Diploma, Anna University-UG, PG., HSC & SSLC

Notes **Syllabus Ouestion Papers** Results and Many more ... Available @

www.AllAbtEngg.com

MA5165 Statistical Methods for Engineers

Important 2 Mark Questions

Unit I

- 1. Define and distinguish between estimator and estimate.
- 2. How efficiency is identified in the criteria of estimation?
- 3. Let X_1, X_2, X_n be a sample from an exponential distribution with unknown parameter λ . Find the moment estimator of λ .
- 4. Let $X_{1,}X_{2,\dots}X_{n}$ be a random sample of size 'n' from a normal population $N(\mu, 1)$. Show that $T_n = \frac{1}{n} \sum_{i=1}^n X_i$ is an unbiased estimator of μ .
- 5. Give some good estimators.
- 6. What is the principle of method of moments?
- 7. Define the unbiased of an estimator.
- 8. What is meant by maximum likelihood estimator?
- 9. Give the characteristics of estimators.
- 10. Give the principle of method of moments.

Unit II

- 1. Define: (a) Type I error (b) Type II error.
- 2. If n = 100, $\bar{x} = 718, \sigma = 8.9$, test the null hypothesis $H_0: \mu = 70$ versus the alternative hypothesis $H_1: \mu > 70$ at the $\alpha = 0.05$ level of significance.
- 3. Define critical region.
- 4. What are the expected frequencies of 2×2 contingency table given below? а b
 - d С
- 5. State any two applications of Chi square distribution.
- 6. Explain Null hypothesis and alternative hypothesis.
- 7. What are the two types of errors in testing of hypothesis? Define them.
- 8. What are the assumptions underlying the t-test?
- 9. Two sets of 100 students each were taught to read by two different methods. After the instructions were over, a reading test given to them reveal: $\overline{x_1} = 73.4, \overline{x_2} =$ 70.3, $s_1 = 8$ and $s_2 = 10$. Compute the test statistic.
- 10. Why is the F-distribution associated with two numbers of degrees of freedom?

Unit III

- 1. Write the normal equations for the parabolic trend equation $Y = a + bX + cX^2$.
- 2. If $R_{1,23} = 0$, then find the value of r_{12} .
- 3. Give the difference between linear correlation and multiple correlation.
- 4. Give the normal equations for fitting a second degree parabola by the method of least squares.
- 5. Two variables X and Y have the regression lines 3X + 2Y = 26 and 6X + Y = 31. Find the mean values of X and Y.
- 6. Define partial correlation with an example.
- 7. What are the properties of regression coefficient?
- 8. Prove that a multicorrelation coefficient can never be negative.
- 9. In a trivariate distribution $r_{12} = 0.7$, $r_{23} = r_{31} = 0.5$, find $R_{1.23}$. 10. Give $R_{1.234} = 0.78$, $R_{1.23} = 0.74$ and $r_{12} = -0.5$. compute $r_{13.2}$ and $r_{14.23}$ taking negative signs.

Available in /AllAbtEngg Android App too,

Diploma, Anna University-UG, PG., HSC & SSLC

Notes Syllabus Question Papers Results and Many more... Available @

www.AllAbtEngg.com

<u>Unit IV</u>

1. The data yield the following analysis of variance table:

Source	Degree of freedom	Sum of square	Mean square	F	
Treatment	2	390	-	-	
Error		-	-		
Total	14	666			

Complete the ANOVA table.

- 2. Why is a 2×2 Latin square not possible? Justify the claim.
- 3. What are the basic principles of design of experiment?
- 4. Write down the format of AVOVA table for one factor of classification.
- 5. State any two comparisons between RBD and LSD.
- 6. Write down the linear model of analysis of variance of one way classification.
- 7. Define factor and level in factorial design with an example.
- 8. What is the aim of design of experiments?

<u>Unit V</u>

- 1. Define Principle component.
- 2. Define First principle component.
- 3. The covariance matrix of two random variables X_1 and X_2 is given by $\Sigma \begin{bmatrix} 4 & 1 \\ 1 & 9 \end{bmatrix}$. Then find the standard deviation matrix.
- 4. If $X = \begin{bmatrix} 42 & 4 \\ 52 & 5 \end{bmatrix}$, find \overline{X} .
- [48 4]
 5. State the two properties of multivariate normal distribution.
- 6. Give an example of a tri-variate data in engineering applications.
- 7. Give an example of a covariance matrix and identify the variances in it.
- 8. Define random vector.