[m], and for the second half if K>A[m]: 

 

 

 

 
Though binary search is clearly based on a recursive idea, it can be easily implemented as 

a non-recursive algorithm, too. Here is pseudocode of this non recursive version. 
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ALGORITHM Binary Search (A[0..n − 1], K) 

 
//Implements non recursive binary search 

 

//Input: An array A[0..n − 1] sorted in ascending order and a search key K 
 

//Output: An index of the array’s element that is equal to K/ or −1 if there is no 

such element 

l ← 0; r ← n − 1 

 
while l ≤ r do 

 
m ← 𝗁(l + r)/2] 

 

if K = A[m] return m 

 
else ifK <A[m] 

 
r ← m − 1 

 
else l ← m + 1 

 
return −1 

 
The standard way to analyze the efficiency of binary search is to count the number of times 

the search key is compared with an element of the array (three-way comparisons). One 

comparison of K with A[m], the algorithm can determine whether K is smaller, equal to, or 

larger than A[m]. 

As an example, let us apply binary search to searching for K = 70 in the array. The 

iterations of the algorithm are given in the following table: 

 

 
index 0 1 2 3 4 5 6 7 8 9 10 11 12 

 
value 

 

iteration1 l m r 

iteration2 
r
 

 

l m 

3 14 27 31 39 42 55 70 74 81 85 93 98 
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iteration 3 l,mr 

 
The worst-case inputs include all arrays that do not contain a given search key, as well 

as some successful searches. Since after one comparison the algorithm faces the same situation 

but for an array half the size, 

The number of key comparisons in the worst case Cworst(n) by recurrence relation. 
 

orct(n) = orct(𝗁n[) + 1 fo n > 1, orct(1) =1. 
2 

 orct (2k) = (k + 1) = log2 k + 1 [orct(n)=𝗁log2n]+1=]log2(n+1)

forn=2k 

• First, The worst-case time efficiency of binary search is in Θ(logn). 
 

• Second, the algorithm simply reduces the size of the remaining array by half on 

each iteration, the number of such iterations needed to reduce the initial size n to 

the final size 1 has to be about log2n. 

• Third, the logarithmic function grows so slowly that its values remain small even 

for very large values ofn. 

The average case slightly smaller than that in the worst case 
 

Cavg(n) ≈ log2n 
 

The average number of comparisons in a successful is 
 

Cavg(n) ≈ log2n − 1 
 

The average number of comparisons in an unsuccessful is 
 

Cavg(n) ≈ log2(n + 1). 
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10.QUICK SORT 

Quicksort is the other important sorting algorithm that is based on the divide-and- 

conquer approach. quicksort divides input elements according to their value. A partition is an 

arrangement of the array’s elements so that all the elements to the left of some element A[s] 

are less than or equal to A[s], and all the elements to the right of A[s] are greater than or equal 

to it: 

A[0]...A[s−1] A[s] A[s + 1] . . . A[n −1] 
 

allareSA[s] all areSA[s] 

 

Sort the two subarrays to the left and to the right of A[s] independently. No work 

required to combine the solutions to the sub problems. 

Here is pseudocode of quicksort: call Quicksort(A[0..n − 1]) where As a partition algorithm use 

the Hoare Partition. 
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FI GURE 2.11 

Example of quicksort operation of Array with pivots shown in bold. 
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FIGURE 2.12 Tree of recursive calls to Quicksort with input values l and r of subarray bounds 

and split position s of a partition obtained. 

The number of key comparisons in the best case satisfies the recurrence 

Cbest(n) = 2Cbest(n/2) + n for n>1, Cbest(1) =0. 

By Master Theorem, Cbest(n) ∈ Θ(n log2 n); solving it exactly for n = 2k yields Cbest(n) = n 

log2 n. The total number of key comparisons made will be equal to 

Cworst(n) = (n + 1) + n + . . . + 3 = ((n + 1)(n + 2))/2− 3 ∈Θ(n2). 
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9.MERGE SORT 

Merge sort is based on divide-and-conquer technique. It sorts a given array A[0..n−1] by 

dividing it into two halves A[0..𝗁n/2]−1] and A[𝗁n/2]..n−1], sorting each of them recursively, 

and then merging the two smaller sorted arrays into a single sorted one. 

 

ALGORITHM Merge sort (A[0..n − 1]) 

 
//Sorts array A [0..n − 1] by recursive merge sort 

//Input: An array A[0..n − 1] of orderable elements 

//Output: Array A[0..n − 1] sorted in non-decreasing order 

if n >1 

 

copy A[0..𝗁n/2] − 1] to B[0..𝗁n/2] − 1] 
 

copy A[𝗁n/2]..n − 1] to 

C[0..]n/2] − 1] Merge 

sort(B[0..𝗁n/2] − 1]) Merge 

sort(C[0.. ]n/2] − 1]) 

Merge (B, C, A) //see below 

 
The merging of two sorted arrays can be done as follows. Two pointers (array 

indices) are initialized to point to the first elements of the arrays being merged. 

The elements pointed to are compared, and the smaller of them is added to a new 

array being constructed; after that, the index of the smaller element is incremented to point 

to its immediate successor in the array it was copied from. 

This operation is repeated until one of the two given arrays is exhausted, and then 

the remaining elements of the other array are copied to the end of the new array. 
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The operation of the algorithm on the list 8, 3, 2, 9, 7, 1, 5, 4 is illustrated in Figure 2.10 
 

 
 

FIGURE 2.10 Example of merge sort operation 

 
The recurrence relation for the number of key comparisons C(n) is 

C(n) = 2C(n/2) + Cmerge(n) for n >1, C(1) = 0. 
 

In the worst case, Cmerge(n) = n − 1, and we have the recurrence 
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By Master Theorem, Cworst(n) ∈ Θ(n log n) 
 

the exact solution to the worst-case recurrence for n = 2k 

Cworst(n) = n log2n − n + 1. 
 

For large n, the number of comparisons made by this algorithm in the average case 

turns out to be about 0.25n less and hence is also in Θ (n log n). 

 
 

First, the algorithm can be implemented bottom up by merging pairs of the array’s 

elements, then merging the sorted pairs, and so on. This avoids the time and space overhead 

of using a stack to handle recursive calls. Second, we can divide a list to be sorted in more 

than two parts, sort each recursively, and then merge them together. This scheme, which is 

particularly useful for sorting files residing on secondary memory devices, is called multiway 

merge sort. 
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solution to subproblem 2 solution to subproblem 1 

problem of size n 

subproblem 1of size n/2 subproblem 2 of size n/2 

 

8. DIVIDE AND CONQUER METHODOLOGY 

 

 
A divide and conquer algorithm works by recursively breaking down a problem into 

two or more sub-problems of the same (or related) type (divide), until these become simple 

enough to be solved directly(conquer). 

Divide-and-conquer algorithms work according to the following general plan: 

1. A problem is divided into several sub problems of the same type, ideally of about equal 

size. 

2. The sub problems are solved (typically recursively, though sometimes a different 

algorithm is employed, especially when sub problems become small enough). 

3. If necessary, the solutions to the sub problems are combined to get a solution to 

the original problem. 

The divide-and-conquer technique as shown in Figure 2.9, which depicts the case of 

dividing a problem into two smaller sub problems, then the sub problems solved separately. 

Finally, solution to the original problem is done by combining the solutions of sub problems. 

 

 

 

 
FIGURE 2.9 Divide-and-conquer technique. 

 
Divide and conquer methodology can be easily applied on the following problem. 

1. Merge sort 

2. Quicksort 

solution to the original problem 
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3. Binary search 
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6. ASSIGNMENT PROBLEM 

 
There are n people who need to be assigned to execute n jobs, one person per job. (That is, 

each person is assigned to exactly one job and each job is assigned to exactly one person.) 

The cost that would accrue if the i th person is assigned to the jth job is a known quantity [i, j] 

for each pairi, j = 1, 2, . . . , n. The problem is to find an assignment with the minimum total cost. 

Assignment problem solved by exhaustive search is illustrated with an example as shown 

in figure 2.8. A small instance of this problem follows, with the table entries representing the 

assignment costs C[i, j]. 

 

 

 Job 1 Job 2 Job 3 Job 4 

Person 1 9 2 7 8 

Person 2 6 4 3 7 

Person 3 5 8 1 8 

Person 4 7 6 9 4 

FIGURE 2.7 Instance of an Assignment problem. 

 

 
The problem is to select one element in each row of the matrix so that all selected 

elements are in different columns and the total sum of the selected elements is the smallest 

possible. 

We can describe feasible solutions to the assignment problem as n-tuples 

<j1, . . ., jn> in which the ith component, i=1,...,n, indicates the column of the element 

selected in the ith row (i.e., the job number assigned to the ith person). For example, for the cost 

matrix above, <2, 3, 4, 1> indicatestheassignmentofPerson1toJob2, Person2 to Job3, 

Person3toJob4, and Person 4to Job 1. Similarly, we can have 4! = 4 · 3 · 2 · 1 = 24, i. e., 24 

permutations. 
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The requirements of the assignment problem imply that there is a one-to-one correspondence 

between feasible assignments and permutations of the first n integers. 

Therefore, the exhaustive-search approach to the assignment problem would require 

generating all the permutationsofintegers1, 2,,computing the total cost of each assignment by 

summing up the corresponding elements of the cost matrix, and finally selecting the one with the 

smallest sum. 

A few first iterations of applying this algorithm to the instance given above are given below. 
 

 

 
 

<1, 2, 3,4> cost = 9 + 4 + 1 + 4 =18  <2, 1, 3, 4> cost = 2 + 6 + 1 + 4 = 13 (Min) 

<1, 2, 4,3> cost = 9 + 4 + 8 + 9 =30 
 

<2, 1, 4,3> cost = 2 + 6 + 8 + 9 =25 

<1, 3, 2,4> 

<1, 3, 4,2> 

cost = 9 + 3 + 8 + 4 =24 

cost = 9 + 3 + 8 + 6 =26 

 
<2, 3, 1,4> 

<2, 3, 4,1> 

cost = 2 + 3 + 5 + 4 =14 

cost = 2 + 3 + 8 + 7 =20 

<1, 4, 2,3> 

<1, 4, 3, 2> 

cost = 9 + 7 + 8 + 9 =33 

cost = 9 + 7 + 1 + 6 = 23 

 
<2, 4, 1,3> 

<2, 4, 3, 1> 

cost = 2 + 7 + 5 + 9 =23 

cost = 2 + 7 + 1 + 7 = 17, etc 

FIGURE 2.8 First few iterations of solving a small instance of the assignment problem by 

exhaustive search. 

 
 

Since the number of permutations to be considered for the general case of the assignment 

problem is n!, exhaustive search is impractical for all but very small instances of the problem. 

Fortunately, there is a much more efficient algorithm for this problem called the Hungarian 

method. 
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5. KNAPSACK PROBLEM 

 
Given n items of known weights w1, w2, . . ., wn and values v1, v2, . . . , vn and a knapsack 

of capacity W, find the most valuable subset of the items that fit into the knapsack. 

 

 
Real time examples: 

• A Thief who wants to steal the most valuable loot that fits into his knapsack, 

• Atransportplanethathastodeliverthemostvaluablesetofitemstoaremotelocation 

without exceeding the plane’s capacity. 

 

The exhaustive-search approach to this problem leads to generating all the subsets of the set of n items 

given, computing the total weight of each subset in order to identify feasible subsets (i.e., the ones with 

the total weight not exceeding the knapsack capacity), and finding a subset of the largest value among 

them. 

 

 

FIGURE 2.5 Instance of the knapsack problem 

 

Subset Total weight Total value 

Φ 0 $0 

{1} 7 $42 

{2} 3 $12 
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{3} 4 $40 

{4} 5 $25 

{1, 2} 10 $54 

{1, 3} 11 not feasible 

{1, 4} 12 not feasible 

{2, 3} 7 $52 

{2, 4} 8 $37 

{3, 4} 9 $65 (Maximum-Optimum) 

{1, 2, 3} 14 not feasible 

{1, 2, 4} 15 not feasible 

{1, 3, 4} 16 not feasible 

{ 2, 3, 4} 12 not feasible 

{1, 2, 3, 4} 19 not feasible 

FIGURE 2.6 knapsack problem’s solution by exhaustive search. The information about the 

optimal selection is in bold. 

Time efficiency: As given in the example, the solution to the instance of Figure 2.5 is 

given in Figure 2.6. Since the number of subsets of an n-element set is 2n, the exhaustive 

search leads to a Ω(2n) algorithm, no matter how efficiently individual subsets are 

generated. 

 

 
Note: Exhaustive search of both the traveling salesman and knapsack problems leads to 

extremely inefficient algorithms on every input. In fact, these two problems are the best- 

known examples of NP-hard problems. No polynomial-time algorithm is known for any 

NP-hard problem. Moreover, most computer scientists believe that such algorithms do not 

exist. some sophisticated approaches like backtracking and branch-and-bound enable 

us to solve some instances but not all instances of these in less than exponential time. 

Alternatively, we can use one of many approximation algorithms. 
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4. TRAVELING SALESMAN PROBLEM 
 

The traveling salesman problem (TSP) is one of the combinatorial problems. The 

problem asks to find the shortest tour through a given set of n cities that visits each city 

exactly once before returning to the city where it started. 

 
The problem can be conveniently modeled by a weighted graph, with the graph’s 

vertices representing the cities and the edge weights specifying the distances. Then the 

problem can be stated as the problem of finding the shortest Hamiltonian circuit of the 

graph. (A Hamiltonian circuit is defined as a cycle that passes through all the vertices of 

the graph exactly once). 

A Hamiltonian circuit can also be defined as a sequence of n + 1 adjacent 

vertices vi0, vi1, . . . , vin−1, vi0, where the first vertex of the sequence is the same as the 

last one and all the other n − 1 vertices are distinct. All circuits start and end at one 

particular vertex. Figure 2.4 presents a small instance of the problem and its solution by 

this method. 
 

Tour Length 

a ---> b ---> c ---> d---> a I = 2 + 8 + 1 + 7 =18 

a ---> b ---> d ---> c---> a I = 2 + 3 + 1 + 5 = 11 optimal 

a ---> c ---> b ---> d---> a I = 5 + 8 + 3 + 7 =23 

a ---> c ---> d ---> b---> a I = 5 + 1 + 3 + 2 = 11 optimal 

a ---> d ---> b ---> c---> a I = 7 + 3 + 8 + 5 =23 

a ---> d ---> c ---> b---> a I = 7 + 1 + 8 + 2 =18 

 
FIGURE 2.4 Solution to a small instance of the traveling salesman problem by exhaustive search 

Time efficiency 

• Wecangetallthetoursbygeneratingallthepermutationsofn−1intermediatecities 

from a particular city. i.e. (n - 1)! 

• Consider two intermediate vertices, say and c, and then only permutations in which 

b precedes c. (This trick implicitly defines a tour’s direction.) 

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store



UNIT :II  

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM 

 

 

 

• An inspection of Figure 2.4 reveals three pairs of tours that differ only by their 

direction. Hence, we could cut the number of vertex permutations by half 

because cycle total lengths in both directions are same. 

The total number of permutations needed is still 1(n − 1)!,which makes the exhaustive- search 

approach impractical for large n. It is useful for very small values of n. 
2 
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3. EXHAUSTIVE SEARCH 

 
For discrete problems in which no efficient solution method is known, it might be 

necessary to test   each   possibility   sequentially   in   order   to   determine   if   it   is 

the solution. Such exhaustive examination of all possibilities is known as exhaustive 

search, complete search or direct search. 

Exhaustive search is simply a brute force approach to combinatorial problems 

(Minimization or maximization of optimization problems and constraint satisfaction 

problems). 

Reason to choose brute-force / exhaustive search approach as an important 

algorithm design strategy 

1. First, unlike some of the other strategies, brute force is applicable to a very 

wide variety of problems. In fact, it seems to be the only general approach 

for which it is more difficult to point out problems it cannot tackle. 

2. Second, for some important problems, e.g., sorting, searching, matrix 

multiplication, string matching the brute-force approach yields reasonable 

algorithms of at least some practical value with no limitation on instance 

size. 

3. Third, the expense of designing a more efficient algorithm may be 

unjustifiable if only a few instances of a problem need to be solved and a 

brute-force algorithm can solve those instances with acceptable speed. 

4. Fourth, even if too inefficient in general, a brute-force algorithm can still 

be useful for solving small-size instances of a problem. 

Exhaustive Search is applied to the important problems like 

• Traveling Salesman Problem 

• Knapsack Problem 

• Assignment Problem. 
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2. CLOSEST-PAIR AND CONVEX-HULLPROBLEMS 

 

We consider a straight forward approach (Brute Force) to two well-known 

problems dealing with a finite set of points in the plane. These problems are very useful 

in important applied areas like computational geometry and operations research. 

 
Closest-Pair Problem 

The closest-pair problem finds the two closest points in a set of n points. It is the 

simplest of a variety of problems in computational geometry that deals with proximity of 

points in the plane or higher-dimensional spaces. 

Consider the two-dimensional case of the closest-pair problem. The points are 

specified in a standard fashion by their (x, y) Cartesian coordinates and that the distance 

between two points pi(xi, yi) and pj(xj, yj) is the standard Euclidean distance. 
 

d(ei, ej) = √(xi − xj)2 + (yi − yj)2 

The following algorithm computes the distance between each pair of distinct points 

and finds a pair with the smallest distance. 

 

ALGORITHM: 

Brute Force Closest Pair(P) 

//Finds distance between two closest points in the plane by brute force 

//Input: A list P of n (n ≥ 2) points p1(x1, y1), . . ., pn(xn, yn) 

//Output: The distance between the closest pair of points 

d←∞ 

for i ←1 to n − 1 do 

for j ←i + 1 to n do 

d ←min(d, sqrt((xi− xj )2 + (yi− yj )2)) //sqrt is square root 

return d 

The basic operation of the algorithm will be squaring a number. The number of 

times it will be executed can be computed as follows: 

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store



UNIT-II  

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM 

 

 

 

 
 

Convex-Hull Problem 

Convex Set 

A set of points (finite or infinite) in the plane is called convex if for any two points p and q 

in the set, the entire line segment with the endpoints at p and q belongs to the set. 
 
 

 
 

  
 

 
 

 
(a) (b) 

FIGURE 2.1 (a) Convex sets. (b) Sets that are not convex. 

 
All the sets depicted in Figure 2.1 (a) are convex, and so are a straight line, a 

triangle, a rectangle, and, more generally, any convex polygon, a circle, and the entire 

plane. 

On the other hand, the sets depicted in Figure 2.1 (b), any finite set of two or more 

distinct points, the boundary of any convex polygon, and a circumference are examples of 

sets that are not convex. 
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Take a rubber band and stretch it to include all the nails, then let it snap into place. 

The convex hull is the area bounded by the snapped rubber band as shown in Figure 2.2 
 

FIGURE 2.2 Rubber-band interpretation of the convex hull. 

 

Convex hull 

The convex hull of a set S of points is the smallest convex set containing S. (The 

smallest convex hull of S must be a subset of any convex set containing S.) 

If S is convex, its convex hull is obviously S itself. If S is a set of two points, its 

convex hull is the line segment connecting these points. If S is a set of three points not on 

the same line, its convex hull is the triangle with the vertices at the three points given; if 

the three points do lie on the same line, the convex hull is the line segment with its 

endpoints at the two points that are farthest apart. For an example of the convex hull for a 

larger set, see Figure 2.3. 

 
 

THEOREM: 

The convex hull of any set S of n>2 points not all on the same line is a convex 

polygon with the vertices at some of the points of S. (If all the points do lie on the same 

line, the polygon degenerates to a line segment but still with the endpoints at two points 

of S.) 

 

 

 

 
P5 

 
 
 
 

P1 

FIGURE 2.3 The convex hull for this set of eight points is the convex polygon with 

vertices at p1, p5, p6, p7, and p3. 

 
The convex-hull problem is the problem of constructing the convex hull for a 

P3 
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given set S of n points. To solve it, we need to find the points that will serve as the vertices 

of the polygon in question. Mathematicians call the vertices of such a polygon “extreme 

points.” By definition, an extreme point of a convex set is a point of this set that is not a 

middle point of any line segment with endpoints in the set. For example, the extreme points 

of a triangle are its three vertices, the extreme points of a circle are all the points of its 

circumference, and the extreme points of the convex hull of the set of eight points in Figure 
2.3 are p1, p5, p6, p7, andp3. 

 
Application 

Extreme points have several special properties other points of a convex set do 

not have. One of them is exploited by the simplex method, this algorithm solves linear 

programming Problems. 

We are interested in extreme points because their identification solves the convex- 

hull problem. Actually, to solve this problem completely, we need to know a bit more than 

just which of n points of a given set are extreme points of the set’s convex hull. we need 

to know which pairs of points need to be connected to form the boundary of the convex 

hull. Note that this issue can also be addressed by listing the extreme points in a clockwise 

or a counter clock wise order. 

We can solve the convex-hull problem by brute-force manner. The convex hull 

problem is one with no obvious algorithmic solution. there is a simple but inefficient 

algorithm that is based on the following observation about line segments making up the 

boundary of a convex hull: a line segment connecting two points pi and pj of a set of n 

points is a part of the convex hull’s boundary if and only if all the other points of the set 

lie on the same side of the straight line through these two points. Repeating this test for 

every pair of points yields a list of line segments that make up the convex hull’s boundary. 

 
Facts 

A few elementary facts from analytical geometry are needed to implement the above 

algorithm. 

• First, the straight line through two points (x1, y1), (x2, y2) in the coordinate plane can 

be defined by the equation ax + by = c, where a = y2 − y1, b = x1 − x2, c = x1y2 −y1x2. 

• Second, such a line divides the plane into two half-planes: for all the points in one of 

them, ax + by > c, while for all the points in the other, ax + by < c. (For the points on 

the line itself, of course, ax + by = c.) Thus, to check whether certain points lie on the 

same side of the line, we can simply check whether the expression ax + by − c has the 

same sign for each of these points. 

Time efficiency of this algorithm. 

Time efficiency of this algorithm is in O(n3): for each of n (n − 1)/2 pairs of distinct 

points, we may need to find the sign of ax + by – c for each of the other n − 2 points. 

• 
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UNIT-II 

BRUTE FORCE AND DIVIDE-AND-CONQUER 

Brute Force – Computing an – String Matching – Closest-Pair and Convex-Hull 

Problems – Exhaustive Search – Travelling Salesman Problem – Knapsack Problem 

– Assignment problem. Divide and Conquer Methodology – Binary Search – Merge 

sort – Quick sort – Heap Sort – Multiplication of Large Integers – Closest-Pair and 

Convex – Hull Problems. 
 

 

1. BRUTE FORCE 

Brute force is a straightforward approach to solving a problem, usually directly 

based on the problem statement and definitions of the concepts involved. 

Selection Sort, Bubble Sort, Sequential Search, String Matching, Depth- 

First Search and Breadth-First Search, Closest-Pair and Convex-Hull 

Problems can be solved by Brute Force. 

COMPUTING an: 

1. Computing an : a * a * a * … * a ( n times) 
2. Computing n! : The n! can be computed as n*(n-1)* …*3*2*1 
3. Multiplication of two matrices: C=A 
4. Searching a key from list of elements (Sequential search) 

Advantages: 
1. Brute force is applicable to a very wide variety of problems. 
2. It is very useful for solving small size instances of a problem, even 

though it is inefficient. 
3. The brute-force approach yields reasonable algorithms of at least 

some practical value with no limitation on instance size for 
sorting, searching, and string matching. 

Selection Sort 

• First scan the entire given list to find its smallest element and 

exchange it with the first element, putting the smallest element in its 

final position in the sorted list. 

• Then scan the list, starting with the second element, to find the 

smallest among the last n − 1 elements and exchange it with the 

second element, putting the second smallest element in its final 

position in the sorted list. 
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• Generally, on the I th pass through the list, which we number from 0 

to n − 2, the algorithm searches for the smallest item among thelast n 

−i elements and swaps it with Ai: A0≤A1≤...≤Ai– 

1|Ai,...,Amin,...,An–1 

• in their final positions | the last n – I elements 

After n − 1 passes, the list is sorted 
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arrays, it is the same as the number of key comparisons. 

worst(n) ∈ Θ (n2) 
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