
UNIT-II

CSE :II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

13. CLOSEST-PAIR AND CONVEX-HULL PROBLEMS.

The two-dimensional versions of the closest-pair problem and the convex-hull problem

problems can be solved by brute-force algorithms in θ(n2) and O(n3) time, respectively. The

divide-and-conquer technique provides sophisticated and asymptotically more efficient

algorithms to solve these problems.

The Closest-Pair Problem

Let P be a set of n >1 points in the Cartesian plane. The points are ordered in non-

decreasing order of their x coordinate. It will also be convenient to have the points sorted (by

merge sort) in a separate list in non-decreasing order of the y coordinate and denote such a list

byQ.If 2 ≤ n ≤ 3, the problem can be solved by the obvious brute-force algorithm. If n >3, we

can divide the points into two subsets Pl and Pr of]n/2] and𝗁n/2]points, respectively, by

drawing a vertical line through the median m of their x coordinates so that]n/2] points lie the

left of or on the line itself, and]n/2]points lie to the right of or on the line. Then we can solve

the closest- pair problem recursively for subsets Pland Pr .Let dland drbe the smallest distances

between pairs of points in Pl and Pr, respectively, and let d = min{dl,dr}.

FIGURE 2.13 (a) Idea of the divide-and-conquer algorithm for the closest-pair problem. binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE :II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

(a) Rectangle that may contain points closer than dmin to point p.

Note that d is not necessarily the smallest distance between all the point pairs

because points of a closer pair can lie on the opposite sides of the separating line.

Therefore, as a step combining the solutions to the smaller sub problems, we need to

examine such points. Obviously, we can limit our attention to the points inside the

symmetric vertical strip of width 2d around the separating line, since the distance between

any other pair of points is at least d (Figure2.13a).

Let S be the list of points inside the strip of width 2d around the separating line,

obtained from Q and hence ordered in non-decreasing order of their y coordinate. We will

scan this list, updating the information about dmin, the minimum distance seen so far, if

we encounter a closer pair of points. Initially, dmin = d, and subsequently dmin ≤ d. Let p(x,

y) be a point on this list.

For a point p (x, y) to have a chance to be closer to p than dmin, the point must

follow p on list S and the difference between their y coordinates must be less than dmin.

Geometrically, this means that p must belong to the rectangle shown in Figure

2.13b. The principal insight exploited by the algorithm is the observation that the rectangle

can contain just a few such points, because the points in each half (left and right) of the

rectangle must be at least distance d apart.

It is easy to prove that the total number of such points in the rectangle, including

p, does not exceed 8. A more careful analysis reduces this number to 6. Thus, the algorithm

can consider no more than five next points following p on the list S, before moving up to

the next point.

Here is pseudocode of the algorithm. We follow the advice given in to avoid

computing square roots inside the innermost loop of the algorithm.

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE :II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

.

return sqrt(dminsq)

The algorithm spends linear time both for dividing the problem into two problems half

the size and combining the obtained solutions. Therefore, assuming as usual that n is a power

of 2, we have the following recurrence for the running time of the algorithm:

T (n) = 2T (n/2) + f (n),

where f (n) ∈ Θ(n). Applying the Master Theorem (with a= 2, b = 2, and d = 1), we get

T(n)∈Θ (nlogn).Thenecessitytopresortinputpointsdoesnotchangetheoverallefficiencyclass if

sorting is done by a O(nlogn)algorithm such as merge sort. In fact, this is the best efficiency

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

12. MULTIPLICATION OF LARGE INTEGERS

Some applications like modern cryptography require manipulation of integers that

are over 100 decimal digits long. Since such integers are too long to fit in a single word of a

modern computer, they require special treatment.

In the conventional pen-and-pencil algorithm for multiplying two n-digit integers, each

of the n digits of the first number is multiplied by each of the n digits of the second number

for the total of n2 digit multiplications.

The divide-and-conquer method does the above multiplication in less than n2 digit

multiplications.

Example: 23 ∗ 14 = (2 · 101 + 3 · 100) ∗ (1 · 101 + 4 ·100)

= (2 ∗ 1)102 + (2 ∗ 4 + 3 ∗ 1)101 + (3 ∗ 4)100

= 2· 102 + 11· 101 + 12·100

= 3· 102 + 2· 101 + 2·100

= 322

The term (2∗1+3∗4)computed as2∗4+3∗1=(2+3)∗(1+4)–(2∗1)−(3∗4).Here

(2∗1)and(3∗4)arealreadycomputedused.Soonlyonemultiplicationonlywehavetodo.

For any pair of two-digit numbers a = a1a0 and b = b1b0, their product c can be computed

by the formula c = a ∗ b = c2102 + c1101 + c0,

where

c2 = a1∗ b1 is the product of their first digits,

c0 = a0∗ b0 is the product of their second digits,

c1=(a1+a0)∗(b1+b0)−(c2+c0)is the product of the sum of the

a’s digits and the sum of the b’s digits minus the sum of c2 andc0.

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

Now we apply this trick to multiplying two n-digit integers a and b where n is a positive

even number. Let us divide both numbers in the middle to take advantage of the divide-and-

conquer technique.

We denote the first half of the a’s digits by a1 and the second half by a0; for b, the

notations are b1 and b0, respectively. In these notations, a = a1a0 implies that a = a110n/2 + a0

and b = b1b0 implies that b = b110n/2 + b0. Therefore, taking advantage of the same trick we

used for two-digit numbers, we get

C = a ∗ b = (a110n/2 + a0) * (b110n/2 + b0)

= (a1 * b1)10n + (a1 * b0 + a0 * b1)10n/2 + (a0 * b0)

= c210n + c110n/2 + c0,

where

c2 = a1* b1 is the product of their first halves,

c0== a0* b0 is the product of their second halves,

c1 = (a1 + a0) * (b1 + b0) − (c2 + c0)

If n/2 is even, we can apply the same method for computing the products c2, c0, and c1.

Thus, if n is a power of 2, we have a recursive algorithm for computing the product of two n-

digit integers. In its pure form, the recursion is stopped when n becomes 1. It can also be

stopped when we deem n small enough to multiply the numbers of that size directly.

The multiplication of n-digit numbers requires three multiplications of n/2-digit numbers,

the recurrence for the number of multiplications M(n) is M(n) = 3M(n/2) for n >1, M(1)

=1.Solving it by backward substitutions for n = 2kyields

M(2k) = 3M(2k−1)

= 3[3M(2k−2)]

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

= 32M(2k−2)

= . . .

= 3iM(2k−i)

= . . .

= 3kM(2k−k)

= 3k.

(Since k = log2n)

M(n) =
2

3log
2

n = nlog 3 ≈ n1.585.

(On the last step, we took advantage of the following property of logbarithmsb: alogc= cloga.)

Let A(n) be the number of digit additions and subtractions executed by the above

algorithm in multiplying two n-digit decimal integers. Besides 3A(n/2) of these operations

needed to compute the three products of n/2-digit numbers, the above formulas require

five additions and one subtraction. Hence, we have the recurrence

A(n) = 3· A(n/2) + cn for n >1, A(1) = 1.

By using Master Theorem, we obtain A(n) ∈Θ(nlog

2
3),

which means that the total number of additions and subtractions have the same

asymptotic order of growth as the number of multiplications.

Example: For instance: a = 2345, b = 6137,

i.e., n=4. Then C = a * b =

(23*102+45)*(61*102+37)

C = a ∗ b = (a110n/2 + a0) * (b110n/2 + b0)

= (a1 * b1)10n + (a1 * b0 + a0 * b1)10n/2 + (a0 * b0)

= (23 * 61)104 + (23 * 37 + 45 * 61)102 + (45 * 37)

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

= 1403•104 + 3596•102 + 1665

= 14391265

STRASSEN’S MATRIX MULTIPLICATION

The Strassen’s Matrix Multiplication find the product C of two 2 × 2 matrices A and B

with just seven multiplications as opposed to the eight required by the brute-force algorithm.

where

Thus, to multiply two 2 × 2 matrices, Strassen’s algorithm makes 7 multiplications and

18 additions/subtractions, whereas the brute-force algorithm requires 8 multiplications and

4 additions. These numbers should not lead us to multiplying 2 × 2 matrices by Strassen’s

algorithm. Its importance stems from its asymptotic superiority as matrix order n goes to

infinity.

Let A and B be two n × n matrices where n is a power of 2. (If n is not a power of

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

2, matrices can be padded with rows and columns of zeros.) We can divide A, B, and their

product C into four n/2 × n/2 submatrices each as follows:

The value C00 can be computed either as A00 * B00 + A01 * B10 or as M1 + M4 − M5

+ M7 where M1, M4, M5, and M7 are found by Strassen’s formulas, with the numbers

replaced by the corresponding submatrices. The seven products of n/2 × n/2 matrices are

computed recursively by Strassen’s matrix multiplication algorithm.

The asymptotic efficiency of Strassen’s matrix multiplication algorithm

If M(n) is the number of multiplications made by Strassen’s algorithm in

multiplying two n×n matrices, where n is a power of 2, The recurrence relation is M(n) =

7M(n/2) for n > 1, M(1)=1.

Since n = 2k,

M(2k) = 7M(2k−1)

= 7[7M(2k−2)]

= 72M(2k−2)

= . . .

= 7iM(2k−i)

= . . .

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

2

= 7kM(2k−k) = 7kM(20) = 7kM(1)= 7k(1) (Since M(1)=1)

M(2k) = 7k.

Since k = log2n,

M(n) = 7logn

= nlog 7 2

≈n2.807

which is smaller than n3 required by the brute-force algorithm.

Since this savings in the number of multiplications was achieved at the expense of

making extra additions, we must check the number of additions A(n) made by Strassen’s

algorithm. To multiply two matrices of order n>1, the algorithm needs to multiply seven

matrices of order n/2 and make 18 additions/subtractions of matrices of size n/2; when n

= 1, no additions are made since two numbers are simply multiplied. These observations

yield the following recurrence relation:

A(n) = 7A(n/2) + 18(n/2)2 for n >1, A(1) = 0.

By closed-form solution to this recurrence and the Master Theorem, A(n) ∈ Θ(nlog7). which is

2

a

better efficiency class than Θ(n3)of the brute-force method.

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

A[m+1]...A[n−1]

11. BINARY SEARCH

A binary search is efficient algorithm to find the position of a target (key) value

within a sorted array.

• The binary search algorithm begins by comparing the target value to the value

of the middle element of the sorted array. If the target value is equal to the

middle element's value, then the position is returned and the search is finished.

• If the target value is less than the middle element's value, then the search

continues on the lower half of the array.

• if the target value is greater than the middle element's value, then the search

continues on the upper half of the array.

• This process continues, eliminating half of the elements, and comparing the

target value to the value of the middle element of the remaining elements - until

the target value is either found (position is returned).

Binary search is a remarkably efficient algorithm for searching in a sorted array

(Say A). It works by comparing a search key K with the array’s middle element A[m]. If

they match, the algorithm stops; otherwise, the same operation is repeated recursively for

the first half of the array if K <A[m], and for the second half if K>A[m]:

Though binary search is clearly based on a recursive idea, it can be easily implemented as

a non-recursive algorithm, too. Here is pseudocode of this non recursive version.

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

ALGORITHM Binary Search (A[0..n − 1], K)

//Implements non recursive binary search

//Input: An array A[0..n − 1] sorted in ascending order and a search key K

//Output: An index of the array’s element that is equal to K/ or −1 if there is no

such element

l ← 0; r ← n − 1

while l ≤ r do

m ← 𝗁(l + r)/2]

if K = A[m] return m

else ifK <A[m]

r ← m − 1

else l ← m + 1

return −1

The standard way to analyze the efficiency of binary search is to count the number of times

the search key is compared with an element of the array (three-way comparisons). One

comparison of K with A[m], the algorithm can determine whether K is smaller, equal to, or

larger than A[m].

As an example, let us apply binary search to searching for K = 70 in the array. The

iterations of the algorithm are given in the following table:

index 0 1 2 3 4 5 6 7 8 9 10 11 12

value

iteration1 l m r

iteration2
r

l m

3 14 27 31 39 42 55 70 74 81 85 93 98

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

iteration 3 l,mr

The worst-case inputs include all arrays that do not contain a given search key, as well

as some successful searches. Since after one comparison the algorithm faces the same situation

but for an array half the size,

The number of key comparisons in the worst case Cworst(n) by recurrence relation.

orct(n) = orct(𝗁n[) + 1 fo n > 1, orct(1) =1.
2

 orct (2k) = (k + 1) = log2 k + 1 [orct(n)=𝗁log2n]+1=]log2(n+1)

forn=2k

• First, The worst-case time efficiency of binary search is in Θ(logn).

• Second, the algorithm simply reduces the size of the remaining array by half on

each iteration, the number of such iterations needed to reduce the initial size n to

the final size 1 has to be about log2n.

• Third, the logarithmic function grows so slowly that its values remain small even

for very large values ofn.

The average case slightly smaller than that in the worst case

Cavg(n) ≈ log2n

The average number of comparisons in a successful is

Cavg(n) ≈ log2n − 1

The average number of comparisons in an unsuccessful is

Cavg(n) ≈ log2(n + 1).

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

10.QUICK SORT

Quicksort is the other important sorting algorithm that is based on the divide-and-

conquer approach. quicksort divides input elements according to their value. A partition is an

arrangement of the array’s elements so that all the elements to the left of some element A[s]

are less than or equal to A[s], and all the elements to the right of A[s] are greater than or equal

to it:

A[0]...A[s−1] A[s] A[s + 1] . . . A[n −1]

allareSA[s] all areSA[s]

Sort the two subarrays to the left and to the right of A[s] independently. No work

required to combine the solutions to the sub problems.

Here is pseudocode of quicksort: call Quicksort(A[0..n − 1]) where As a partition algorithm use

the Hoare Partition.

 binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

FI GURE 2.11

Example of quicksort operation of Array with pivots shown in bold.

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

FIGURE 2.12 Tree of recursive calls to Quicksort with input values l and r of subarray bounds

and split position s of a partition obtained.

The number of key comparisons in the best case satisfies the recurrence

Cbest(n) = 2Cbest(n/2) + n for n>1, Cbest(1) =0.

By Master Theorem, Cbest(n) ∈ Θ(n log2 n); solving it exactly for n = 2k yields Cbest(n) = n

log2 n. The total number of key comparisons made will be equal to

Cworst(n) = (n + 1) + n + . . . + 3 = ((n + 1)(n + 2))/2− 3 ∈Θ(n2).

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

9.MERGE SORT

Merge sort is based on divide-and-conquer technique. It sorts a given array A[0..n−1] by

dividing it into two halves A[0..𝗁n/2]−1] and A[𝗁n/2]..n−1], sorting each of them recursively,

and then merging the two smaller sorted arrays into a single sorted one.

ALGORITHM Merge sort (A[0..n − 1])

//Sorts array A [0..n − 1] by recursive merge sort

//Input: An array A[0..n − 1] of orderable elements

//Output: Array A[0..n − 1] sorted in non-decreasing order

if n >1

copy A[0..𝗁n/2] − 1] to B[0..𝗁n/2] − 1]

copy A[𝗁n/2]..n − 1] to

C[0..]n/2] − 1] Merge

sort(B[0..𝗁n/2] − 1]) Merge

sort(C[0..]n/2] − 1])

Merge (B, C, A) //see below

The merging of two sorted arrays can be done as follows. Two pointers (array

indices) are initialized to point to the first elements of the arrays being merged.

The elements pointed to are compared, and the smaller of them is added to a new

array being constructed; after that, the index of the smaller element is incremented to point

to its immediate successor in the array it was copied from.

This operation is repeated until one of the two given arrays is exhausted, and then

the remaining elements of the other array are copied to the end of the new array.

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

The operation of the algorithm on the list 8, 3, 2, 9, 7, 1, 5, 4 is illustrated in Figure 2.10

FIGURE 2.10 Example of merge sort operation

The recurrence relation for the number of key comparisons C(n) is

C(n) = 2C(n/2) + Cmerge(n) for n >1, C(1) = 0.

In the worst case, Cmerge(n) = n − 1, and we have the recurrence

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

By Master Theorem, Cworst(n) ∈ Θ(n log n)

the exact solution to the worst-case recurrence for n = 2k

Cworst(n) = n log2n − n + 1.

For large n, the number of comparisons made by this algorithm in the average case

turns out to be about 0.25n less and hence is also in Θ (n log n).

First, the algorithm can be implemented bottom up by merging pairs of the array’s

elements, then merging the sorted pairs, and so on. This avoids the time and space overhead

of using a stack to handle recursive calls. Second, we can divide a list to be sorted in more

than two parts, sort each recursively, and then merge them together. This scheme, which is

particularly useful for sorting files residing on secondary memory devices, is called multiway

merge sort.

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

solution to subproblem 2 solution to subproblem 1

problem of size n

subproblem 1of size n/2 subproblem 2 of size n/2

8. DIVIDE AND CONQUER METHODOLOGY

A divide and conquer algorithm works by recursively breaking down a problem into

two or more sub-problems of the same (or related) type (divide), until these become simple

enough to be solved directly(conquer).

Divide-and-conquer algorithms work according to the following general plan:

1. A problem is divided into several sub problems of the same type, ideally of about equal

size.

2. The sub problems are solved (typically recursively, though sometimes a different

algorithm is employed, especially when sub problems become small enough).

3. If necessary, the solutions to the sub problems are combined to get a solution to

the original problem.

The divide-and-conquer technique as shown in Figure 2.9, which depicts the case of

dividing a problem into two smaller sub problems, then the sub problems solved separately.

Finally, solution to the original problem is done by combining the solutions of sub problems.

FIGURE 2.9 Divide-and-conquer technique.

Divide and conquer methodology can be easily applied on the following problem.

1. Merge sort

2. Quicksort

solution to the original problem

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

3. Binary search

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

6. ASSIGNMENT PROBLEM

There are n people who need to be assigned to execute n jobs, one person per job. (That is,

each person is assigned to exactly one job and each job is assigned to exactly one person.)

The cost that would accrue if the i th person is assigned to the jth job is a known quantity [i, j]

for each pairi, j = 1, 2, . . . , n. The problem is to find an assignment with the minimum total cost.

Assignment problem solved by exhaustive search is illustrated with an example as shown

in figure 2.8. A small instance of this problem follows, with the table entries representing the

assignment costs C[i, j].

 Job 1 Job 2 Job 3 Job 4

Person 1 9 2 7 8

Person 2 6 4 3 7

Person 3 5 8 1 8

Person 4 7 6 9 4

FIGURE 2.7 Instance of an Assignment problem.

The problem is to select one element in each row of the matrix so that all selected

elements are in different columns and the total sum of the selected elements is the smallest

possible.

We can describe feasible solutions to the assignment problem as n-tuples

<j1, . . ., jn> in which the ith component, i=1,...,n, indicates the column of the element

selected in the ith row (i.e., the job number assigned to the ith person). For example, for the cost

matrix above, <2, 3, 4, 1> indicatestheassignmentofPerson1toJob2, Person2 to Job3,

Person3toJob4, and Person 4to Job 1. Similarly, we can have 4! = 4 · 3 · 2 · 1 = 24, i. e., 24

permutations.

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

The requirements of the assignment problem imply that there is a one-to-one correspondence

between feasible assignments and permutations of the first n integers.

Therefore, the exhaustive-search approach to the assignment problem would require

generating all the permutationsofintegers1, 2,,computing the total cost of each assignment by

summing up the corresponding elements of the cost matrix, and finally selecting the one with the

smallest sum.

A few first iterations of applying this algorithm to the instance given above are given below.

<1, 2, 3,4> cost = 9 + 4 + 1 + 4 =18 <2, 1, 3, 4> cost = 2 + 6 + 1 + 4 = 13 (Min)

<1, 2, 4,3> cost = 9 + 4 + 8 + 9 =30

<2, 1, 4,3> cost = 2 + 6 + 8 + 9 =25

<1, 3, 2,4>

<1, 3, 4,2>

cost = 9 + 3 + 8 + 4 =24

cost = 9 + 3 + 8 + 6 =26

<2, 3, 1,4>

<2, 3, 4,1>

cost = 2 + 3 + 5 + 4 =14

cost = 2 + 3 + 8 + 7 =20

<1, 4, 2,3>

<1, 4, 3, 2>

cost = 9 + 7 + 8 + 9 =33

cost = 9 + 7 + 1 + 6 = 23

<2, 4, 1,3>

<2, 4, 3, 1>

cost = 2 + 7 + 5 + 9 =23

cost = 2 + 7 + 1 + 7 = 17, etc

FIGURE 2.8 First few iterations of solving a small instance of the assignment problem by

exhaustive search.

Since the number of permutations to be considered for the general case of the assignment

problem is n!, exhaustive search is impractical for all but very small instances of the problem.

Fortunately, there is a much more efficient algorithm for this problem called the Hungarian

method.

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

5. KNAPSACK PROBLEM

Given n items of known weights w1, w2, . . ., wn and values v1, v2, . . . , vn and a knapsack

of capacity W, find the most valuable subset of the items that fit into the knapsack.

Real time examples:

• A Thief who wants to steal the most valuable loot that fits into his knapsack,

• Atransportplanethathastodeliverthemostvaluablesetofitemstoaremotelocation

without exceeding the plane’s capacity.

The exhaustive-search approach to this problem leads to generating all the subsets of the set of n items

given, computing the total weight of each subset in order to identify feasible subsets (i.e., the ones with

the total weight not exceeding the knapsack capacity), and finding a subset of the largest value among

them.

FIGURE 2.5 Instance of the knapsack problem

Subset Total weight Total value

Φ 0 $0

{1} 7 $42

{2} 3 $12

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

{3} 4 $40

{4} 5 $25

{1, 2} 10 $54

{1, 3} 11 not feasible

{1, 4} 12 not feasible

{2, 3} 7 $52

{2, 4} 8 $37

{3, 4} 9 $65 (Maximum-Optimum)

{1, 2, 3} 14 not feasible

{1, 2, 4} 15 not feasible

{1, 3, 4} 16 not feasible

{ 2, 3, 4} 12 not feasible

{1, 2, 3, 4} 19 not feasible

FIGURE 2.6 knapsack problem’s solution by exhaustive search. The information about the

optimal selection is in bold.

Time efficiency: As given in the example, the solution to the instance of Figure 2.5 is

given in Figure 2.6. Since the number of subsets of an n-element set is 2n, the exhaustive

search leads to a Ω(2n) algorithm, no matter how efficiently individual subsets are

generated.

Note: Exhaustive search of both the traveling salesman and knapsack problems leads to

extremely inefficient algorithms on every input. In fact, these two problems are the best-

known examples of NP-hard problems. No polynomial-time algorithm is known for any

NP-hard problem. Moreover, most computer scientists believe that such algorithms do not

exist. some sophisticated approaches like backtracking and branch-and-bound enable

us to solve some instances but not all instances of these in less than exponential time.

Alternatively, we can use one of many approximation algorithms.

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT :II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

4. TRAVELING SALESMAN PROBLEM

The traveling salesman problem (TSP) is one of the combinatorial problems. The

problem asks to find the shortest tour through a given set of n cities that visits each city

exactly once before returning to the city where it started.

The problem can be conveniently modeled by a weighted graph, with the graph’s

vertices representing the cities and the edge weights specifying the distances. Then the

problem can be stated as the problem of finding the shortest Hamiltonian circuit of the

graph. (A Hamiltonian circuit is defined as a cycle that passes through all the vertices of

the graph exactly once).

A Hamiltonian circuit can also be defined as a sequence of n + 1 adjacent

vertices vi0, vi1, . . . , vin−1, vi0, where the first vertex of the sequence is the same as the

last one and all the other n − 1 vertices are distinct. All circuits start and end at one

particular vertex. Figure 2.4 presents a small instance of the problem and its solution by

this method.

Tour Length

a ---> b ---> c ---> d---> a I = 2 + 8 + 1 + 7 =18

a ---> b ---> d ---> c---> a I = 2 + 3 + 1 + 5 = 11 optimal

a ---> c ---> b ---> d---> a I = 5 + 8 + 3 + 7 =23

a ---> c ---> d ---> b---> a I = 5 + 1 + 3 + 2 = 11 optimal

a ---> d ---> b ---> c---> a I = 7 + 3 + 8 + 5 =23

a ---> d ---> c ---> b---> a I = 7 + 1 + 8 + 2 =18

FIGURE 2.4 Solution to a small instance of the traveling salesman problem by exhaustive search

Time efficiency

• Wecangetallthetoursbygeneratingallthepermutationsofn−1intermediatecities

from a particular city. i.e. (n - 1)!

• Consider two intermediate vertices, say and c, and then only permutations in which

b precedes c. (This trick implicitly defines a tour’s direction.)

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT :II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

• An inspection of Figure 2.4 reveals three pairs of tours that differ only by their

direction. Hence, we could cut the number of vertex permutations by half

because cycle total lengths in both directions are same.

The total number of permutations needed is still 1(n − 1)!,which makes the exhaustive- search

approach impractical for large n. It is useful for very small values of n.
2

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

3. EXHAUSTIVE SEARCH

For discrete problems in which no efficient solution method is known, it might be

necessary to test each possibility sequentially in order to determine if it is

the solution. Such exhaustive examination of all possibilities is known as exhaustive

search, complete search or direct search.

Exhaustive search is simply a brute force approach to combinatorial problems

(Minimization or maximization of optimization problems and constraint satisfaction

problems).

Reason to choose brute-force / exhaustive search approach as an important

algorithm design strategy

1. First, unlike some of the other strategies, brute force is applicable to a very

wide variety of problems. In fact, it seems to be the only general approach

for which it is more difficult to point out problems it cannot tackle.

2. Second, for some important problems, e.g., sorting, searching, matrix

multiplication, string matching the brute-force approach yields reasonable

algorithms of at least some practical value with no limitation on instance

size.

3. Third, the expense of designing a more efficient algorithm may be

unjustifiable if only a few instances of a problem need to be solved and a

brute-force algorithm can solve those instances with acceptable speed.

4. Fourth, even if too inefficient in general, a brute-force algorithm can still

be useful for solving small-size instances of a problem.

Exhaustive Search is applied to the important problems like

• Traveling Salesman Problem

• Knapsack Problem

• Assignment Problem.

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

2. CLOSEST-PAIR AND CONVEX-HULLPROBLEMS

We consider a straight forward approach (Brute Force) to two well-known

problems dealing with a finite set of points in the plane. These problems are very useful

in important applied areas like computational geometry and operations research.

Closest-Pair Problem

The closest-pair problem finds the two closest points in a set of n points. It is the

simplest of a variety of problems in computational geometry that deals with proximity of

points in the plane or higher-dimensional spaces.

Consider the two-dimensional case of the closest-pair problem. The points are

specified in a standard fashion by their (x, y) Cartesian coordinates and that the distance

between two points pi(xi, yi) and pj(xj, yj) is the standard Euclidean distance.

d(ei, ej) = √(xi − xj)2 + (yi − yj)2

The following algorithm computes the distance between each pair of distinct points

and finds a pair with the smallest distance.

ALGORITHM:

Brute Force Closest Pair(P)

//Finds distance between two closest points in the plane by brute force

//Input: A list P of n (n ≥ 2) points p1(x1, y1), . . ., pn(xn, yn)

//Output: The distance between the closest pair of points

d←∞

for i ←1 to n − 1 do

for j ←i + 1 to n do

d ←min(d, sqrt((xi− xj)2 + (yi− yj)2)) //sqrt is square root

return d

The basic operation of the algorithm will be squaring a number. The number of

times it will be executed can be computed as follows:

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

Convex-Hull Problem

Convex Set

A set of points (finite or infinite) in the plane is called convex if for any two points p and q

in the set, the entire line segment with the endpoints at p and q belongs to the set.

(a) (b)

FIGURE 2.1 (a) Convex sets. (b) Sets that are not convex.

All the sets depicted in Figure 2.1 (a) are convex, and so are a straight line, a

triangle, a rectangle, and, more generally, any convex polygon, a circle, and the entire

plane.

On the other hand, the sets depicted in Figure 2.1 (b), any finite set of two or more

distinct points, the boundary of any convex polygon, and a circumference are examples of

sets that are not convex.

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

Take a rubber band and stretch it to include all the nails, then let it snap into place.

The convex hull is the area bounded by the snapped rubber band as shown in Figure 2.2

FIGURE 2.2 Rubber-band interpretation of the convex hull.

Convex hull

The convex hull of a set S of points is the smallest convex set containing S. (The

smallest convex hull of S must be a subset of any convex set containing S.)

If S is convex, its convex hull is obviously S itself. If S is a set of two points, its

convex hull is the line segment connecting these points. If S is a set of three points not on

the same line, its convex hull is the triangle with the vertices at the three points given; if

the three points do lie on the same line, the convex hull is the line segment with its

endpoints at the two points that are farthest apart. For an example of the convex hull for a

larger set, see Figure 2.3.

THEOREM:

The convex hull of any set S of n>2 points not all on the same line is a convex

polygon with the vertices at some of the points of S. (If all the points do lie on the same

line, the polygon degenerates to a line segment but still with the endpoints at two points

of S.)

P5

P1

FIGURE 2.3 The convex hull for this set of eight points is the convex polygon with

vertices at p1, p5, p6, p7, and p3.

The convex-hull problem is the problem of constructing the convex hull for a

P3

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-II

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

given set S of n points. To solve it, we need to find the points that will serve as the vertices

of the polygon in question. Mathematicians call the vertices of such a polygon “extreme

points.” By definition, an extreme point of a convex set is a point of this set that is not a

middle point of any line segment with endpoints in the set. For example, the extreme points

of a triangle are its three vertices, the extreme points of a circle are all the points of its

circumference, and the extreme points of the convex hull of the set of eight points in Figure
2.3 are p1, p5, p6, p7, andp3.

Application

Extreme points have several special properties other points of a convex set do

not have. One of them is exploited by the simplex method, this algorithm solves linear

programming Problems.

We are interested in extreme points because their identification solves the convex-

hull problem. Actually, to solve this problem completely, we need to know a bit more than

just which of n points of a given set are extreme points of the set’s convex hull. we need

to know which pairs of points need to be connected to form the boundary of the convex

hull. Note that this issue can also be addressed by listing the extreme points in a clockwise

or a counter clock wise order.

We can solve the convex-hull problem by brute-force manner. The convex hull

problem is one with no obvious algorithmic solution. there is a simple but inefficient

algorithm that is based on the following observation about line segments making up the

boundary of a convex hull: a line segment connecting two points pi and pj of a set of n

points is a part of the convex hull’s boundary if and only if all the other points of the set

lie on the same side of the straight line through these two points. Repeating this test for

every pair of points yields a list of line segments that make up the convex hull’s boundary.

Facts

A few elementary facts from analytical geometry are needed to implement the above

algorithm.

• First, the straight line through two points (x1, y1), (x2, y2) in the coordinate plane can

be defined by the equation ax + by = c, where a = y2 − y1, b = x1 − x2, c = x1y2 −y1x2.

• Second, such a line divides the plane into two half-planes: for all the points in one of

them, ax + by > c, while for all the points in the other, ax + by < c. (For the points on

the line itself, of course, ax + by = c.) Thus, to check whether certain points lie on the

same side of the line, we can simply check whether the expression ax + by − c has the

same sign for each of these points.

Time efficiency of this algorithm.

Time efficiency of this algorithm is in O(n3): for each of n (n − 1)/2 pairs of distinct

points, we may need to find the sign of ax + by – c for each of the other n − 2 points.

•

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-I

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

UNIT-II

BRUTE FORCE AND DIVIDE-AND-CONQUER

Brute Force – Computing an – String Matching – Closest-Pair and Convex-Hull

Problems – Exhaustive Search – Travelling Salesman Problem – Knapsack Problem

– Assignment problem. Divide and Conquer Methodology – Binary Search – Merge

sort – Quick sort – Heap Sort – Multiplication of Large Integers – Closest-Pair and

Convex – Hull Problems.

1. BRUTE FORCE

Brute force is a straightforward approach to solving a problem, usually directly

based on the problem statement and definitions of the concepts involved.

Selection Sort, Bubble Sort, Sequential Search, String Matching, Depth-

First Search and Breadth-First Search, Closest-Pair and Convex-Hull

Problems can be solved by Brute Force.

COMPUTING an:

1. Computing an : a * a * a * … * a (n times)
2. Computing n! : The n! can be computed as n*(n-1)* …*3*2*1
3. Multiplication of two matrices: C=A
4. Searching a key from list of elements (Sequential search)

Advantages:
1. Brute force is applicable to a very wide variety of problems.
2. It is very useful for solving small size instances of a problem, even

though it is inefficient.
3. The brute-force approach yields reasonable algorithms of at least

some practical value with no limitation on instance size for
sorting, searching, and string matching.

Selection Sort

• First scan the entire given list to find its smallest element and

exchange it with the first element, putting the smallest element in its

final position in the sorted list.

• Then scan the list, starting with the second element, to find the

smallest among the last n − 1 elements and exchange it with the

second element, putting the second smallest element in its final

position in the sorted list.

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-I

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

• Generally, on the I th pass through the list, which we number from 0

to n − 2, the algorithm searches for the smallest item among thelast n

−i elements and swaps it with Ai: A0≤A1≤...≤Ai–

1|Ai,...,Amin,...,An–1

• in their final positions | the last n – I elements

After n − 1 passes, the list is sorted

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-I

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

arrays, it is the same as the number of key comparisons.

worst(n) ∈ Θ (n2)

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

