
UNIT-1

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

Output

Computer Program

Input

Algorithm

Problem to be solved

CS8451- DESIGN AND ANALYSIS OF ALGORITHMS

UNIT-1

INTRODUCTION

Notion of an Algorithm – Fundamentals of Algorithmic Problem Solving –

Important Problem Types – Fundamentals of the Analysis of Algorithmic Efficiency

–Asymptotic Notations and their properties. Analysis Framework – Empirical

analysis – Mathematical analysis for Recursive and Non-recursive algorithms –

Visualization

1. NOTION OF AN ALGORITHM:

An algorithm is a sequence of unambiguous instructions for solving a

problem, i.e., for obtaining a required output for any legitimate input in a finite

amount of time.

FIGURE 1.1 The notion of the algorithm.

It is a step by step procedure with the input to solve the problem in a finite

amount of time to obtain the required output.

The notion of the algorithm illustrates some important points:

• The non-ambiguity requirement for each step of an algorithm cannot be

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

compromised.
• The range of inputs for which an algorithm works has to be specified

carefully.
• The same algorithm can be represented in several different ways.
• There may exist several algorithms for solving the same problem.

• Algorithms for the same problem can be based on very different ideas and

can solve the problem with dramatically different speeds.

Characteristics of an algorithm:

Input : Zero / more quantities are externally supplied.

Output : At least one quantity is produced.

Definiteness: Each instruction is clear and unambiguous.

Finiteness: If the instructions of an algorithm is traced then for all cases the
algorithm must terminates after a finite number of steps.

Efficiency: Every instruction must be very basic and runs in short time.

 Steps for writing an algorithm:

1. An algorithm is a procedure. It has two parts; the first part is head and the

second part is body.

2. The Head section consists of keyword Algorithm and Name of the algorithm

with parameter list. E.g. Algorithm name1(p1, p2,…,p3)

The head section also has the following:

//Problem Description:

//Input:

//Output:

3. In the body of an algorithm various programming constructs like if, for,

while and some statements like assignments are used.

4. The compound statements may be enclosed with { and} brackets. if, for,

while can be closed by end if, end for, end while respectively. Proper

indention is must for block.
5. Comments are written using // at the beginning.

6. The identifier should begin by a letter and not by digit. It contains alpha

numeric letters after first letter. No need to mention data types.
7. The left arrow “←” used as assignment operator. E.g.v←10

8. Booleanoperators(TRUE,FALSE),Logicaloperators(AND,OR,NOT)andRe

lational

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

operators (<,<=, >, >=,=, ≠, <>) are also used.

9. Input and Output can be done using read and write.

10. Array [], if then else condition, branch and loop can be also used in

Algorithm.

Example:

The greatest common divisor(GCD) of two nonnegative integers m and n

(not-both-zero), denoted gcd(m, n), is defined as the largest integer that divides

both m and n evenly, i.e., with a remainder of zero.

Euclid’s algorithm is based on applying repeatedly the equality gcd(m, n) = gcd(n,

m modn),

where m mod n is the remainder of the division of m by n, until m mod n is equal

to 0. Since gcd(m,

0) = m, the last value of m is also the greatest common divisor of the

initial m and n. gcd(60, 24) can be computed as follows:gcd(60, 24)

= gcd(24, 12) = gcd(12, 0) = 12.

Euclid’s algorithm for computing gcd(m, n) in simple steps

Step 1 If n = 0, return the value of m as the answer and stop; otherwise, proceed to

Step 2.

Step 2 Divide m by n and assign the value of the remainder to r.

Step 3 Assign the value of n to m and the value of r to n. Go to Step1.

Euclid’s algorithm for computing gcd(m, n) expressed inpseudocode

ALGORITHM Euclid_gcd(m, n)

//Computes gcd(m, n) by Euclid’s algorithm

//Input: Two nonnegative, not-both-zero integers m and n

//Output: Greatest common divisor of m and n

while n ≠ 0 do

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

r ←m

mod n

m←n

n←r

return m

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

2. FUNDAMENTALS OF ALGORITHMIC PROBLEM SOLVING

A sequence of steps involved in designing and analyzing an algorithm is shown in

the figure below.

FIGURE 1.2.1 Algorithm design and analysis process.

(i) Understanding the Problem

• This is the first step in designing of algorithm.
• Read the problem’s description carefully to understand the problem

statement completely.
• Ask questions for clarifying the doubts about the problem.
• Identify the problem types and use existing algorithm to find solution.
• Input (instance) to the problem and range of the input get fixed.

(ii) Decision making

The Decision making is done on the following:

a) Ascertaining the Capabilities of the Computational Device

In random-access machine (RAM), instructions are executed one after

another (The central assumption is that one operation at a time). Accordingly,

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

Algorithms+ Data Structures =Programs

algorithms designed to be executed on such machines are called sequential

algorithms.

→In some newer computers, operations are executed concurrently, i.e., in
parallel. Algorithms that take advantage of this capability are called parallel
algorithms.

→Choice of computational devices like Processor and memory is mainly based on

space and time efficiency

a)Choosing between Exact and Approximate Problem Solving:

→The next principal decision is to choose between solving the problem exactly or
solving it approximately.

→An algorithm used to solve the problem exactly and produce correct result is
called an exact algorithm.

→If the problem is so complex and not able to get exact solution, then we have to

choose an algorithm called an approximation algorithm. i.e., produces an

→Approximate answer. E.g., extracting square roots, solving nonlinear equations,

and evaluating definite integrals.

a) Algorithm Design Techniques

• An algorithm design technique (or “strategy” or “paradigm”) is a general
approach to solving problems algorithmically that is applicable to a variety
of problems from different areas of computing.

• Though Algorithms and Data Structures are independent, but they are

combined together to develop program. Hence the choice of proper data

structure is required before designing the algorithm.

• Implementation of algorithm is possible only with the help of Algorithms
and Data Structures

• Algorithmic strategy / technique / paradigm are a general approach by

which many problems can be solved algorithmically. E.g., Brute Force,

Divide and Conquer, Dynamic Programming, Greedy Technique and soon.

(iii) Methods of Specifying an Algorithm

There are three ways to specify an algorithm.

They are:

a. Natural language

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

Flowchart Pseudocode Natural Language

ALGORITHM Sum(a,b)

//Problem Description: This algorithm performs addition of two numbers

//Input: Two integers a and b

//Output: Addition of two integers

c←a+b

returnc

b. Pseudocode

c. Flowchart

FIGURE 1.2.2 Algorithm Specifications

Pseudocode and flowchart are the two options that are most widely used nowadays

for specifying algorithms.

a. Natural Language

It is very simple and easy to specify an algorithm using natural language. But

many times specification of algorithm by using natural language is not clear and

thereby we get brief specification.

Example: An algorithm to perform addition of two numbers.

Such a specification creates difficulty while actually implementing it. Hence many
programmers prefer to have specification of algorithm by means of Pseudocode.

b) Pseudocode:

• Pseudocode is a mixture of a natural language and programming language
constructs. Pseudocode is usually more precise than natural language.

• For Assignment operation left arrow “←”, for comments two slashes “//”,if

condition, for, while loops are used.

Step 1: Read the first number, say a.

Step 2: Read the first number, say b.

Step 3: Add the above two numbers and store the result in c.

Step 4: Display the result from c.
binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

This specification is more useful for implementation of any language.

c) Flowchart

• In the earlier days of computing, the dominant method for specifying

algorithms was a flowchart, this representation technique has proved to be

inconvenient.

• Flowchart is a graphical representation of an algorithm. It is a method of
expressing an algorithm by a collection of connected geometric shapes

containing descriptions of the algorithm’s steps.

FIGURE 1.2.3 Flowchart symbols and Example for two integer addition.

(iv) Proving an Algorithm’s Correctness

• Once an algorithm has been specified then its correctness must be proved.

• An algorithm must yield a required result for every legitimate input in a
finite amount of time.

• For Example, the correctness of Euclid’s algorithm for computing the
greatest common

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

divisor stems from the correctness of the equality gcd(m, n) = gcd(n, m mod
n).

• A common technique for proving correctness is to use mathematical
induction because an algorithm’s iterations provide a natural sequence of
steps needed for such proofs.

• The notion of correctness for approximation algorithms is less
straightforward than it is for exact algorithms. The error produced by the

algorithm should not exceed a predefined limit.
(v) Analyzing an Algorithm

• For an algorithm the most important is efficiency. In fact, there are two

kinds of algorithm efficiency.

They are:

• Time efficiency, indicating how fast the algorithm runs, and
• Space efficiency, indicating how much extra memory it uses.
• The efficiency of an algorithm is determined by measuring both time

efficiency and space efficiency.
• So factors to analyze an algorithm are:

▪ Time efficiency of an algorithm
▪ Space efficiency of an algorithm

▪ Simplicity of an algorithm

▪ Generality of an algorithm

(vi) Coding an Algorithm

• The coding / implementation of an algorithm is done by a suitable
programming language like C, C++,JAVA.

• The transition from an algorithm to a program can be done either incorrectly

or very inefficiently. Implementing an algorithm correctly is necessary. The

Algorithm power should not reduce by in efficient implementation.

• Standard tricks like computing a loop’s invariant (an expression that does

not change its value) outside the loop, collecting common subexpressions,

replacing expensive operations by cheap ones, selection of programming

language and so on should be known to the programmer.

• Typically, such improvements can speed up a program only by a constant
factor, whereas a better algorithm can make a difference in running time by
orders of magnitude. But once an algorithm is selected, a 10–50% speedup

may be worth an effort.

• It is very essential to write an optimized code (efficient code) to reduce the
burden of compiler.

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE: II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE :II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

3. IMPORTANT PROBLEM TYPES

The most important problem types are:

(i). Sorting.
(ii). Searching

(iii). String processing

(iv). Graph problems

(v). Combinatorial problems

(vi). Geometric problems

(vii). Numerical problems.

(i) Sorting

• The sorting problem is to rearrange the items of a given list in non-

decreasing (ascending) order.
• Sorting can be done on numbers, characters, strings or records.
• To sort student records in alphabetical order of names or by student number

or by student grade-point average. Such a specially chosen piece of
information is called a key.

• An algorithm is said to be in-place if it does not require extra memory, E.g.,

Quicksort.

• A sorting algorithm is called stable if it preserves the relative order of any
two equal elements in its input.

(ii) Searching

• The searching problem deals with finding a given value, called a search key,

in a given set.

• E.g., Ordinary Linear search and fast binary search.

(iii) String processing

• A string is a sequence of characters from an alphabet.

• Strings comprise letters, numbers, and special characters; bit strings, which
comprise zeros and ones; and gene sequences, which can be modeled by
strings of characters from the four- character alphabet {A, C, G, T}. It is

very useful in bio informatics.

• Searching for a given word in a text is called string matching

(iv) Graph problems

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE :II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

• A graph is a collection of points called vertices, some of which are

connected by line segments called edges.

• Some of the graph problems are graph traversal, shortest path algorithm,
topological sort, traveling salesman problem and the graph-coloring

problem and soon.

(v) Combinational problems

• These are problems that ask, explicitly or implicitly, to find a combinational

object such as a permutation, a combination, or a subset that satisfies certain

constraints.

• A desired combinatorial object may also be required to have some
additional property such s is a maximum value or a minimum cost.

• In practical, the combinatorial problems are the most difficult problems in
computing.

• Thetravelingsalesmanproblemandthegraphcoloringproblemareexamplesof
combinatorial problems.

(vi) Geometric problems

• Geometric algorithms deal with geometric objects such as points, lines, and

polygons.
• Geometric algorithms are used in computer graphics, robotics, and

tomography.
• The closest-pair problem and the convex-hull problem are comes under this

category.

(vii) Numerical problems

• Numerical problems are problems that involve mathematical equations,

systems of equations, computing definite integrals, evaluating functions,

and soon.

• The majority of such mathematical problems can be solved only

approximately.

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE :II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

4. FUNDAMENTALS OF THE ANALYSIS OF ALGORITHM EFFICIENCY

The efficiency of an algorithm can be in terms of time and space. The

algorithm efficiency can be analyzed by the following ways.
a. Analysis Framework.
b. Asymptotic Notations and its properties.
c. Mathematical analysis for Recursive algorithms.

d. Mathematical analysis for Non-recursive algorithms.

1.1 Analysis Framework

There are two kinds of efficiencies to analyze the efficiency of any algorithm.

They are:

• Time efficiency, indicating how fast the algorithm runs, and

• Space efficiency, indicating how much extra memory it uses.

The algorithm analysis framework consists of the following:

• Measuring an Input’s Size
• Units for Measuring Running Time
• Orders of Growth
• Worst-Case, Best-Case, and Average-Case Efficiencies

(i) Measuring an Input’s Size

• An algorithm’s efficiency is defined as a function of some parameter n

indicating the algorithm’s input size. In most cases, selecting such a

parameter is quite straightforward. For example, it will be the size of the list

for problems of sorting, searching.

• For the problem of evaluating a polynomial p(x) = anx
n+ . . . + a0 of degree

n, the size of the parameter will be the polynomial’s degree or the number

of its coefficients, which is larger by 1 than its degree.
• In computing the product of two n × n matrices, the choice of a parameter

indicating an input size does matter.

• Consider a spell-checking algorithm. If the algorithm examines individual
characters of its input, then the size is measured by the number of characters.

• In measuring input size for algorithms solving problems such as checking

primality of a positive integer n. the input is just one number.

• The input size by the number b of bits in the n’s binary representation is

b=(log2n)+1.

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE :II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

(ii) Units for Measuring Running Time

Some standard unit of time measurement such as a second, or millisecond,

and so on can be used to measure the running time of a program after implementing

the algorithm Drawbacks,

• Dependence on the speed of a particular computer.
• Dependence on the quality of a program implementing the

algorithm.
• The compiler used in generating the machine code.

The difficulty of clocking the actual running time of the program. So, we need metric

to measure an algorithm’s efficiency that does not depend on these extraneous

factors.One possible approach is to count the number of times each of the

algorithm’s operations is executed. This approach is excessively difficult.

The most important operation (+, -, *, /) of the algorithm, called the basic

operation. Computing the number of times, the basic operation is executed is

easy. The total running time is basic operations count.

(iii) ORDERS OF GROWTH

• A difference in running times on small inputs is not what really

distinguishes efficient algorithms from in efficient ones.

• For example, the greatest common divisor of two small numbers, it is not

immediately clear how much more efficient Euclid’s algorithm is compared
to the other algorithms, the difference in algorithm efficiencies becomes

clear for larger numbers only.
• For large values of n,
• it is the function’s order of growth that counts just like theTable1.1,

which contains values of a few functions particularly important for analysis
of algorithms.

TABLE 1.1 Values (approximate) of several functions important for analysis of

algorithms

N
√

log2n n n log2n n2 n3 2n n!

1 1 0 1 0 1 1 2 1

2 1.4 1 2 2 4 4 4 2

4 2 2 4 8 16 64 16 24

8 2.8 3 8 2.4•101 64 5.1•10
2

2.6•102 4.0•104

10 3.2 3.3 10 3.3•101 102 103 103 3.6•106

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE :II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

16 4 4 16 6.4•101 2.6•10
2

4.1•10
3

6.5•104 2.1•101
3

102 10 6.6 10
2

6.6•102 104 106 1.3•103
0

9.3•101
57

103 31 10 10
3

1.0•104 106 109
Very big

computati
on

104 102 13 10
4

1.3•105 108 1012

105 3.2•10
2

17 10
5

1.7•106 1010 1015

106 103 20 10
6

2.0•107 1012 1018

(iii) Worst-Case, Best-Case, and Average-Case

Efficiencies Consider Sequential Search

algorithm some search key K ALGORITHM

Sequential Search (A[0..n 1],K)

//Searches for a given value in a given array by sequential search

//Input: An array A[0..n - 1] and a search key K

//Output: The index of the first element in A that matches K or -1 if there

are no

// matching elements

i ←0

while i < n and A[i] ≠ K do

i ←i + 1

if i < n

return i

else

return- 1

Clearly, the running time of this algorithm can be quite different for the same list

size n.

In the worst case, there is no matching of elements or the first matching

element can found at last on the list. In the best case, there is matching of elements

at first on the list.

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE :II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

Worst-case efficiency

• The worst-case efficiency of an algorithm is its efficiency for the worst

case input of size n.
• The algorithm runs the longest among all possible inputs of that size.
• For the input of size n, the running time is Cworst(n) =n.

Best case efficiency

• The best-case efficiency of an algorithm is its efficiency for the best case

input of size n.
• The algorithm runs the fastest among all possible inputs of that size n.
• In sequential search, if we search a first element in list of size n. (i.e. first

element equal to a search key), then the running time is Cbest(n) =1

Average case efficiency

• The Average case efficiency lies between best case and worst case.
• To analyze the algorithm’s average case efficiency, we must make some

assumptions about possible inputs of size n.
• The standard assumptions are that

o The probability of a successful search is equal to p (0 ≤ p ≤ 1)and
o The probability of the first match occurring in the ith position of the

list is the same for every i. Yet another type of efficiency is called amortized

efficiency. It applies not to a single run of an algorithm but rather to a sequence of
operations performed on the same data structure.

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE :II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

5. ASYMPTOTIC NOTATIONS AND ITS PROPERTIES

Asymptotic notation is a notation, which is used to take meaningful statement

about the efficiency of a program.

The efficiency analysis framework concentrates on the order of growth of an

algorithm’s basic operation count as the principal indicator of the algorithm’s

efficiency.

To compare and rank such orders of growth, computer scientists use three

notations, they are:

• O - Big oh notation
• Ω - Big omega notation

• Θ - Big theta notation

Lett(n)andg(n)canbeanynonnegativefunctionsdefinedonthesetofnaturalnumbers.
The algorithm’s running time t(n) usually indicated by its basic operation count
C(n), and g(n), some simple function to compare with the count.

Example 1:

where g(n) = n2.

(I) O - Big oh notation

A function t(n) is said to be in O(g(n)), denoted (n) ∈ (g(n)), if t (n) is bounded above

by some constant multiple of g(n) for all large n, i.e., if there exist some positive

constant c and some nonnegative integer n0 such that

(n) ≤ g(n) for n ≤ n0.

Where t(n) and g(n) are nonnegative functions defined on the set of natural

numbers.

O = Asymptotic upper bound = Useful for worst case analysis = Loose bound

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE :II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

FIGURE 1.5 Big-oh notation: (n) ∈ (g(n)).

(i) Ω - Big omega notation

A function t(n) is said to be in Ω(g(n)), denoted t(n) ∈ Ω(g(n)), if t(n) is

bounded below by some positive constant multiple of g(n) for all large n, i.e., if
there exist some positive constant c and some nonnegative integer n0 such that

t (n) ≥ cg(n) for all n ≥ n0.

Where t(n) and g(n) are nonnegative functions defined on the set of natural numbers.

Ω = Asymptotic lower bound = Useful for best case analysis = Loose bound

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE :II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

FIGURE 1.6 Big-omega notation: t (n) ∈ Ω (g(n)).

Example4: Prove the assertions n3+10n2+4n+2 ∈ Ω(n2).

Proof: n3+10n2+4n+2 ≥ n2 (for all n ≥ 0)

i.e., by definition t(n) ≥ cg(n), where c=1 and n0=0

(ii) Θ - Big theta notation

A function t(n) is said to be in Θ(g(n)), denoted t(n) ∈Θ(g(n)), if t(n) is

bounded both above and below by some positive constant multiples of g(n) for all
large n, i.e., if there exist some positive constants c1 and c2 and some nonnegative

integer n0 such that

c2g(n) ≤ t (n) ≤ c1g(n) for all n ≥ n0.

Where t(n) and g(n) are non-negative functions defined on the set of natural

numbers.

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE :II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

Θ = Asymptotic tight bound = Useful for average case analysis

FIGURE 1.7 Big-theta notation: t (n) ∈ Θ(g(n)).

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE :II/IV CS8451-DESIGN AND ANALYSIS OF ALGORITHM

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-I

CSE: II/III CS8451-DESIGN AND ANALYSIS OF ALGORITHM

7. MATHEMATICAL ANALYSIS FOR RECURSIVE

ALGORITHMS:

General Plan for Analyzing the Time Efficiency of

Recursive Algorithms
1. Decide on a parameter (or parameters) indicating an input’s size.
2. Identify the algorithm’s basic operation.

3. Check whether the number of times the basic operation is executed can vary

on different inputs of the same size; if it can, the worst-case, average-case,

and best-case efficiencies must be investigated separately.

4. Set up a recurrence relation, with an appropriate initial condition, for the

number of times the basic operation is executed.
5. Solve the recurrence or, at least, ascertain the order of growth of its solution.

EXAMPLE 1: Compute the factorial function F(n) = n! for an arbitrary non

negative integer n. Since n!= 1•. • (n − 1) • n = (n − 1)! • n, for n ≥ 1 and

0!= 1 by definition, we can compute F(n) = F(n − 1) • n with the following

recursive algorithm.(ND 2015) ALGORITHMF(n)

//Computes n! recursively

//Input: A nonnegative integer n

//Output: The value of n!

if n = 0 return 1

else return F(n − 1) * n

Algorithm analysis

• For simplicity, we consider n itself as an indicator of this algorithm’s input

size. i.e.1.

• The basic operation of the algorithm is multiplication; whose number of

executions we denote M(n). Since the function F(n) is computed according

to the formula F(n) = F(n −1)•n for n >0.
• The number of multiplications M(n) needed to compute it must satisfy the

equality

M (n − 1) multiplications are spent to compute F(n − 1), and one more

multiplication is needed to multiply the result by n

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-I

CSE: II/III CS8451-DESIGN AND ANALYSIS OF ALGORITHM

Recurrence relations

The last equation defines the sequence M(n) that we need to find. This

equation defines M(n) not explicitly, i.e., as a function of n, but implicitly as a

function of its value at another point, namely n − 1. Such equations are called

recurrence relations or recurrences.

Solve the recurrence relation (n) = (n − 1) + 1, i.e., to find an explicit formula
forM(n) in terms of n only.

To determine a solution uniquely, we need an initial condition that tells us

the value with which the sequence starts. We can obtain this value by inspecting

the condition that makes the algorithm stop its recursive calls:

if n = 0 return 1.

This tells us two things. First, since the calls stop when n = 0, the smallest

value of n for which this algorithm is executed and hence M(n) defined is 0.

Second, by inspecting the pseudocode’s exiting line, we can see that when n = 0,

the algorithm performs no multiplications.

Thus, the recurrence relation and initial condition for the algorithm’s number of

multiplications
M(n):

M(n) = M(n − 1) + 1

for n >0, M(0)=0 for

n =0.

Method of backward substitutions

M(n) = M(n − 1)+1 substitute M(n − 1) = M(n − 2) +1

= [M(n − 2) + 1]+ 1

= M(n − 2)+2 substitute M(n − 2) = M(n − 3) +1

= [M(n − 3) + 1]+ 2

= M(n − 3) + 3

…

= M(n − i) + i

…

= M(n − n) + n

= n.

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-I

CSE: II/III CS8451-DESIGN AND ANALYSIS OF ALGORITHM

ThereforeM(n)=n

EXAMPLE 2: consider educational workhorse of recursive algorithms: theTower

of Hanoi puzzle. We have n disks of different sizes that can slide onto any of three

pegs. Consider A (source), B (auxiliary), and C (Destination). Initially, all the

disks are on the first peg in order of size, the largest on the bottom and the smallest

FIGURE 1.7 Recursive solution to the Tower of Hanoi puzzle.

on top. The goal is to move all the disks to the third peg, using the second one as

an auxiliary.

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-I

CSE: II/III CS8451-DESIGN AND ANALYSIS OF ALGORITHM

Algorithm analysis

The number of moves M(n) depends on n only, and we get the following

recurrence equation for it:

M(n) = M(n − 1) + 1+ M(n − 1) for n >1.

With the obvious initial condition M(1) = 1, we have the following recurrence
relation for the number of moves M(n):

M(n) = 2M (n − 1) + 1

for n >1, M (1) = 1.

We solve this recurrence by the same method of backward substitutions:

M(n) = 2M(n − 1)+1 sub. M(n − 1) = 2M(n − 2) +1

= 2[2M (n − 2) + 1] + 1

= 22M (n − 2) + 2+1 sub. M (n − 2) = 2M (n − 3) +1

= 22[2M (n − 3) + 1]+ 2 + 1

= 23M (n − 3) + 22 + 2+1 sub. M (n − 3) = 2M (n − 4) +1

= 24M (n − 4) + 23 + 22 + 2 + 1

…

= 2iM (n − i) + 2i−1 + 2i−2 + . . . + 2 + 1= 2iM (n − i) + 2i− 1.

…

Since the initial condition is specified for n = 1, which is achieved

for i = n − 1, M(n) = 2n−1M (n − (n − 1)) + 2n−1 – 1 = 2n−1M (1) + 2n−1

− 1= 2n−1 + 2n−1 − 1= 2n− 1.

Thus, we have an exponential time algorithm

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-I

CSE: II/III CS8451-DESIGN AND ANALYSIS OF ALGORITHM

EXAMPLE 3: An investigation of a recursive version of the algorithm which
finds the number of binary digits in the binary representation of a positive

decimal integer.

ALGORITHM BinRec(n)

//Input: A positive decimal integer n

//Output: The number of binary digits in n’s binary representation

if n = 1 return 1

else return BinRec(𝗁n/2])+1

Algorithm analysis

The number of additions made in computing BinRec(𝗁n/2]) is A(𝗁n/2]), plus one

more addition is made by the algorithm to increase the returned value by 1. This

leads to the recurrence A(n)=A(𝗁n/2])+1forn >1

Then, the initial condition is A(1) =0.

The standard approach to solving such a recurrence is to solve it

only for n = 2kA(2k) = A(2k−1) + 1 for k >0,

A(20) = 0.

backward substitutions

A(2k) = A(2k−1)+1 substitute A(2k−1) = A(2k−2) +1

= [A(2k−2) + 1]+ 1= A(2k−2)+2 substitute A(2k−2) = A(2k−3) +1

= [A(2k−3) + 1]+ 2 = A(2k−3)+3 . . .

. . .

= A(2k−i) + i

. . .

= A(2k−k) + k.

Thus, we end up with A(2k) = A(1) + k = k, or, after returning to the original

variable n = 2k and hence k = log2 n,

A(n) = log2 n ϵ Θ (log2 n).

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE: II/III CS8451-DESIGN AND ANALYSIS OF ALGORITHM

8. MATHEMATICAL ANALYSIS FOR NON-RECURSIVE ALGORITHMS

1.1 General Plan for Analyzing the Time Efficiency of Non

recursive Algorithms:

1. Decide on a parameter (or parameters) indicating an input’s size.
2. Identify the algorithm’s basic operation (in the inner most oop).

3. Check whether the number of times the basic operation is executed

depends only on the size of an input. If it also depends on some additional

property, the worst-case, average-case, and, if necessary, best-case

efficiencies have to be investigated separately.

4. Set up a sum expressing the number of times the algorithm’s basic operation

is executed.

5. Using standard formulas and rules of sum manipulation either find a closed

form formula for the count or at the least, establish its order of growth.

EXAMPLE 1: Consider the problem of finding the value of the largest element

in a list of n numbers. Assume that the list is implemented as an array for
simplicity.

ALGORITHM Max Element(A[0..n − 1])

//Determines the value of the largest element in a given array

//Input: An array A[0..n − 1] of real numbers

//Output: The value of the largest element in A

Max val ←A[0]

for i ←1 to n − 1 do

if A[i]>maxval

maxval←A[i]

return maxval

Algorithm analysis

• The measure of an input’s size here is the number of elements in the array,
i.e., n.

• There are two operations in the for loop’s body:
o The comparison A[i]> maxval and
o The assignment max val←A[i].

• The comparison operation is considered as the algorithm’s basic operation,

because the comparison is executed on each repetition of the loop and not
the assignment.

• The number of comparisons will be the same for all arrays of size n;

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE: II/III CS8451-DESIGN AND ANALYSIS OF ALGORITHM

therefore, there is no need to distinguish among the worst, average, and best
cases here.

• Let C(n) denotes the number of times this comparison is executed. The

algorithm makes one comparison on each execution of the loop, which is

repeated for each value of the loop’s variable i within the bounds 1 and n −

1, inclusive. Therefore, the sum for C(n) is calculated as follows:
−

() = ∑

=

i.e., Sum up 1 in repeated n-1 times
−

() = ∑ = − ∈ ()

=

EXAMPLE 2: Consider the element uniqueness problem: check whether all the

Elements in a given array of n elements are distinct.

ALGORITHM Unique Elements (A[0..n − 1])

//Determines whether all the elements in a given array are distinct

//Input: An array A[0..n − 1]

//Output: Returns “true” if all the elements in A are distinct and “false”

otherwise

for i ←0 to n − 2 do

for j ←i + 1 to n − 1 do

if A[i]= A [j] return false

return true

Algorithm

Analysis

• The natural measure of the input’s size here is again n (the number of

elements in the array).
• Sincetheinnermostloopcontainsasingleoperation(thecomparisonoftwoeleme

nts), we should consider it as the algorithm’s basic operation.
• The number of element comparisons depends not only on n but also on

whether there are equal elements in the array and, if there are, which array
positions they occupy. We will limit our investigation to the worst case only.

• One comparison is made for each repetition of the innermost loop, i.e., for
each value of the loop variable j between its limits i + 1 and n − 1; this is

repeated for each value of the outer loop, i.e., for each value of the loop
variable i between its limits 0 and n −2.

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE: II/III CS8451-DESIGN AND ANALYSIS OF ALGORITHM

EXAMPLE 3: Consider matrix multiplication. Given two n × n matrices A and

B, find the time efficiency of the definition-based algorithm for computing their

product C = AB. By definition, C

an n × n matrix whose elements are computed as the scalar (dot) products of the

rows of matrix A and the columns of matrix B:

where C[i, j]= A[i, 0]B[0, j]+ . . . + A[i, k]B[k, j]+ . . . + A[i, n − 1]B[n − 1, j] for

every pair of indices 0 ≤ i, j ≤ n − 1.

ALGORITHM MatrixMultiplication(A[0..n − 1, 0..n − 1], B[0..n − 1, 0..n − 1])

//Multiplies two square matrices of order n by the definition-based

algorithm

//Input: Two n × n matrices A and B

//Output: Matrix C = AB

for i ←0 to n − 1 do

for j ←0 to n − 1 do

C[i, j]←0.0

for k←0 to n − 1 do

C[i, j]←C[i, j]+ A[i, k] ∗ B[k, j]

return C

Algorithm analysis

• An input’s size is matrix order n.

• There are two arithmetical operations (multiplication and addition) in the
innermost loop. But we consider multiplication as the basic operation.

• Let us set up a sum for the total number of multiplications M(n) executed
by the algorithm. Since this count depends only on the size of the input
matrices, we do not have to investigate the worst-case, average-case, and

best-case efficiencies separately.

• There is just one multiplication executed on each repetition of the
algorithm’s innermost loop, which is governed by the variable k ranging

from the lower bound 0 to the upper bound n −1.

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE: II/III CS8451-DESIGN AND ANALYSIS OF ALGORITHM

• Therefore, the number of multiplications made for every pair of specific

values of variables i and j is

The total number of multiplications M(n) is expressed by the following triple

sum:

Now, we can compute this sum by using formula (S1) and rule (R1)

.

The running time of the algorithm on a particular machine m, we can do

it by the product If we consider, time spent on the additions too, then

the total time on the machine is

Example: 4

The following algorithm finds the number of binary digits in the binary

representation of a positive decimal integer.

ALGORITHM Binary(n)

//Input: A positive decimal integer n

//Output: The number of binary digits in n’s binary

representation count ←1

while n > 1 do

count

←count +

1 n←𝗁n/2]

return count

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

UNIT-1

CSE: II/III CS8451-DESIGN AND ANALYSIS OF ALGORITHM

Algorithm Analysis:
• An input’s size is n.
• The loop variable takes on only a few values between its lower and upper

limits.
• Since the value of n is about halved on each repetition of the loop, the

answer should be about log2 n.
• The exact formula for the number of times.
• The comparison n > 1 will be executed is actually 𝗁log2 n] +1.

binils.com

binils - Anna University App on Play Storebinils - Anna University App on Play Store

