binils.com - Anna University, Polytechnic \& Schools Free PDF Sctuady Materials

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

4.6 PIPES IN SERIES AND IN PARALLEL

PIPES IN SERIES:

When pipes of different lengths and different diameters are connected end to end to form a pipe line, such arrangement or connection of pipes will be considered as pipes in series or compound pipes. Following figure, displayed here, indicates the arrangement of connection of three pipes in series.

Let us consider the following terms from above figure
L_{1}, L_{2} and L_{3} : Length of pipes 1,2 and 3 respectively $\mathrm{d}_{1}, \mathrm{~d}_{2}$ and d_{3} : Diameter of pipes 1,2 and 3 respectively $\mathrm{V}_{1}, \mathrm{~V}_{2}$ and V_{3} : Velocity of flow through pipes 1,2 and 3 respectively
f_{1}, f_{2} and f_{3} : Co-efficient of friction for pipes 1,2 and 3 respectively
$\mathrm{H}=$ Difference of water level in two tanks

We must note it here that difference in liquid surface level will be equal to the sum of total head loss in the pipes.

If we neglect the minor head losses, we will have following equation for total head loss as mentioned here.

$$
H=\frac{4 f_{1} L_{1} V_{1}^{2}}{d_{1} \times 2 g}+\frac{4 f_{2} L_{2} V_{2}^{2}}{d_{2} \times 2 g}+\frac{4 f_{3} L_{3} V_{3}^{2}}{d_{3} \times 2 g}
$$

Let us consider that co-efficient of friction i.e. f is same for all three pipes and therefore we can write the equation for head loss as mentioned here.

$$
\begin{aligned}
H & =\frac{4 f L_{1} V_{1}^{2}}{d_{1} \times 2 g}+\frac{4 f L_{2} V_{2}^{2}}{d_{2} \times 2 g}+\frac{4 f L_{3} V_{3}^{2}}{d_{3} \times 2 g} \\
& =\frac{4 f}{2 g}\left[\frac{L_{1} V_{1}^{2}}{d_{1}}+\frac{L_{2} V_{2}^{2}}{d_{2}}+\frac{L_{3} V_{3}^{2}}{d_{3}}\right]
\end{aligned}
$$

binils - Anna University App on Plăsy?

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

PIPES IN PARALLEL:

When a main pipeline divides in to two or more parallel pipes, which may again join together downstream and continue as main line, the pipes are said to be in parallel. The pipes are connected in parallel in order to increase the discharge passing through the
 main.
It is analogous to parallel electric current in which the drop in potential and flow of electric current can be compared to head loss and rate of discharge in a fluid flow respectively.
The rate of discharge in the main line is equal to the sum of the discharges in each of the parallel pipes.

$$
\text { Thus } \mathrm{Q}=\mathrm{Q} 1+\mathrm{Q} 2
$$

The flow of liquid in pipes (1) and (2) takes place under the difference of head between the sections A and B and hence the loss of head between the sections A and B will be the same whether the liquid flows through pipe (1) or pipe (2). Thus if D_{1}, D_{2} and L_{1}, L_{2} are the diameters and lengths of the pipes (1) and (2) respectively, then the velocities of

$$
\begin{aligned}
& \text { flow } \mathrm{V}_{1} \text { and } \mathrm{V}_{2} \text { in the two pipes must be such as to give } \\
& \qquad \begin{array}{r}
\frac{4 f_{1} L_{1} V_{1}^{2}}{d_{1} \times 2 g}=\frac{4 f_{2} L_{2} V_{2}^{2}}{d_{2} \times 2 g} \\
f_{1}=f_{2} \text {, then } \frac{L_{1} V_{1}^{2}}{d_{1} \times 2 g}=\frac{L_{2} V_{2}^{2}}{d_{2} \times 2 g}
\end{array}
\end{aligned}
$$

EQUIVALENT PIPE

In practice adopting pipes in series may not be feasible due to the fact that they may be of unistandard size (ie. May not be comemercially available) and they experience other minor losses. Hence, the entire system will be replaced by a single pipe of uniform diameter D, but of the same length $L=L_{1}+L_{2}+L_{3}$ such that the head loss due to friction for both the pipes, viz equivalent pipe $\&$ the compound pipe are the same.

For a compound pipe or pipes in series

$$
\begin{aligned}
& h_{f}=h f_{1}+h f_{2}+h f_{3} \\
& h_{f}=\frac{8 f L_{1} Q^{2}}{g \pi^{2} D_{1}^{5}}+\frac{8 f L_{2} Q^{2}}{g \pi^{2} D_{2}^{5}}+\frac{8 f L_{3} Q^{2}}{g \pi^{2} D_{3}^{5}}---(1)
\end{aligned}
$$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

for an equivalent pipe $h_{f}=\frac{8 f L Q^{2}}{g \pi^{2} D_{5}^{5}}--$ (2)
Equating (1) \& (2) and simplifying $\frac{L}{D^{5}}=\frac{L_{1}}{D_{1}^{5}}+\frac{L_{2}}{D_{2}^{5}}+\frac{L_{3}}{D_{3}^{5}}$

$$
\text { or } \quad D=\left\{\frac{L}{\frac{L_{1}}{D_{1}^{5}}+\frac{L_{2}}{D_{2}^{5}}+\frac{L_{3}}{D_{3}^{5}}}\right\}^{\frac{1}{5}}
$$

PROBLEM 1:The difference in water surface levels in two tanks, which are connected by three pipes in series of lengths $400 \mathrm{~m}, 200 \mathrm{~m}$ and 300 m and of diameters 400 mm , 300 mm and 200 mm respectively, is 16 m . Estimate the rate of flow of water if coefficient of friction for these pipes is same and equal to 0.005 , considering: (i) minor losses also (ii) neglecting minor losses.

Solution. Given :
Difference of water levels, $H=16 \mathrm{~m}$
Length and dia. of pipe $1, L_{1}=400 \mathrm{~m}$ and $d_{1}=400 \mathrm{~mm}=0.4 \mathrm{~m}$
Length and dia. of pipe 2, $L_{2}=200 \mathrm{~m}$ and $d_{2}=200 \mathrm{~mm}=0.2 \mathrm{~m}$ Length and dia. of pipe $3, L_{3}=300 \mathrm{~m}$ and $d_{3}=300 \mathrm{~mm}=0.3 \mathrm{~m}$ Also $\quad f_{1}=f_{2}=f_{3}=0.005$
(i) Discharge through the compound pipe first neglecting minor losses.

Let V_{1}, V_{2} and V_{3} are the velocities in the 1st, 2nd and 3rd pipe respectively.
From continuity, we have $A_{1} V_{1}=A_{2} V_{2}=A_{3} V_{3}$

$$
\begin{aligned}
& V_{2}=\frac{A_{1} V_{1}}{A_{2}}=\frac{\frac{\pi}{4} d_{1}^{2}}{\frac{\pi}{4} d_{2}^{2}} \times V_{1}=\frac{d_{1}^{2}}{d_{2}^{2}} V_{1}=\left(\frac{0.4}{0.2}\right)^{2} V_{1}=4 V_{1} \\
& V_{3}=\frac{A_{1} V_{1}}{A_{3}}=\frac{\frac{\pi}{4} d_{1}^{2}}{\frac{\pi}{4} d_{3}^{2}} \times V_{1}=\frac{d_{1}^{2}}{d_{3}^{2}} V_{1}=\left(\frac{0.4}{0.2}\right)^{2} V_{1}=1.77 V_{1} \\
& \\
& \qquad H=\frac{4 f_{1} L_{1} V_{1}^{2}}{d_{1} \times 2 g}+\frac{4 f_{2} L_{2} V_{2}^{2}}{d_{2} \times 2 g}+\frac{4 f_{3} L_{3} V_{3}^{2}}{d_{3} \times 2 g} \\
& 16= \\
& =\frac{4 \times 0.005 \times 400 \times V_{1}^{2}}{0.4 \times 2 \times 9.81}+\frac{4 \times 0.005 \times 200 \times\left(4 V_{1}\right)^{2}}{0.2 \times 2 \times 9.81}+\frac{4 \times 0.005 \times 300}{0.3 \times 2 \times 9.81} \times\left(1.77 V_{1}\right)^{2} \\
& 2 \times 9.81 \\
& V_{1}^{2} \\
& \left(\frac{4 \times 0.005 \times 400}{0.4}+\frac{4 \times 0.005 \times 200 \times 16}{0.2}+\frac{4 \times 0.005 \times 300 \times 3.157}{0.3}\right)
\end{aligned}
$$

binils.com - Anna University, Polytechnic \& Schools Free PDF Study Materials

$$
16=\frac{V_{1}^{2}}{2 \times 9.81}(20+320+63.14)=\frac{V_{1}^{2}}{2 \times 9.81} \times 403.14
$$

$$
\therefore \quad V_{1}=\sqrt{\frac{16 \times 2 \times 9.81}{403.14}}=0.882 \mathrm{~m} / \mathrm{s}
$$

\therefore Discharge,

$$
Q=A_{1} \times V_{1}=\frac{\pi}{4}(0.4)^{2} \times 0.882=\mathbf{0 . 1 1 0 8} \mathrm{m}^{3} / \mathrm{s}
$$

(ii) Discharge through the compound pipe considering minor losses also.

Minor losses are :
(a) At inlet,

$$
h_{i}=\frac{0.5 V_{1}^{2}}{2 g}
$$

(b) Between 1st pipe and 2nd pipe, due to contraction,

$$
\begin{aligned}
h_{c} & =\frac{0.5 V_{2}^{2}}{2 g}=\frac{0.5\left(4 V_{1}^{2}\right)}{2 g} \\
& =\frac{0.5 \times 16 \times V_{1}^{2}}{2 g}=8 \times \frac{V_{1}^{2}}{2 g}
\end{aligned} \quad\left(\because V_{2}=4 V_{1}\right)
$$

(c) Between 2nd pipe and 3rd pipe, due to sudden enlargement,

$$
h_{e}=\frac{\left(V_{2}-V_{3}\right)^{2}}{2 g}=\frac{\left(4 V_{1}-1.77 V_{1}\right)^{2}}{2 g} \quad\left(\because V_{3}=1.77 V_{1}\right)
$$

$$
=(2.23)^{2} \times \frac{V_{1}^{2}}{2 g}=4.973 \frac{V_{1}^{2}}{2 g}
$$

(d) At the outlet of 3rd pipe, $h_{o}=\frac{V_{3}^{2}}{2 g}=\frac{\left(1.77 V_{1}\right)^{2}}{2 g}=1.77^{2} \times \frac{V_{1}^{2}}{2 g}=3.1329 \frac{V_{1}^{2}}{2 g}$

The major losses are

$$
=\frac{4 f_{1} \times L_{1} \times V_{1}^{2}}{d_{1} \times 2 g}+\frac{4 f_{2} \times L_{2} \times V_{2}^{2}}{d_{2} \times 2 g}+\frac{4 f_{3} \times L_{3} \times V_{3}^{2}}{d_{3} \times 2 g}
$$

$=\frac{4 \times 0.005 \times 400 \times V_{1}^{2}}{0.4 \times 2 \times 9.81}+\frac{4 \times 0.005 \times 200 \times\left(4 V_{1}\right)^{2}}{0.2 \times 2 \times 9.81}+\frac{4 \times 0.005 \times 300 \times\left(1.77 V_{1}\right)^{2}}{0.3 \times 2 \times 9.81}$
$=403.14 \times \frac{V_{1}^{2}}{2 \times 9.81}$
\therefore Sum of minor losses and major losses

$$
=\left[\frac{0.5 V_{1}^{2}}{2 g}+8 \times \frac{V_{1}^{2}}{2 g}+4.973 \frac{V_{1}^{2}}{2 g}+3.1329 \frac{V_{1}^{2}}{2 g}\right]+403.14 \frac{V_{1}^{2}}{2 g}
$$

binils.com - Anna University, Polytechnic \& Schools

 Free PDF Study Materials$$
=419.746 \frac{V_{1}^{2}}{2 g}
$$

But total loss must be equal to H (or 16 m)

$$
\therefore \quad 419.746 \times \frac{V_{1}^{2}}{2 g}=16 \quad \therefore \quad V_{1}=\sqrt{\frac{16 \times 2 \times 9.81}{419.746}}=0.864 \mathrm{~m} / \mathrm{s}
$$

\therefore Discharge,

$$
Q=A_{1} V_{1}=\frac{\pi}{4}(0.4)^{2} \times 0.864=\mathbf{0 . 1 0 8 5} \mathbf{~ m}^{3} / \mathrm{s}
$$

PROBLEM 2:Three pipes of length $800 \mathrm{~m}, 500 \mathrm{~m}$ and 400 m of diameter $500 \mathrm{~mm}, 400 \mathrm{~mm}$ and 300 mm respectively are connected are connected in series these pipes are to be replaced by a single pipe of length 1700 m .find the diameter of single pipe.

Solution. Given :

Length of pipe 1 ,
Length of pipe 2,
Length of pipe 3 ,
Length of single pipe,

$$
\begin{aligned}
L_{1} & =800 \mathrm{~m} \text { and dia., } d_{1}=500 \mathrm{~mm}=0.5 \mathrm{~m} \\
L_{2} & =500 \mathrm{~m} \text { and dia., } d_{2}=400 \mathrm{~mm}=0.4 \mathrm{~m} \\
L_{3} & =400 \mathrm{~m} \text { and dia., } d_{3}=300 \mathrm{~mm}=0.3 \mathrm{~m} \\
L & =1700 \mathrm{~m}
\end{aligned}
$$

Let the diameter of equivalent single pipe $=d$

$$
\begin{aligned}
& \frac{L}{d^{5}}=\frac{L_{1}}{d_{1}^{5}}+\frac{L_{2}}{d_{2}^{5}}+\frac{L_{3}}{d_{3}^{5}} \\
& \frac{1700}{d^{5}}=\frac{800}{.5^{5}}+\frac{500}{.4^{5}}+\frac{400}{0.3^{5}} \\
& =25600+48828.125+164609=239037 \\
& \therefore \\
& \therefore \quad d^{5}=\frac{1700}{239037}=.007118 \\
& \therefore \quad d=(.007188)^{0.2}=0.3718=\mathbf{3 7 1 . 8} \mathbf{~ m m} .
\end{aligned}
$$

