EQUILIBRIUM OF CABLE

Cable structures

Long span structures subjected to tension and uses suspension cables for supports. Examples of cable structures are suspension bridges, cable stayed roof.

True shape of cable structures

Cable structures especially the cable of a suspension bridge is in the form of a catenary. Catenary is the shape assumed by a string / cable freely suspended between two points.

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Catenary

Catenary is the shape taken up by a cable or rope freely suspended between two supports and under its own self weight.

Cables made of

Cables can be of mild steel, high strength steel, stainless steel, or polyester fibres. Structural cables are made of a series of small strands twisted or bound together to form a much larger cable. Steel cables are either spiral strand, where circular rods are twisted together or locked coil strand, where individual interlocking steel strands form the cable (often with a spiral strand core)

Nature of force in the cables

Cables of cable structures have only tension and no compression or bending.
binils.com

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

LENGTH OF CABLE

Cable

The cables are flexible structures which carry loads in tension only. The cables vary vertical loads and are suspended between the supports.

Range of central dip of a cable
 The central dip of a cable ranges from $1 / 10$ to $1 / 15$ of the span.

Assumptions made in the analysis of cables

a. Cable is considered to be stable and flexible.
b. When external loads act on the cable, self weight of cable is not considered.
c. The length of cable is always constant and therefore it is assumed as a rigid body.
d. The force in the cable is tangential to the cable profile as it carries only axial tensile forces.
e. The load acting on the cable is assumed to be uniformly distributed even though if it is moving load.

Simple suspension bridge

Suspension bridge has got two cables which are stretched over the span. Each cable run over two towers and is anchored by anchor to have a firm foundation. Cable is

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

flexible throughout the span and its bending moment at every point is taken as zero. The load transferred by hangers or suspenders are assumed to be UDL. When the span is more than 200 mts for a road way and 300 mts for light way traffic suspension bridge is preferred.

Stresses in suspended wires due to self weight

The dip is very small in suspended wire occurring at the centre. If 'w' is considered o be the weight of wire per unit length, then the horizontal tension in the wire given by,

$$
\mathrm{H}=\mathrm{wl}^{2} / 8 \mathrm{~d}
$$

Example :

A suspension cable having support at same level, has a span of 30 m and a maximum dip of 3 m . The cable is loaded with a UDL of $10 \mathrm{KN} / \mathrm{m}$ throughout its length. Find the maximum tension in cable

Given data

Span ' l ' $=30 \mathrm{~m}$

Dip 'd' $=30$

UDL ' P ' $=10 \mathrm{KN} / \mathrm{m}$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

To find
Max Tension in cable

Solution

Max Tension in cable

$$
\begin{aligned}
& \operatorname{Tmax}=\sqrt{ }\left(V A^{2}+H^{2}\right. \\
& \mathrm{VA}=\mathrm{VB}=\frac{P L}{2}
\end{aligned}
$$

Find Vertical Reaction

$$
\begin{aligned}
\mathrm{VA} & =\mathrm{VB}=\mathrm{P} 1 / 2 \\
& =(10 \times 30) / 2 \\
& =150 \mathrm{KN}
\end{aligned}
$$

Horizontal pull in the cable

$$
\begin{aligned}
\mathrm{H} & =\mathrm{pl}^{2} / 8 \mathrm{~d} \\
& =10 \times 30^{2} / 8 \times 3 \\
& =375 \mathrm{KN}
\end{aligned}
$$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Find Max tension in cable

$$
\begin{aligned}
\mathrm{T}_{\max } & =\sqrt{ } \mathrm{VA}^{2}+\mathrm{H}^{2} \\
& =\sqrt{ } 150^{2}+375^{2} \\
& =403.88 \mathrm{KN}
\end{aligned}
$$

Example :

A suspension cable is supported at two panel 25 m apart the left support is 2.5 m above the right support. The cable is loaded with a uniformly distributed load by $10 \mathrm{KN} / \mathrm{m}$ throughout the span. The max dip in cable from the left support is 4 m . Find maximum and minimum tension in cable.

Given data

$$
\begin{aligned}
\mathrm{UDL} & =10 \mathrm{KN} / \mathrm{m} \\
\mathrm{~d} 1 & =4 \mathrm{~m}
\end{aligned}
$$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

To find

Maximum and Minimum Tension in cable

SOLUTION:

Max Tension in cable

VA $=$ pll
$\mathrm{VB}=\mathrm{p} 12$
$\mathrm{L}=11+12$
$T \max =\sqrt{ }\left(V A^{2}+H^{2}\right.$

Find the length

\square ∞ 凹

L1 and L2
$11 / 12=\sqrt{ } \mathrm{d} 1 / \mathrm{d} 2$
$11=\sqrt{ }(4 / 1.5) \times 12$
$11=1.63 \times 12$
$\mathrm{L} \quad=11+12$
$25=1.6312+12$
$25=2.63 \times 12$
$12=9.5 \mathrm{~m}$

$$
\begin{aligned}
11 & =\mathrm{L}-12 \\
& =25-9.5 \\
& =15.5 \mathrm{~m}
\end{aligned}
$$

Find Vertical Reaction

$$
\begin{aligned}
\mathrm{VA} & =\mathrm{P} 11 \\
& =10 \times 15.5 \\
& =155 \mathrm{KN} \\
\mathrm{VB} & =\mathrm{P} 12 \\
& =10 \times 9.5 \\
& =95 \mathrm{KN}
\end{aligned}
$$

Horizontal pull in cable

$$
\begin{aligned}
\mathrm{H} & =\mathrm{P} 11^{2} / 2 \mathrm{~d} 1 \\
& =10 \times 15.5^{2} / 2 \times 4 \\
& =300.3 \mathrm{KN} \\
\mathrm{H} & =\mathrm{P} 12^{2} / 2 \mathrm{~d} 2 \\
& =10 \times 9.495^{2} / 2 \times 1.5 \\
& =300.5 \mathrm{KN}
\end{aligned}
$$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Find Tension in cable

$$
\begin{aligned}
\mathrm{TA} & =\sqrt{ } \mathrm{VA}^{2}+\mathrm{H}^{2} \\
& =\sqrt{ }\left(155^{2}+300^{2}\right. \\
& =377.9 \mathrm{KN}
\end{aligned}
$$

$$
\mathrm{TB}=\sqrt{ } \mathrm{VB}^{2}+\mathrm{H}^{2}
$$

$$
=\sqrt{ }\left(300.3^{2}+95^{2}\right.
$$

$$
=314.96 \mathrm{KN}
$$

Example :

A cable of horizontal span 21 m is to be used to support six equal loads of 40 KN each at 3 m spacing the central dip of the cable is limited to 2 m . Find the length of the cable required and also its sectional area if the safe tensile stress is $750 \mathrm{~N} / \mathrm{mm}^{2}$

Given:

span $=21 \mathrm{~m}$
$\operatorname{dip} '^{\prime}=2 \mathrm{~m}$
stress

To find :

a. length of cable
b. sectional area

Solution:

Vertical reaction

$$
\begin{aligned}
\mathrm{VA} & =\mathrm{VB} \\
& =\text { total load } / 2 \\
& =6 \times 40 / 2 \\
& =120 \mathrm{KN}
\end{aligned}
$$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Horizontal Pull

Taking moment about \mathbf{C}

VA x $10.5-40 \times 7.5-40 \times 4.5-40 \times 1.5-\mathrm{H} \times 2=0$

$$
\begin{aligned}
120 \times 10.5-540-2 \mathrm{H} & \\
720 & =0 \\
& =2 \mathrm{H} \\
\mathrm{H} & =360 \mathrm{KN}
\end{aligned}
$$

Find d1

Taking moment about D

$$
\begin{aligned}
& 120 \times 3-360 \times \mathrm{d} 1 \quad=0 \\
& \mathrm{~d} 1 \\
& \mathrm{AD}=\sqrt{ } \mathrm{b}^{2}+\mathrm{C}^{2} \\
& =\sqrt{ } 3^{2}+1^{2} \\
& =3.16 \mathrm{~m}
\end{aligned}
$$

Find d2

Taking moment about E

$$
120 \times 6-40 \times 3-360 \times \mathrm{d} 2=0
$$

360 d 2	$=600$
d 2	$=1.667 \mathrm{~m}$

$\mathrm{DE}=\sqrt{ } \mathrm{b}^{2}+\mathrm{c}^{2}$
$=\sqrt{ } 3^{2}+0.667^{2}$
$=3.073 \mathrm{~m}$

Find d3

Taking moment about F il

$$
\begin{aligned}
120 \times 9-40 \times 6-40 \times 3-360 \times \mathrm{d} 3 & =0 \\
720-360 \mathrm{~d} 3 & =0 \\
\mathrm{~d} 3 & =2 \mathrm{~m} \\
\mathrm{EF} & =\sqrt{\mathrm{b}^{2}+\mathrm{c}^{2}} \\
& =\sqrt{ } 3^{2}+0.33^{2} \\
& =3.018 \mathrm{~m}
\end{aligned}
$$

Find length of cable

$$
\begin{aligned}
\text { length of cable } & =2(\mathrm{AD}+\mathrm{DE}+\mathrm{EF}+\mathrm{FC}) \\
& =2(3.162+3.073+3.018+1.5) \\
& =21.506 \mathrm{~m}
\end{aligned}
$$

Max Tension in cable

Find Area

$$
\begin{aligned}
\text { Stress } & =\mathrm{T}_{\max } / \mathrm{A} \\
750 & \\
& =379.47 \times 10^{3} / \mathrm{A} \\
\mathrm{~A} & =0.505 \mathrm{~m}^{2} \\
\mathrm{~A} & =505 \mathrm{~mm}^{2}
\end{aligned}
$$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

ANCHORAGE OF SUSPENSION CABLES

Anchor cable

The cable tension in suspension cable are of the order of several hundred tones and due to this reason, the anchoring of the suspension cable becomes a perplex task. The suspension cable are to be anchored to the bed rock, after they have been passed over the tall pylons.

Supporting towers

The supporting towers are basically designed for strength, stability and for architectural value of the structure. It provides foundation and glory to the bridge. The suspension cable is supported on the towers on its either sides and height of the tower is about 20 to 200 m . For passing the suspension cable on the either side of the tower a saddle placed on rollers or a guide pulley is provided over the towers.

CE8602 STRUCTURAL ANALYSIS II

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Suspenders

The suspenders are provided to transfer the traffic load on the deck slab to the suspension cable as a UDL. These suspenders are closely spaced.

Example :

A suspension cable of 130 m horizontal span is supported at the same level it is subjected at to a uniformly distributed load of $28.5 \mathrm{KN} /$ horizontal meter it the max tension in the cable is limited to 5000 KN .calculated central dip needed.

Given:
bini

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

$$
\begin{aligned}
& =\mathrm{P} 1 / 2 \\
& =28.5 \times 130 / 2 \\
& =1852.5 \mathrm{KN}
\end{aligned}
$$

Horizontal pull (tension)

$$
\begin{aligned}
\mathrm{H} & =\mathrm{pl}^{2} / 8 \mathrm{~d} \\
& =28.5 \times 130^{2} / 8 \mathrm{~d} \\
& =60206.25 / \mathrm{d} \mathrm{KN}
\end{aligned}
$$

Max Tension

$$
5000=\sqrt{ } 185.5^{2}+(60206.25 / \mathrm{d})^{2}
$$

$$
5000^{2}=1852.5^{2}+60206.25^{2} / \mathrm{d}^{2}
$$

$$
\left(5000^{2}-1852.5^{2}\right) / 60206.25^{2}=1 / \mathrm{d}^{2}
$$

$$
5.95 \times 10^{-3}=1 / \mathrm{d}^{2}
$$

$$
\begin{aligned}
\mathrm{d}^{2} & =1 / 5.95 \times 10^{-3} \\
\mathrm{~d}^{2} & =168 \\
\mathrm{~d} & =\sqrt{ } 168 \\
& =12.96 \mathrm{~m}
\end{aligned}
$$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Example :

The suspension cable of horizontal span 95 m is supported at two different level the right support is higher than left support by 4 m . The dip to lowest point of cable below the left support 5 m the cross sectional area of the cable is $3500 \mathrm{~mm}^{2}$. Find the uniformly distributed load that can be carried by the cable if the max stress is limited to $600 \mathrm{~N} / \mathrm{mm}^{2}$

Given:

To find :

Uniformly Distributed Load

SOLUTION:

Find Uniformly distributed load

$$
\begin{aligned}
&=\mathrm{pll} \\
& \mathrm{VB}=\mathrm{pl2} \\
& \mathrm{~L} \\
&=11+12 \\
& \text { stress }=\mathrm{T}_{\max } / \mathrm{A} \\
&=\sqrt{ }\left(V A^{2}+H^{2}\right. \\
& \text { Tmax }=\frac{P 11^{2}}{2 d 1} \\
& \mathrm{H}=\frac{P 12^{2}}{2 d 2}
\end{aligned}
$$

Find the length l_{1} and l_{2}

$$
\begin{aligned}
l_{1} / l_{2} & =\sqrt{ } \mathrm{d} 1 / \mathrm{d} 2 \\
\mathrm{l}_{1} / \mathrm{l}_{2} & =\sqrt{ } 5 / 9 \\
11 & =0.74512 \\
\mathrm{~L} & =11+12 \\
95 & =0.74512+12 \\
95 & =1.74512 \\
\mathrm{l}_{2} & =54.4 \mathrm{~m}
\end{aligned}
$$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

$$
\begin{aligned}
\mathrm{l}_{1} & =\mathrm{L}-12 \\
& =95-54.4 \\
& =40.56 \mathrm{~m}
\end{aligned}
$$

Vertical Reaction

$$
\begin{aligned}
\mathrm{VA} & =\mathrm{p}_{1} \\
& =40.56 \mathrm{p} \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{VB} & =\mathrm{p}_{2} \\
& =54.4 \mathrm{P} \mathrm{~N}
\end{aligned}
$$

Horizontal Pull

$$
\begin{aligned}
\mathrm{H} & =\mathrm{pl}_{2}^{2} / 2 \mathrm{~d}_{2} \\
& =\mathrm{p}(54.4)^{2} / 2 \times 9 \\
\mathrm{H} & =164.4 \mathrm{P} \mathrm{~N}
\end{aligned}
$$

Max tension will occur act right support

$$
\begin{aligned}
& \mathrm{VB}>\mathrm{VA} \quad \mathrm{~TB}>\mathrm{TA} \\
& \begin{aligned}
\mathrm{T}_{\max } & =\mathrm{TB} \\
& =\sqrt{ } \mathrm{VB}^{2}+\mathrm{H}^{2}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{ }(54.4 \mathrm{P})^{2}+(164.65 \mathrm{P})^{2} \\
& =\sqrt{ } 2963.71 \sqrt{ } \mathrm{p}^{2}+\sqrt{ } 27109.62 \sqrt{ } \mathrm{p}^{2} \\
\mathrm{~T}_{\max } \quad & =173.4 \mathrm{p} \mathrm{~N}
\end{aligned}
$$

$$
=\mathrm{T}_{\max } / \mathrm{A}
$$

$$
\begin{aligned}
600 \mathrm{~N} / \mathrm{mm}^{2} & =173.4 \mathrm{p} / 3500 \mathrm{~mm}^{2} \\
\mathrm{P} & =12110 \mathrm{~N} / \mathrm{m} \\
& =12.11 \mathrm{KN} / \mathrm{m}
\end{aligned}
$$

Example :

A suspension cable of span 100 m and dip 10 m carries a uniformly distributed load of $8 \mathrm{KN} / \mathrm{m}$ of horizontal span over the full span. Find the vertical and horizontal forces transmitted to the supporting pylons.
a) If the cable is passed over a smooth pulley
b)If the cable is clamped to a saddle with roller the top of piers the anchor cable is make 30° the horizontal at a pylon

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Given:

$$
\begin{array}{ll}
\text { span l } & =100 \mathrm{~m} \\
\operatorname{dip~d} & =10 \mathrm{~m} \\
\mathrm{P} & =8 \mathrm{KN} / \mathrm{m} \\
\varnothing & =30^{\circ}
\end{array}
$$

To find :

(i) vertical and horizontal forces
a) If the cable is passed over a smooth pulley
b)If the cable is clamped to a saddle with roller

$$
\bigcirc \cap \square \square
$$

Solution:

Vertical reaction

$$
\begin{aligned}
\mathrm{VA} & =\mathrm{VB} \\
& =\mathrm{Pl} / 2 \\
& =8 \times 100 / 2 \\
& =400 \mathrm{KN}
\end{aligned}
$$

Horizontal Pull

$$
\mathrm{H} \quad=\mathrm{Pl}^{2} / 8 \mathrm{~d}
$$

$$
\begin{aligned}
& =8 \times 100^{2} / 8 \times 10 \\
& =1000 \mathrm{KN}
\end{aligned}
$$

Tension in cable

a) Anchor cable passing over pulley

b) cable passing over saddle support
a) Anchor cable passing over pulley

Horizontal force at top of pylon

$$
\begin{aligned}
& =H-T \sin \\
& =1000-1077 \sin 60^{\circ} \\
& =67.29 \mathrm{KN}
\end{aligned}
$$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

b) cable passing over saddle support

$$
\begin{aligned}
\mathrm{T}_{1} & =\mathrm{H} / \sin 60^{\circ} \\
& =1000 / \sin 60^{\circ} \\
& =1154.7 \mathrm{KN}
\end{aligned}
$$

Vertical pressure

$$
\begin{aligned}
& =\mathrm{V}+\mathrm{T}_{1} \cos 60^{\circ} \\
& =977.35 \mathrm{KN}
\end{aligned}
$$

Example :

A suspension cable of horizontal span 210 mm is supported at the same level and has a central dip of 20 mm . Find the increase in dip of the cable if the cable is subjected to a rise in temperature of $28^{\circ} \mathrm{C}$. Take $\alpha=12 \times 10^{-6}$ per ${ }^{\circ} \mathrm{c}$

Given data

$$
\begin{aligned}
& \text { Span ' } 1 \text { ' = 210m } \\
& \text { Dip 'd' }=20 \\
& { }^{\prime} t^{\prime}=28^{\circ} \mathrm{c} \\
& { }^{\prime} \alpha \text { ' }=12 \times 10^{-6} \text { per }^{\circ} \mathrm{c}
\end{aligned}
$$

To find :

Increase in dip of the cable

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Solution

Change in dip

$$
\begin{aligned}
\Delta \mathrm{d}= & \frac{3 l^{2}}{16 d} \propto t \\
& \frac{3 \times 210^{2}}{16 \times 20} \times 12 \times 10-6 \times 28 \\
= & 0.138 \mathrm{~m} \\
& =138 \mathrm{~mm}
\end{aligned}
$$

Example :

A cable supported at the same level on either end is of 140 m horizontal span with a central dip of 14 mm . It carries a load of $15 \mathrm{KN} / \mathrm{m}$ on the horizontal span. Calculate the change in the horizontal tension when the temperature rises through $28^{\circ} \mathrm{c}$. Co-efficient of linear expansion of the cable materials. $\alpha=4 \times 10^{-6}{ }^{\circ} \mathrm{c}$.

Given data

$$
\begin{aligned}
\text { SPAN } \quad \mathrm{L}^{\prime} & =140 \mathrm{~m} \\
\cdot \mathrm{~d} ' & =14 \mathrm{~m} \\
\cdot \mathrm{P} ' & =15 \mathrm{KN} / \mathrm{M} \\
{ }^{\mathrm{t}} \text { ' } & =28^{\circ} \mathrm{c} \\
{ }^{\prime} \alpha ' & =4 \times 10^{-6} /{ }^{\circ} \mathrm{c}
\end{aligned}
$$

To find :

Change in the horizontal tension

SOLUTION:

$$
\begin{aligned}
\mathrm{H} & =\frac{p l^{2}}{8 d} \\
\mathrm{H} & =\frac{15 \times 140^{2}}{8 \times 14} \\
& =2625 \mathrm{KN}
\end{aligned}
$$

Change in horizontal tension

$$
\Delta \mathrm{h} \quad=\frac{3 l^{2}}{16 d} \propto t H
$$

$$
\begin{aligned}
& =\frac{3 \times 140^{2}}{16 \times 14^{2}} \times 4 \times 10^{-6} \times 28 \times 2625 \\
& =-5.513
\end{aligned}
$$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

STIFFENING GIRDERS

Girder

Stiffening girder are the major load bearing members in suspension bridges. As they are flexible, they change their shape with the nature and position of the moving live load on deck slab.

Functions of stiffening girder
a. They help in keeping the cables in shape
b. They resist part of shear force and bending moment due to live loads.
c. The cables take directly the dead load of the girder.
d. The dead load of the girder does not cause any shear force o bending moment in the girder.
e. The stiffening girder are subjected to shear force and bending moment due to live load and they should resist them safely.
f. Stiffening girder allow the suspension bridge deck to remain in its actual position even after the application of load.

Types of stiffening girders.

a. Two hinged stiffening girder
b. Three hinged stiffening girder

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Two hinged stiffening girder

a. These are used to decrease the sag under the rolling load.
b. Suspension cable bridges are stiffened with two hinged stiffening girder to make them stiff.
c. These structures are statically indeterminate and by using energy methods, the forces in the cable may be obtained.
d. When the girder is assumed to be rigid, the load at any position is transferred in the form of UDL.

Three hinged stiffening girder

a. If the bridge is stiffened with three hinged stiffening girder, it maintains its parabolic shape during the movement off loads over the bridge.
b. If moving the loads are involved, then the cable are assumed to carry uniform load and hence the stiffening girder will be subjected to bending moment and shear force.

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

CABLES WITH THREE HINGED STIFFENING GIRDERS

Girder

Stiffening girder are the major load bearing members in suspension bridges. As they are flexible, they change their shape with the nature and position of the moving live load on deck slab.

Tension coefficient of a truss member

The tension coefficient for a member of a truss is defined as the pull or tension in the member divided by its length, i.e. the force in the member per unit length

Forces developed in beams curved in plan

Beams curved in plan will have the following forces developed in them:
a. Shear forces
b. Torsional moments

Types of significant cable structures

Linear structures, Suspension bridges ,Cable-stayed beams or trusses, Cable trusses ,Straight tensioned cables ,Three-dimensional structures , 3D cable trusses

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Example :

A suspension bridge of 250 m span has two nos. of three hinged stiffening girders supported by cables with a central dip of 25 m . If 4 point loads of 300 KN each are placed at the centre line of the road way at $20 \mathrm{~m}, 30 \mathrm{~m}, 40 \mathrm{~m}, 50 \mathrm{~m}$ from the left hand hinge. Find the shear force and bending moment in each girder at 62.5 m from each end. Calculate the max tension in the cable

Given:

$$
\begin{aligned}
& \text { span }=250 \mathrm{~m} \\
& '^{\prime} ' \quad=25 \mathrm{~m}
\end{aligned}
$$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

To find :

(i) Shear force and bending moment in each girder at 62.5 m from each end
(ii) Max tension

solution :

Find v_{E} of v_{f}
Taking moment about " f "

$$
\begin{aligned}
& \\
&=V_{E} \times 250-150 \times 200-150 \times 210-150 \times 220-150 \times 230=0 \\
&=516 \mathrm{KN} \\
& \text { Total load }=V_{\mathrm{E}}+\mathrm{V}_{\mathrm{F}} \\
& 600=516+\mathrm{VF} \\
& \mathrm{~V}_{\mathrm{F}}=84 \mathrm{KN}
\end{aligned}
$$

Horizontal pull

$$
\begin{aligned}
\mathrm{H} & =\mu_{\mathrm{c}} / \mathrm{d} \\
\mu_{\mathrm{c}} & =\mathrm{Vf} \mathrm{\times c} \\
& =\frac{V_{F} \times 125}{25}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{84 \times 125}{25} \\
& =420 \mathrm{KN}
\end{aligned}
$$

a)Bending Moment

BM @ 62.5m from left hinge

$$
\begin{aligned}
& =\mathrm{V}_{\mathrm{F}} \times 187.5-\mathrm{H} \times \mathrm{y} \\
\mathrm{y} & =\frac{4 d}{l^{2}} \mathrm{X}(l-\mathrm{X}) \\
& =\frac{4 \times 25}{250^{2}} \times 62.5 \times 187.5 \\
& =18.75 \mathrm{~m} \\
& =84 \times 187.5-18.75 \times 420 \\
& =787.5 \mathrm{KNM}
\end{aligned}
$$

BM@62.5 from right hand Hinge

$$
\begin{aligned}
& =\mathrm{VF} \times 62.5-\mathrm{H} \times \mathrm{y} \\
& =84 \times 62.5-420 \times 18.75 \\
& =-2625 \mathrm{KNM}
\end{aligned}
$$

b) Shear force

SF @62.5 from left hand hinge

$$
\mathrm{V} \quad=\mathrm{V}_{\mathrm{b}}-\tan \theta \mathrm{H}
$$

$$
\begin{aligned}
\tan \theta & =\frac{4 d}{l^{2}}(l-2 \mathrm{X}) \\
& =\frac{4 \times 25}{250^{2}}(250-2 \times 62.5)=0.2 \\
\tan \theta & =0.2
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{b}} & =\mathrm{V}_{\mathrm{E}}-4 \times 150 \\
& =516-600 \\
& =-84 \mathrm{KN} \\
\mathrm{~V}_{\mathrm{b}} & =\mathrm{V}_{\mathrm{F}} \\
& =-84 \mathrm{KN} \\
\mathrm{~V}_{62.5} & =-84-420 \times 0.2 \\
& =-168 \mathrm{KN}
\end{aligned}
$$

SF @ 62.5 from right side

$$
\begin{aligned}
\mathrm{V}_{187.5} & =-\mathrm{V}+\mathrm{H} \tan \theta \\
& =-84+420 \times 0.2 \\
& =0
\end{aligned}
$$

c) Vertical pull on the cable

$$
\begin{aligned}
\mathrm{H} & =\frac{P l^{2}}{8 d} \\
420 & =\frac{p \times 250^{2}}{8 \times 25}
\end{aligned}
$$

d) Max tension in cable

$$
\begin{aligned}
\mathrm{T} & =\sqrt{\mathrm{X}_{n}^{2}}+H^{2} \\
\mathrm{VA} & =\mathrm{VB} \\
& =\frac{P L^{2}}{2} \\
& =\frac{1.34 \times 250}{2}=168 \mathrm{KN} \\
\mathrm{~T} & =\sqrt{168^{2}}+420^{2}=452.35 \mathrm{KN}
\end{aligned}
$$

Example :

Determine the span of steel parabolic cable suspended between to supports at the same level. The limiting value of the central dip is $1 / 12$ th of the span and the permissible stress in the cable is $125 \mathrm{~N} / \mathrm{mm}^{2}$.

Given data

Central dip , d $=1 / 12$
Permissible stress, $\sigma_{p}=125 \mathrm{~N} / \mathrm{mm}^{2}$

Solution

Length of the cable is given by the expression

$$
\begin{aligned}
\mathrm{S} & =1+8 / 3 \cdot \mathrm{~d}^{2} / 1 \\
& =1+1^{2} / 144 \times 1 \\
& =1+8 / 4321
\end{aligned}
$$

$$
S \quad=55 / 541
$$

Assume the density of steel,

$$
\begin{aligned}
\rho & =78 \times 10^{-6} \mathrm{~N} / \mathrm{mm}^{2} \\
\mathrm{~W} & =\text { Area } \times \text { Length } \times \text { Density } \\
& =\mathrm{A} \times 55 / 54 \times 1 \times 78 \times 10^{-6} \\
& =715 / 9 \mathrm{Al} \times 10^{-6}
\end{aligned}
$$

Horizontal force ,

Maximum tension ,

$$
\begin{aligned}
\mathrm{T}_{\max } & =\sqrt{ } \mathrm{V}^{2}+\mathrm{H}^{2} \\
& =\sqrt{ }\left(715 / 18 . \mathrm{Al} \times 10^{-6}\right)+\left(715 / 6 \mathrm{~A} .1 \times 10^{-6}\right) \\
& =\mathrm{Al} \times 10^{-6} \sqrt{ }\left(715^{2} / 18^{2}+715^{2} / 6^{2}\right) \\
& =125.613 \times 10^{-6} \mathrm{~A} .1
\end{aligned}
$$

$$
\begin{gathered}
\text { binils.com - Anna University, Polytechnic \& Schools } \\
\text { Free PDF Study Materials } \\
\mathrm{T}_{\max }=\sigma_{\mathrm{p}} \times \mathrm{A}
\end{gathered}
$$

$125.613 \times 10^{-6} \mathrm{~A} .1=125 \times \mathrm{A}$

$$
\begin{aligned}
& 1=125 / 125.613 \times 10^{-6} \\
& 1=0.99512 \times 10^{6} \mathrm{~mm}
\end{aligned}
$$

length of the cable,

$$
\begin{array}{ll}
\mathrm{S} & =55 / 54 \times 995.12 \\
\mathrm{~S} & =1013.548 \mathrm{~m}
\end{array}
$$

Example :

A suspension bridge has a span 50 m with a 15 m wide runway. It is subjected to a load of $30 \mathrm{KN} / \mathrm{m}$ including self weight .the bridge is supported by a pair of cables having a central dip of 4 m .find the cross sectional area of the cable necessary if the maximum permissible stress is not to exceed 600 Mpa .

GIVEN

Span of bridge, $\mathrm{L} \quad=50 \mathrm{~m}$
Load on the bridge $\mathrm{W} \quad=30 \mathrm{KN} / \mathrm{m}$

Dip of the cables, $\mathrm{d} \quad=4 \mathrm{~m}$
Permissible stresses $\quad=600 \mathrm{Mpa}$

$$
=600 \mathrm{~N} / \mathrm{mm}^{2}
$$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

To find

Cross sectional area

Solution

Horizontal reaction of tension

$$
\begin{aligned}
\mathrm{H} & =\mathrm{w} \mathrm{~L}^{2} / 8 \mathrm{~d} \\
& =30 \times 50 \times 50 / 8 \times 4 \\
& =2343.75 \mathrm{KN}
\end{aligned}
$$

Vertical reaction is given by ,

Maximum tension is
$T \quad=\sqrt{ } V^{2}+H^{2}$

$$
=\sqrt{ } 2343.75^{2}+750^{2}
$$

$$
=2460.825 \mathrm{KN}
$$

Area of the cable is
A $\quad=\mathrm{T} /$ permissible stress

$$
\begin{aligned}
& \text { binils.com - Anna University, Polytechnic \& Schools } \\
& \text { Free PDF Study Materials } \\
& =2460.825 \times 10^{3} / 600=4.101 \times 10^{3} \mathrm{~mm}^{2} \\
& \text { A } \quad=41.01 \mathrm{~cm}^{2}
\end{aligned}
$$

Example :

A suspension bridge has a span 60 m with a 15 m wide runway. It is subjected to a load of $35 \mathrm{KN} / \mathrm{m}$ including self weight .the bridge is supported by a pair of cables having a central dip of 6 m .find the cross sectional area of the cable necessary if the maximum permissible stress is not to exceed 650 Mpa .

GIVEN

To find

Cross sectional area

Solution

Horizontal reaction of tension

$$
\begin{aligned}
\mathrm{H} & =w \mathrm{~L}^{2} / 8 \mathrm{~d} \\
& =35 \times 60 \times 60 / 8 \times 6
\end{aligned}
$$

Vertical reaction is given by ,

$$
\begin{aligned}
\mathrm{V} & =w \mathrm{~L} / 2 \\
& =35 \times 60 / 2 \\
& =1050 \mathrm{KN}
\end{aligned}
$$

Maximum tension is'

Area of the cable is

A $\quad=\mathrm{T} /$ permissible stress
$=2827.21 \times 10^{3} / 650$
$=4.349 \times 10^{3} \mathrm{~mm}^{2}$
$\mathrm{A} \quad=43.49 \mathrm{~cm}^{2}$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

Example :

A three hinged suspension girder bridge has a span of 200 m over the supports at same level. It has a central dip of 20 m .the girder carries three point loads of 15 KN , 25 KN , and 20 KN .acting at $35 \mathrm{~m}, 80 \mathrm{~m}$, and 150 m respectively from the left end. Draw the B.M.D

GIVEN

Length of span $1=200 \mathrm{~m}$
Central $\operatorname{dip}(\mathrm{yc})=20 \mathrm{~m}$

To find

Draw the BMD

Solution

i)SUPPORTS REACTION

$$
\begin{aligned}
\mathrm{V}_{\mathrm{C}}+\mathrm{V}_{\mathrm{D}} & =15+25+20 \\
& =620 \mathrm{KN}
\end{aligned}
$$

Taking moments at \mathbf{C},

$$
\begin{aligned}
\mathrm{V}_{\mathrm{D}} \times 200 & =15 \times 35+25 \times 80+20 \times 150 \\
\mathrm{~V}_{\mathrm{D}} \times 200 & =5525 \\
\mathrm{~V}_{\mathrm{D}} & =5525 / 200 \\
& =27.63 \mathrm{KN} \\
\mathrm{~V}_{\mathrm{C}} & =60-27.63 \\
& =32.37 \mathrm{KN}
\end{aligned}
$$

Bending moment at F,

Moment about G,

$$
\begin{aligned}
\mathrm{M}_{\mathrm{G}} & =\mathrm{V}_{\mathrm{C}} \mathrm{x} 80-15 \mathrm{x} 45 \\
& =32.37 \times 80-15 \times 45 \\
& =1914.6 \mathrm{KN} . \mathrm{m}
\end{aligned}
$$

Moment about \mathbf{H}

$$
\mathrm{M}_{\mathrm{H}}=32.37 \times 150-15 \times 115-25 \times 70
$$

> binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials
> $=1380.5 \mathrm{KN} . \mathrm{m}$

Moment about E,

$$
\begin{aligned}
\mathrm{M}_{\mathrm{E}} & =\mathrm{V}_{\mathrm{D}} \times 100-20 \times 50 \\
& =27.63 \times 100-20 \times 50 \\
& =1763 \mathrm{KN} . \mathrm{m}
\end{aligned}
$$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

 INFLUENCE LINES FOR THREE HINGED STIFFENING GIRDERS

 INFLUENCE LINES FOR THREE HINGED STIFFENING GIRDERS}

Example :

A suspension cable of 100 m span and 15 m dip is stiffened by a three hinged stiffening girder. It is subjected to a concentrated load of 125 KN at 20 m from the left end is addition to a dead load of $10 \mathrm{KN} / \mathrm{m}$.find the maximum tension in the cable and the shear force and the bending moment in the girder at 15 m from the left.

GIVEN

Span of the cable $=100 \mathrm{~m}$
Dip of cable $\quad=15 \mathrm{~m}$

To find

Maximum tension in the cable
Shear force and the bending moment in the girder at 15 m from the left

Solution

Total load $=125+10 \times 100$
$=1125 \mathrm{KN}$

FLD for bending moment due to H

$$
\begin{aligned}
& =w x(1-x) / l \\
& =1 \times 15 \mathrm{x} 85 \\
& =12.75 \mathrm{KNm}
\end{aligned}
$$

Ordinate of BM under total load (165KN)

$$
\begin{aligned}
& =12.75 \times 20 / 15-6.375 \\
& =17-6.375 \\
& =10.625 \mathrm{KN} . \mathrm{m}
\end{aligned}
$$

Maximum + ve BM at given section is

ILD for shear force
Ordinate of shear force for 165 KN

$$
\begin{aligned}
& =-15 / 100 \times 20-(0.35) \\
& =-3-0.35 \\
& =-3.35 \mathrm{~m}
\end{aligned}
$$

Net shear force

$$
\begin{aligned}
& =1125 \times(-3.35) \\
& =-3768.75 \mathrm{KN}
\end{aligned}
$$

Maximum tension in the cable

The load acting over the beam are converted into equivalent UDL

$$
\begin{aligned}
\mathrm{W}_{\mathbf{e}} & =1125 / 100 \\
& =11.25 \mathrm{KN} / \mathrm{m}
\end{aligned}
$$

Horizontal reaction

Vertical reaction,

$$
\begin{aligned}
\mathrm{V} \quad & =\mathrm{W}_{\mathrm{e}} 1 / 2 \\
& =11.25 \times 100 / 2 \\
& =562.5 \mathrm{KN}
\end{aligned}
$$

Maximum tension

$$
\begin{aligned}
\mathrm{T}_{\mathrm{MAX}} & =\sqrt{ } \mathrm{V}^{2}+\mathrm{H}^{2} \\
& =\sqrt{ } 562.5^{2}+937.5^{2} \\
& =10930.351 \mathrm{KN} \\
\mathrm{~T}_{\mathrm{MAX}} & =1094 \mathrm{KN}
\end{aligned}
$$

