Combine 1
Design of RC members for combined Bending, Shear and Torsion 2
UNIT -II DESIGN OF BEAMS 5
EFFECTIVE WIDTH OF FLANGE 5
STEPS FOR CALCULATING DEPTH OF NEUTRAL AXIS AND MOMENT OF RESISTANCE 6
Case I: Neutral axis lies within the flange 6
Case II: Neutral axis lies below the flangeSteps 7
If $x u>D f$, assumption is correct, follow step 3 7
If $x u \geq x u$,max section is over reinforced or balanced 7
If $x u<x u$, max section is under reinforced 7
If $x u<x u, m a x$ section is under reinforced 7
Problem 2.A T-beam of depth of 450 mm has a flange width of 1000 mm and depth of 120 mm . It is reinforced with $6-20 \mathrm{~mm} \phi$ bars on tension side with a cover of 30 mm . If $\mathrm{M}-20$ concrete and Fe415 steel are used. Calculate MR of beam. Take bw $=300 \mathrm{~mm}$ 9
Problem 3.Calculate the Ultimate moment of resistance of a tee-beam having the following section properties. Use M20 and Fe 415 HYSD bars. Width of flange $=1300 \mathrm{~mm}$, Thickness of flange $=100 \mathrm{~mm}$, Width of rib $=325$ mm , Effective depth $=600 \mathrm{~mm}$, Area of st. 10
Design of Shear and torsion 12
Design Problem - T beam 17
An isolated T-beam has a flange of $1200 \times 100 \mathrm{~mm}$, width of rib is 250 mm and effective depth is 600 mm .Tension steel is 3500 mm 2 . Grade of concrete is M20 and steel grade is Fe415. Compute theultimate moment of resistance. Span of SS beam $=8 \mathrm{~m}$. Also17
Design Problem - T beam 19An isolated T-beam has a flange of $1200 \times 100 \mathrm{~mm}$, width of rib is 250 mm and effective depth is 600 mm .Tension steel is 3500 mm 2 . Grade of concrete is M20 and steel grade is Fe415. Compute theultimate moment of resistance. Span of SS beam $=8 \mathrm{~m}$. Also19
binils.com

Catalog

Design of RC members for combined Bending, Shear and Torsion 1
Analysis and design of Flanged beams 4
Design of Flanged beams 8
Design of Shear and torsion 11
Design Problem - T beam 16
DESIGN PROBLEM T BEAMS 18
binils.com

Problem: Design a reinforced concrete beam of rectangular cross-section for the following data
$\mathrm{b}=\mathbf{3 0 0} \mathrm{mm}$
$\mathrm{d}=800 \mathrm{~mm}$
$\mathrm{D}=850 \mathrm{~mm}$
$\mathrm{f}_{\mathrm{ck}}=15 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{M}_{\mathrm{u}}=200 \mathrm{kNm}$
$\mathrm{f}_{\mathrm{y}}=\mathbf{2 5 0 N} / \mathrm{mm}^{2}$
$\mathrm{V}=100 \mathrm{kN}$
$\mathrm{T}_{\mathrm{u}}=50 \mathrm{kN} . \mathrm{m}$

Step1: Equivalent shear

Since tensile reinforcement is not known at the outset, therefore the minimum $\%$ of tension steel is
binils.com

Hence both the longitudinal and transverse reinforcement shall be provided

$$
=312.75 \mathrm{kNm}
$$

Since $M_{u}>M_{r}, n o$ longitudinal reinforcement will be required on compression flange.

Longitudinal Reinforcement

$$
\mathrm{M}_{\mathrm{el}}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{~A}_{\mathrm{st}} \mathrm{~d}\left(1-\frac{\mathrm{A}_{\mathrm{st}} \mathrm{f}_{\mathrm{y}}}{\mathrm{bdf}}\right)
$$

$312.75 \times 10^{6}=0.87 \times 250 \times \mathrm{A}_{\mathrm{st}} \times 800\left(1-\frac{\mathrm{A}_{\mathrm{s}} \times 250}{300 \times 800 \times 15}\right)$

$$
\begin{aligned}
& 12.08 \mathrm{~A}_{\mathrm{st}}^{2}-174000 \mathrm{~A}_{\mathrm{st}}+312.75 \times 10^{6}=0 \\
& \mathrm{~b}_{1}=300-30-30-\frac{28}{2}-\frac{28}{2}=212 \mathrm{~mm} \\
& \mathrm{~d}_{1}=800-30-\frac{10}{2}=765 \mathrm{~mm}
\end{aligned}
$$

Assuming $\phi 8$ two-legged stirrups

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{su}}=2 \times \frac{\pi}{4} \times 8^{2}=100.53 \mathrm{~mm}^{2} \\
& \text { binils.com }
\end{aligned}
$$

Substituting these values in the above equation

$$
\begin{aligned}
& 100.53=\frac{50 \times 10^{6} \mathrm{~s}_{v}}{212 \times 765 \times(0.87 \times 250)}+\frac{100 \times 1000 \mathrm{~s}_{v}}{2.5 \times 765 \times(0.87 \times 250)} \\
& \mathrm{s}_{v}=60.64 \mathrm{~mm}
\end{aligned}
$$

Provided $2 \phi 10$ on each face.

The arrangement of reinforcements is shown in Figure
binils.com

UNIT -II
DESIGN OF BEAMS

2.1 Analysis and design of Flanged beams

In actual practice, T -sections and L -sections are more common than the rectangular section since part of the RC slab, monolithic with the beam and participate with the structural behavior of the beam. For the same load and span T-beam and L- beam carries more moment of resistance than rectangular beam. When a concrete slab is cast monolithically with and, connected to rectangular beams, a portion of the slab above the beam behaves structurally as a part of the beam in compression. The slab portions are called the flange and beam the web. If the flange projections are on either side of the rectangular web or rib, the resulting cross section resembles the T shape and hence is called a T-beam section. On the other hand, if the flange projects on one side, the resulting cross- section resembles an inverted L and hence is termed as L-beam. Advantages of T-beam are

1. Beam and slab are casted monolithically hence; casting can be done at a time.
2.Slab and beam combined together to carry more bending moment.

For same section, T-beams have more M.R (flexural strength) than that ofrectangular beam.

It is that portion of slab which acts integrally with the beam and extends on either side of the beam forming the compression zone. The effective width of flange depends upon the span of the beam, thickness of slab and breadth of the web. It also depends upon the type of loads and support conditions.

As per code (clause 32.1.2 of IS: 456-2000)
Effective flange width for T and L beams are calculated as follows:
a) For T-beams: $\mathrm{bf}_{\mathrm{f}}=10 / 6+\mathrm{b}_{\mathrm{w}}+6 \mathrm{Df}$
b) For L-beams: $b f=10 / 12+b_{w}+3 D f$
c) For isolated beams:
i) For T-beams: $b f=10 /[(10 / b)+4]+b_{w}$
ii) For L-beams: $b f=0.510 /[(10 / b)+4]+b_{w}$

Where,
$b f=$ effective width of the flange.
$\mathrm{b}_{\mathrm{w}}=$ breadth of the web
$\mathrm{Df}=$ thickness of the flange,
I = distance between point of zero moment (forcontinuous beam,
$\mathrm{I}=0.7 \mathrm{x}$ (effective span of beam).

- First segment will be like a rectangular section and steel area Ast1.
- Second segment will be like a beam section having concrete section of area [(bfbw)Df] and steel area of Ast2.
- Our consideration in design and analysis for depth of neutral axis xu > Df will be ascertain the compressive force taken up by concrete in second segment and its line of action.
- If $\mathrm{xu} \leq \mathrm{Df}$, the beam can be thought of as a rectangular section of width bf . The stress distribution for various values of xu

STEPS FOR CALCULATING DEPTH OF NEUTRAL AXIS AND MOMENT OF RESISTANCE:

Given: bf, d, Ast, Df, grade of steel and grade of concrete, span for load calculation.
Required: Factored moment or moment of resistance and load.

Case I: Neutral axis lies within the flange

Steps: 1 Calculate depth of neutral axis assuming neutral axis lies within the flange
$\mathrm{Xu} / \mathrm{d}=(0.87 . \mathrm{fy} . \mathrm{Ast}) /(0.36 . \mathrm{fck} . \mathrm{b} . \mathrm{d})$
Calculate xu
If $\mathrm{xu} \leq \mathrm{Df}$ (Assumption is correct)
2. Note down the value of $x u$,max /d from IS:456-2000Calculate
xu, \max
If $x_{u}<x_{u}$, max section is under reinforced, calculate the moment of resistance bythe following expression

$$
\mathrm{M}_{\mathrm{u}}=0.87 . \text { fy. Ast.d. }[1-((\text { fy. Ast }) /(\text { fck.b.d }))]
$$

3. If $x u>x u, m a x$ section is over reinforced, calculate the moment of resistance bythe following expression

$$
\text { Mu.lim= 0.36. fck.bf.xu, max.(d-0.42.xu, max })
$$

Case II: Neutral axis lies below the flangeSteps:

Calculate neutral axis assuming neutral axis (NA) lies within flange. If $x u>D f$,assumption is wrong. NA lies below the flange.

Recalculate the value of xu by using following relation $\mathrm{C} 1+\mathrm{C} 2=$ TWhere, $\mathrm{C} 1=$
0.36.fck.xu.bw
$\mathrm{C} 2=0.45 . \mathrm{fck} .(\mathrm{bf}-\mathrm{bw}) . \mathrm{DfT}=0.87 . \mathrm{fy}$. Ast
0.36 .fck.xu.bw $+0.45 . \mathrm{fck} .(\mathrm{bf}-\mathrm{bw}) . \mathrm{Df}=0.87$. fy. Ast (assume $(\mathrm{Df} / \mathrm{xu})<0.43)$ andfind xu If $x_{u}>D f$, assumption is correct, follow step 3 . If $\mathrm{xu}<\mathrm{Df}$, assumption is that $(\mathrm{Df} / \mathrm{xu})>0.43$

$$
\begin{aligned}
& \text { Then recalculate xu by using relation } \mathrm{C} 1+\mathrm{C} 2= \\
& \text { TWhere, } \mathrm{C} 1=0.36 . \mathrm{fck} \cdot \mathrm{xu} \cdot \mathrm{~b}_{\mathrm{w}} \\
& \mathrm{C} 2=0.45 . \mathrm{fck} \cdot(\mathrm{bf}-\mathrm{bw}) \cdot \mathrm{yf} \\
& \mathrm{~T}=0.87 . \mathrm{fy} \text {. Ast } \\
& \mathrm{yf}=(0.15 \mathrm{xu}+0.65 \mathrm{Df}
\end{aligned}
$$

If $\mathbf{x u} \geq \mathbf{x u}$, max section is over reinforced or balanced.

Df / d ≤ 0.2 use equation G.2.2 page No.96, IS:456-2000 for Mucalculation

$$
\begin{aligned}
& \text { Mu.lim= 0.36. fck.bw.d }{ }^{2} \cdot(\mathrm{xu}, \max / \mathrm{d}) \cdot(1-0 \cdot 42 \cdot(\mathrm{xu}, \max / \mathrm{d}))+ \\
& 0.45 . \mathrm{f}_{\mathrm{ck}} \cdot\left(\mathrm{bf}-\mathrm{b}_{\mathrm{w}}\right) \cdot \mathrm{Df} \cdot(\mathrm{~d}-(\mathrm{Df} / 2))
\end{aligned}
$$

Df / d > 0.2 use equation G.2.2.1 page No.97, IS:456-2000 for Mucalculation
Mu.lim=0.36. fck.bw. $\mathrm{d}^{2} \cdot((\mathrm{xu}, \max / \mathrm{d}) \cdot($ 1-0.42. $(\mathrm{xu}, \max / \mathrm{d}))+$
0.45.fck.(bf - b_{w}).yf.(d-(yf/2))

Where, $\mathrm{yf}=(0.15 \mathrm{xu}+0.65 \mathrm{Df})$, but should not be greater than Df.

If $\mathbf{x u}<\mathbf{x u}$, max section is under reinforced.

1.Df / $\mathrm{xu} \leq 0.43$ use equation G.2.2 page No.96, IS:456-2000 for Mucalculation

$$
\begin{aligned}
& \mathrm{Mu}^{2}=0.36 . \mathrm{fck} \cdot \mathrm{~b}_{\mathrm{w}} \cdot \mathrm{~d}^{2} \cdot((\mathrm{xu} / \mathrm{d}) \cdot(1-0 \cdot 42 \cdot(\mathrm{xu} / \mathrm{d}))+0.45 \cdot \mathrm{fck} \cdot(\mathrm{bf}- \\
& \left.\mathrm{b}_{\mathrm{w}}\right) \cdot \mathrm{Df} .(\mathrm{d}-(\mathrm{Df} / 2))
\end{aligned}
$$

2. Df $/ \mathrm{xu}>0.43$ use equation G.2.2.1 page No.97, IS:456-2000 for Mucalculation $M u=0.36$. fck.bw. $d^{2} .\left((x u / d) \cdot(1-0.42 \cdot(x u / d))+0.45 \cdot f c k \cdot\left(b f-b_{w}\right) \cdot y f .(d-(y f / 2))\right.$

Where, $\mathrm{yf}=(0.15 \mathrm{xu}+0.65 \mathrm{Df})$, but should not be greater than Df .
binils.com

UNIT -II
DESIGN OF BEAMS

2.2 Design of Flanged beams

Problem 1.Find the flange width of the following simply supported T-beam. Effectivespan $=6 \mathrm{~m}, \mathrm{C} / \mathrm{C}$ distance of adjacent panels $=3.0 \mathrm{~m}$, Breadth of the web $=350 \mathrm{~mm}$, Thickness of slab $=100 \mathrm{~mm}$.

Solutions:
Given: $1=6 \mathrm{~m}$,
bf = 300,

$$
\mathrm{Df}=100 \mathrm{~mm}
$$

Since the beam is simply supported, the distance between the points of zero momentsl0 $=1=6 \mathrm{~m}$
Clear span of the slab to the left or right of the beam
$=\mathrm{C} / \mathrm{C}$ distance of adjacent panels $-\mathrm{b}_{\mathrm{w}}$
$=3000-350=2650 \mathrm{~mm}$
Effective width of the flange is the least of the following:
i)

$$
\text { i) bf } \quad=10 / 6+b_{w}+6 \mathrm{Df}
$$

ii) $\quad \mathrm{bf}_{\mathrm{f}}=\mathrm{bw}_{\mathrm{w}}+$ Half of the clear distance to the adjacent beams on either side

$$
=350+2650 / 2+2650 / 2=3000 \mathrm{~mm}
$$

Therefore, $\mathrm{bf}=\mathbf{1 9 5 0} \mathrm{mm}$.

Problem 2.A T-beam of depth of $\mathbf{4 5 0} \mathbf{~ m m}$ has a flange width of 1000 mm and depth of $\mathbf{1 2 0} \mathbf{~ m m}$. It is reinforced with 6-20 $\mathbf{m m} \phi$ bars on tension side with a cover of $\mathbf{3 0} \mathbf{~ m m}$. If M20 concrete and Fe415 steel are used. Calculate MR of beam. Take bw= 300mm.

Solution:
Given

$$
\begin{aligned}
& : \mathrm{b}_{\mathrm{W}}=300 \mathrm{~mm} \\
& \mathrm{bf}_{\mathrm{f}}=1000 \mathrm{~mm} \\
& \text { Df }=120 \mathrm{~mm}, \\
& \text { Clear Cover }=30 \mathrm{~mm}, \\
& \text { D }=450 \mathrm{mmEffective} \text { cover }=30+20 / 2=40 \mathrm{~mm} \\
& d=450-40=410 \mathrm{~mm}
\end{aligned}
$$

$$
\mathrm{M} 20, \mathrm{fck}=20 \mathrm{~N} / \mathrm{mm}^{2}
$$

Fe415, fy $=415 \mathrm{~N} / \mathrm{mm}^{2}$
Assuming Actual Neutral Axis (xu) lies within the flange (i.e, $\mathrm{xu} \leq \mathrm{Df}_{\text {) }}$)

$$
\begin{aligned}
& \mathrm{Xu} / \mathrm{d}=(0.87 . \text { fy.Ast }) /(0.36 . f \mathrm{fk} . \mathrm{b} . \mathrm{d}) \\
& =0.87 \times 415 \times 1885 /(0.36 \times 1000 \times 20) \\
& =94.52 \mathrm{~mm}<\operatorname{Df}(120 \mathrm{~mm})
\end{aligned}
$$

Assumption is correct
The value of xu,max /d from IS:456-2000 for Fe415

$$
0.48 . \mathrm{xu}, \max =0.48 \mathrm{~d}=0.48 \times 410=196.8 \mathrm{~mm}
$$

$\mathrm{xu}<\mathrm{xu}$, max, section is under reinforced, calculate the moment of resistance by the following expression

$$
\begin{aligned}
\mathrm{Mu} & =0.87 . \text { fy. Ast.d. }[1-((\text { fy. Ast }) /(\text { fck.b.d }))] \\
& =0.87 \times 415 \times 1885 \times 410 \times(1-((1885 \times 415) /(1000 \times 410 \times 20)))
\end{aligned}
$$

$$
=252.41 \times 10^{6} \quad \mathrm{~N}-\mathrm{mm}
$$

$$
\mathrm{Mu}=252.41 \times 10^{6} \mathrm{~N}-\mathrm{mm} .
$$

Problem 3.Calculate the Ultimate moment of resistance of a tee-beam having the following section properties. Use M20 and Fe 415 HYSD bars. Width of flange = 1300 mm , Thickness of flange $=100 \mathrm{~mm}$, Width of rib $=325 \mathrm{~mm}$, Effective depth $=$ 600 mm , Area of steel $=4000 \mathrm{~mm}^{2}$

Solution:
Given: $\mathrm{b}_{\mathrm{w}}=325 \mathrm{~mm}$,

$$
\begin{aligned}
& \mathrm{bf}=1300 \mathrm{~mm} \\
& \mathrm{Df}=100 \mathrm{~mm} \\
& \mathrm{~d}=600 \mathrm{~mm} \\
& \mathrm{fck}=20 \mathrm{~N} / \mathrm{mm}^{2} \\
& \mathrm{fy}=415 \mathrm{~N} / \mathrm{mm}^{2} \\
& \text { Ast }=4000 \mathrm{~mm} 2
\end{aligned}
$$

Assuming Actual Neutral Axis (xu) lies within the flange (i.e, $\mathrm{xu} \leq \mathrm{Df}$)
$\mathrm{Xu} / \mathrm{d}=(0.87 . \mathrm{fy}$.Ast)/ (0.36.fck.b.d)

$$
\begin{aligned}
& =0.87 \times 415 \times 4000 /(0.36 \times 1300 \times 20) \\
& =154.3 \mathrm{~mm}>\operatorname{Df}(100 \mathrm{~mm})
\end{aligned}
$$

Assumption is wrong, neutral axis lies below the flange.
Df $/ \mathrm{d}=100 / 600=0.166<0.2$
The value of xu by using relation $\mathrm{C} 1+\mathrm{C} 2=\mathrm{T}$

$$
\begin{aligned}
& \mathrm{C} 1=0.36 . \mathrm{fck} \cdot \mathrm{xu} \cdot \mathrm{bw}=0.36 \times 20 \times 325 \mathrm{x} \mathrm{xu}=2340 \mathrm{xu} \\
& \quad \mathrm{C} 2=0.45 . \mathrm{fck} \cdot\left(\mathrm{bf}-\mathrm{b}_{\mathrm{w}}\right) \cdot \mathrm{Df} \\
& =0.45 \times 20 \times 100 \mathrm{x}(1300-325) \\
& =877500 \mathrm{NT}=0.87 . \mathrm{fy} . \mathrm{Ast} \\
& =0.87 \times 415 \times 4000=1444200 \mathrm{~N} \\
& 2340 \mathrm{xu}+877500=1444200 \\
& \mathrm{xu}=242.18 \mathrm{~mm} \\
& \mathrm{xu}, \max =0.48 \mathrm{~d}=0.48 \times 600=
\end{aligned}
$$

$288 \mathrm{~mm} \mathrm{xu}<\mathrm{xu}, \mathrm{max}$, section is under
reinforced.Df $/ \mathrm{x}_{u}=100 / 242.18=0.413$
<0.43.
Hence use equation for Mu calculation

$$
\begin{aligned}
& \quad \mathrm{Mu}=0.36 . \mathrm{fck} \cdot \mathrm{bw}_{\mathrm{w}} \cdot \mathrm{~d}^{2} \cdot(\mathrm{xu} / \mathrm{d}) \cdot(1-0.42 .(\mathrm{xu} / \mathrm{d}))+0.45 . \mathrm{fck} \cdot(\mathrm{bf}-\mathrm{bw}) \cdot \mathrm{Df} .(\mathrm{d}-(\mathrm{Df} / 2)) \\
& \mathrm{Mu}=0.36 \mathrm{x}(242.18 / 600) \times(1-0.42 \times(242.18 / 600)) \times 325 \times 600^{2} \times 20+ \\
& 0.45 \times 20 \times(1300-325) \times 100 \times(600-(100 / 2)) \\
& =282557218+482625000 \\
& =765.18 \times 10^{6} \mathrm{~N}-\mathrm{mm} \\
& =765.15 \mathrm{kN}-\mathrm{m} .
\end{aligned}
$$

binils.com - Free Anna University, Polytechnic, School Study Materials

Design of Shear Reinforcement

When τ_{v} exceeds τ_{c} given in Table 19, shear reinforcement shall be provided in any of the following forms:
a) Vertical stirrups,
b) Bent-up bars along with stirrups, and
c) Inclined stirrups.

binils.com

$$
V_{e}=V_{u}+1.6\left(T_{v} / b\right)
$$

where $V_{e}=$ equivalent shear,
$V_{u}=$ actual shear,
$T_{u}=$ actual torsional moment,
$b=$ breadth of beam.
(b) The equivalent nominal shear stress τ_{v} is determined from:
$\tau_{\mathrm{we}}=\left(V_{e} / b d\right)$
,τ_{∞} shall not exceed $r_{\text {cm. }}$, given in Table 20 of IS 456

The longitudinal flexural tension reinforcement shall be determined to resist an equivalent bending moment $M_{e 1}$ as given below:

$$
M_{e 1}=M_{u}+M_{t}
$$

where $M_{u}=$ bending moment at the cross-section, and

$$
M_{t}=\left(T_{u} / 1.7\right)\{1+(D / b)\}
$$

where $T_{u}=$ torsional moment,
$D=$ overall depth of the beam, and
$b=$ breadth of the beam.

Design Problem - T beam

An isolated T-beam has a flange of $1200 \times 100 \mathrm{~mm}$, width of rib is $\mathbf{2 5 0 m m}$ and effective depth is 600 mm . Tension steel is 3500 mm 2 . Grade of concrete is M20 and steel grade is $\mathbf{F e} 415$. Compute the ultimate moment of resistance. Span of SS beam $=8 \mathrm{~m}$. Also calculate the safe superimposed load the T-beam can carry, if effective cover $=50 \mathrm{~mm}$. Solution:

Given: $b w=250 \mathrm{~mm}$,

$$
\begin{aligned}
& \mathrm{bf}=1200 \mathrm{~mm} \\
& \mathrm{Df}=100 \mathrm{~mm} \\
& \mathrm{~d}=600 \mathrm{~mm} \\
& \mathrm{fck}=20 \mathrm{~N} / \mathrm{mm}^{2} \\
& \text { fy }=415 \mathrm{~N} / \mathrm{mm}^{2}, \\
& \text { Ast }=3500 \mathrm{~mm}^{2},
\end{aligned}
$$

$$
1=8 \mathrm{~m},
$$

$$
D=600+50=650 \mathrm{~mm}
$$

For Isolated T-beam Effective flange width is the least of the following:

1. $\mathrm{bf}=\mathrm{I} /[(\mathrm{I} / \mathrm{b})+4]+\mathrm{bw}$

$$
=8000 /((8000 / 1200)+4)+250=1000 \mathrm{~mm}
$$

2. $\mathrm{bf}=$ actual width of the flange $=1200 \mathrm{~mm}$

Therefore, $\mathrm{bf}=1000 \mathrm{~mm}$.
Assuming Actual Neutral Axis (xu) lies within the flange (i.e, $\mathrm{xu} \leq \mathrm{Df}$)
$\mathrm{Xu} / \mathrm{d}=(0.87 . \mathrm{fy} . \mathrm{Ast}) /(0.36 . f c k . b . d)=0.87 \times 415 \times 3500 /(0.36 \times 1000 \times 20)=$ $175.51 \mathrm{~mm}>\operatorname{Df}(100 \mathrm{~mm})$
Assumption is wrong, neutral axis lies below the flange.
Df $/ \mathrm{d}=100 / 600=0.166<0.2$
The value of $x u$ by using relation $\mathrm{C} 1+\mathrm{C} 2=\mathrm{T}$
$\mathrm{C} 1=0.36 . \mathrm{fck} . \mathrm{xu} . \mathrm{bw}=0.36 \times 20 \times 250 \mathrm{xxu}=1800 \mathrm{xu}$
$\mathrm{C} 2=0.45 . \mathrm{fck} .(\mathrm{bf}-\mathrm{bw}) . \mathrm{Df}=0.45 \times 20 \times 100 \times(1000-250)=675000 \mathrm{~N} \mathrm{~T}=0.87 . \mathrm{fy}$.
Ast $=0.87 \times 415 \times 3500=1263675 \mathrm{~N}$
$1800 \mathrm{xu}+675000=1263675$
$\mathrm{xu}=327.04 \mathrm{~mm}$
binils.com - Free Anna University, Polytechnic, School Study Materials

$$
\begin{aligned}
\mathrm{xu}, \max =0.48 \mathrm{~d} & =0.48 \times 600 \\
& =288 \mathrm{~mm} \mathrm{xu}>\mathrm{xu}, \max , \\
& \text { section is over reinforced. }
\end{aligned}
$$

Df $/ \mathrm{xu}=100 / 327.04=0.305<0.43$.
Hence use equation for Mu calculation

```
Mu= 0.36. fck.bw.d2.(xu,max}/\textrm{d}).( 1-0.42.(x xu,max /d)) + 0.45.fck.(bf - bw).Df.(d-(Df/2))
Mu= 0.36x 0.48x(1-(0.42x0.48))x250x6002x20 + 0.45x20x(1000-250)x 100x(600- (100/2))
    =248334336 + 371250000
    =
    =
```

binils.com

Design Problem - T beam

An isolated T-beam has a flange of $1200 \times 100 \mathrm{~mm}$, width of rib is $\mathbf{2 5 0 m m}$ and effective depth is 600 mm . Tension steel is 3500 mm 2 . Grade of concrete is M20 and steel grade is $\mathbf{F e} 415$. Compute the ultimate moment of resistance. Span of SS beam $=8 \mathrm{~m}$. Also calculate the safe superimposed load the T-beam can carry, if effective cover $=50 \mathrm{~mm}$. Solution:

Given: $b w=250 \mathrm{~mm}$,

$$
\begin{aligned}
& \mathrm{bf}=1200 \mathrm{~mm} \\
& \mathrm{Df}=100 \mathrm{~mm} \\
& \mathrm{~d}=600 \mathrm{~mm} \\
& \mathrm{fck}=20 \mathrm{~N} / \mathrm{mm}^{2} \\
& \text { fy }=415 \mathrm{~N} / \mathrm{mm}^{2}, \\
& \text { Ast }=3500 \mathrm{~mm}^{2},
\end{aligned}
$$

$$
1=8 \mathrm{~m},
$$

$$
D=600+50=650 \mathrm{~mm}
$$

For Isolated T-beam Effective flange width is the least of the following:

1. $\mathrm{bf}=\mathrm{I} /[(\mathrm{I} / \mathrm{b})+4]+\mathrm{bw}$

$$
=8000 /((8000 / 1200)+4)+250=1000 \mathrm{~mm}
$$

2. $\mathrm{bf}=$ actual width of the flange $=1200 \mathrm{~mm}$

Therefore, $\mathrm{bf}=1000 \mathrm{~mm}$.
Assuming Actual Neutral Axis (xu) lies within the flange (i.e, $\mathrm{xu} \leq \mathrm{Df}$)
$\mathrm{Xu} / \mathrm{d}=(0.87 . \mathrm{fy} . \mathrm{Ast}) /(0.36 . f c k . b . d)=0.87 \times 415 \times 3500 /(0.36 \times 1000 \times 20)=$ $175.51 \mathrm{~mm}>\operatorname{Df}(100 \mathrm{~mm})$
Assumption is wrong, neutral axis lies below the flange.
Df $/ \mathrm{d}=100 / 600=0.166<0.2$
The value of $x u$ by using relation $\mathrm{C} 1+\mathrm{C} 2=\mathrm{T}$
$\mathrm{C} 1=0.36 . \mathrm{fck} . \mathrm{xu} . \mathrm{bw}=0.36 \times 20 \times 250 \mathrm{xxu}=1800 \mathrm{xu}$
$\mathrm{C} 2=0.45 . \mathrm{fck} .(\mathrm{bf}-\mathrm{bw}) . \mathrm{Df}=0.45 \times 20 \times 100 \times(1000-250)=675000 \mathrm{~N} \mathrm{~T}=0.87 . \mathrm{fy}$.
Ast $=0.87 \times 415 \times 3500=1263675 \mathrm{~N}$
$1800 \mathrm{xu}+675000=1263675$
$\mathrm{xu}=327.04 \mathrm{~mm}$
binils-Android app
binils.com - Free Anna University, Polytechnic, School Study Materials

$$
\begin{aligned}
\mathrm{xu}, \max =0.48 \mathrm{~d} & =0.48 \times 600 \\
& =288 \mathrm{~mm} \mathrm{xu}>\mathrm{xu}, \max , \\
& \text { section is over reinforced. }
\end{aligned}
$$

Df $/ \mathrm{xu}=100 / 327.04=0.305<0.43$.
Hence use equation for Mu calculation

```
Mu= 0.36. fck.bw.d2.(xu,max}/\textrm{d}).( 1-0.42.(x xu,max /d)) + 0.45.fck.(bf - bw).Df.(d-(Df/2))
Mu= 0.36x 0.48x(1-(0.42x0.48))x250x6002x20 + 0.45x20x(1000-250)x 100x(600- (100/2))
    =248334336 + 371250000
    =
    =
```

binils.com

