AllabtEngg.com
 For Questions, Notes, Syllabus \& Results

MA-8491 Numerical Methods Important 13Mark Questions

Unit I

1. Determine the largest eigen value and the corresponding eigen vector of the matrix

$$
\mathbf{A} \cdot\left|\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right|
$$

2. Apply Gauss-Seidal method to solve the equations

$$
\begin{aligned}
& 28 x+4 y-z=32 \\
& x+3 y+10 z=24 \\
& 2 x+17 y+4 z=35
\end{aligned}
$$

Unit II

1. Find an approximation polynomial for $f(x)$ using Lagrange's interpolation for the following data:

$x:$	0	1	2	5
$y=f(x): 2$	3	12	147	

2. The following values of x and y are given:

$\mathrm{X}: 1$	2	3	4
$\mathrm{Y}: 1$	2	5	11

Unit III

1. Use Romberg's method to evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ correct to 4 decimal places. Also compute the same integral using three-point Gaussian quadrature formula. Comment on the obtained values by comparing with the exact values of the integral which is equal to $\frac{\pi}{4}$.
2. Find the first derivative of $f(x)$ at $x=2$ for the data $f(-1)=-21, f(1)=15, f(2)=12$ and $f(3)=3$, using Newton's divided difference formula.

Unit IV

1. Solve the initial value problem $\frac{d y}{d x}=x-y^{2}, \mathrm{y}(0)=1$ to find $\mathrm{y}(0,4)$ by Adam's Bashforth predictor corrector method and for starting solutions, use the information $y(0,1)=0.9117, y(0,2)=0.8494$. Compute $y(0,3)$ using Runge Kutta method of fourth order.
2. Find the value of y at $\mathrm{x}=0.1$ from $\frac{d x}{d y}=x^{2} y-2, \mathrm{y}(0)=1$ by Taylor's series method.

Unit V

1. Solve the Laplace equation over the square mesh of side 4 units, satisfying the boundary conditions:
$u(0, y)=0, u(4, y)=12+y, 0 \leq y \leq 4$
$\mathrm{u}(\mathrm{x}, 0)=3 \mathrm{x}, \mathrm{u}(\mathrm{x}, 4)=x^{2}, 0 \leq \mathrm{x} \leq 4$.
2. Solve the Poisson equation $V 2 u=-\frac{160}{x^{2} y^{2}}$ over the square mesh with sides $x=0, y=$ $0, x=3$, and $y=3$ with $u=0$ on the boundary and mesh length- 1 unit.
