		<u> </u>	<u> </u>	Time: 60 min
Ins	tructions:			Marks: 180
1) 7 2) F 3) F	Answer all the ques For Every correct a For Every wrong ar	stions nswer Four marks w nswer One mark will	vill be given be deducted	
CH	OOSE THE CORR	ECT ANSWER		45x4=180
1.	Moment of Inertia of axis perpendicular	f a uniform circular disc to its plane and passing	about a diameter is 'l'. Its	s moment of inertia about ar
	1) 5I	2)3I	3) 6I	4) 4I
3.	1) $\frac{ML^2}{24}$ Four identical thin r	$\frac{2)\frac{ML^2}{12}}{ods each of mass 'M' and the second s$	$3) \frac{ML^2}{6}$	4) $\frac{\sqrt{2}ML^2}{24}$ e frame. Moment of inertia o
	this frame about an	axis through the centre	of the soliare and herne	ndicular to its plane is
4.	this frame about an $1)\frac{2}{3}MI^2$ Three identical sph Consider an axis X	axis through the centre 2) $\frac{13}{3}$ MI ² erical shells, each of m X' which is touching to	ass 'M' and radius 'r' are two shells and passing t	e placed as shown in the fight the diameter of the
4.	this frame about an $1)\frac{2}{3}MI^2$ Three identical sph Consider an axis X shell. Moment of In	axis through the centre 2) $\frac{13}{3}$ MI ² erical shells, each of m X' which is touching to ertia of the system cons	3) $\frac{1}{3}$ MI ² ass 'M' and radius 'r' are two shells and passing t isting of these three sphe	endicular to its plane is 4) $\frac{4}{3}$ MI ² e placed as shown in the fight hrough the diameter of the perical sphells xx' axis is
4.	this frame about an $1)\frac{2}{3}MI^2$ Three identical sph Consider an axis X shell. Moment of In- 1) 3mr ²	axis through the centre 2) $\frac{13}{3}$ MI ² erical shells, each of m X' which is touching to ertia of the system cons 2) $\frac{16}{r}$ mr ²	3) $\frac{1}{3}$ MI ² ass 'M' and radius 'r' are two shells and passing t isting of these three sphe 3) 4mr ²	endicular to its plane is $\frac{4}{3} \frac{4}{3} MI^{2}$ e placed as shown in the fightrough the diameter of the erical sphells xx' axis is $\frac{4}{5} \frac{11}{r} mr^{2}$
4. 5.	this frame about an $1)\frac{2}{3}MI^2$ Three identical sph Consider an axis X shell. Moment of In- 1) 3mr ² Three particles, eac The moment of iner ABC, in gm-cm ² unit	axis through the centre 2) $\frac{13}{3}$ MI ² erical shells, each of m X' which is touching to ertia of the system cons 2) $\frac{16}{5}$ mr ² ch of mass 'm' gram, are tia of the system about ts will be	3) $\frac{1}{3}$ MI ² ass 'M' and radius 'r' are two shells and passing t isting of these three sphe 3) 4mr ² e at the vertices of an equ a line 'AX' Perpendicular	endicular to its plane is $4) \frac{4}{3} MI^{2}$ e placed as shown in the fighrough the diameter of the erical sphells xx' axis is $4) \frac{11}{5} mr^{2}$ uilateral triangle ABC side 'l' to 'AB' and in the plane of
4.	this frame about an $1)\frac{2}{3}MI^2$ Three identical sph Consider an axis X shell. Moment of In- 1) 3mr ² Three particles, eac The moment of iner ABC, in gm-cm ² unit	axis through the centre 2) $\frac{13}{3}$ MI ² erical shells, each of m X' which is touching to ertia of the system cons 2) $\frac{16}{5}$ mr ² ch of mass 'm' gram, are tia of the system about ts will be	3) $\frac{1}{3}$ MI ² ass 'M' and radius 'r' are two shells and passing t isting of these three spheres 3) 4mr ² e at the vertices of an equal time 'AX' Perpendicular	endicular to its plane is 4) $\frac{4}{3}$ MI ² e placed as shown in the fighrough the diameter of the erical sphells xx' axis is 4) $\frac{11}{5}$ mr ² uilateral triangle ABC side 'l' to 'AB' and in the plane of

	There is a flat uniform triangular plate ABC such that AB=4cm, BC=3cm and angle ABC=90°. The moment of inertia of the plate about AB, BC and CA as axis is respectively I, I_2 and I_3 . Which one of the following is true ?							
	1) $I_3 > I_2$	2) $I_2 > I_1$	3) $I_3 > I_1$	4) $I_1 > I_2$				
7.	In a rectangle ABCD	O (BC=2AB). The mo	ment of inertia is minim	um along the axis through				
	1) BC	2) BD	3) HF	4) EG				
8.	The period of revolu the Sun is how many	tion of planet 'A' aro y times greater than t	und the Sun is 8 times hat of 'B' from the Sun	that of 'B'. The distance of 'A	A' from			
9.	The distance of Ne Assuming that they	ptune and Saturn from move in circular orbits	om the Sun is nearly 1 s, their periodic times w	10^{13} and 10^{12} meter respectively ill be in the ratio	ctively			
	1) 10	2) 100	3) 10√10	4) 1000				
10.	A Satellite 'A' of mass 'm' is at a distance of 'r' from the surface of the earth. Another satellite 'B' of mass '2m' is at a distance '2r' from the parth's contro. Their time periods are in the ratio of							
10.	mass '2m' is at a dis				2 0.			
10.	mass '2m' is at a dis	2) 1:16	3) 1:32	$4) 1:2\sqrt{2}$				
10. 11.	1) 1:2 The longest and showhen it is at perpend	2) 1:16 Drtest distance of ear dicular to the major-a	$\begin{array}{c} 3) 1:32 \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	4) 1:2 $\sqrt{2}$ ' and 'r ₂ '. Its distance from the Sun is	e Sur			
10.	The longest and show when it is at perpendent of the longest and show the set of the longest and show here it is at the	2) 1:16 cortest distance of early discular to the major-a 2) $\frac{r_1+r_2}{r_1-r_2}$	3) 1:32 Th from the Sun are 'r ₁ xis of the orbit drawn from the Sun are 'r ₁	4) 1: $2\sqrt{2}$ ' and 'r ₂ '. Its distance from the sun is $4) \frac{r_1+r_2}{3}$	e Sur			
10. 11. 12.	The longest and showhen it is at perpendition of the matrix $\frac{r_1 + r_2}{4}$. Two spheres of mass space around the matrix now be	2) 1:16 2) 1:16 cortest distance of ear dicular to the major-a 2) $\frac{r_1+r_2}{r_1-r_2}$ uses 'm' and 'M' are s asses is now filled wi	and is centre. Their time 3) 1:32 th from the Sun are 'r ₁ xis of the orbit drawn from 3) $\frac{2r_1r_2}{r_1+r_2}$ ituated in air and the gravit th a liquid specific gravit	4) $1:2\sqrt{2}$ ' and 'r ₂ '. Its distance from the form the Sun is 4) $\frac{r_1+r_2}{3}$ avitational force between is 'F ty '3'. The gravitational forde	e Sur '. The will			
10. 11. 12.	The longest and showhen it is at perpendition of the matrix of the second seco	2) 1:16 2) 1:16 cortest distance of ear dicular to the major-a 2) $\frac{r_1+r_2}{r_1-r_2}$ asses 'm' and 'M' are s asses is now filled wi 2) 3F	and is centre. Their time 3) 1:32 th from the Sun are 'r ₁ xis of the orbit drawn from the orbit drawn fr	4) 1: $2\sqrt{2}$ ' and 'r ₂ '. Its distance from the form the Sun is 4) $\frac{r_1+r_2}{3}$ avitational force between is 'F ty '3'. The gravitational forde y	e Sur 			
10. 11. 12. 13.	Two spherical bodie initial separation bet force only, then the order of the second s	2) 1:16 2) 1:16 cortest distance of ear dicular to the major-a 2) $\frac{r_1+r_2}{r_1-r_2}$ asses 'm' and 'M' are s asses is now filled wi 2) 3F es of mass 'M' and 'S ween their centres e distance covered by a	and is centre. Their time 3) 1:32 th from the Sun are 'r ₁ xis of the orbit drawn from 3) $\frac{2r_1r_2}{r_1+r_2}$ ituated in air and the gravit 3) F 5M' and radii 'R' and '2 qual to '12R'. If they attaced a smaller body before c	4) $1:2\sqrt{2}$ ' and 'r ₂ '. Its distance from the form the Sun is 4) $\frac{r_1+r_2}{3}$ avitational force between is 'F ty '3'. The gravitational forde to 4) $\frac{F_1}{3}$ 2R' released in free space with the formula of the space with the formula of the space with the space w	e Sur ". The will			

14.	Imagine a new planet having the same density as that of earth but it is 3 times bigger than the earth in size. If the acceleration due to gravity on the surface of the earth is 'g' and that on the surface of the new planet is 'g'. Then								
	1) $g^1 = \frac{g}{9}$	2) $g^1 = 27 g$	3) $g^{1} = 9g$	4) $g^1 = 3g$					
15.	The acceleration due to gravity on the planet 'A' is 9 times the acceleration due to gravity on planet. 'B'. A man jumps to height of 2m on the surface of 'A'. What is the height of 2m on the surface of 'A'. What is the height of the jump by the same person on the planet 'B' ?								
	1) $\frac{2}{3}$ m	2) $\frac{2}{9}$ m	3) 18m	4) 6m					
16.	The production of dihyd $CO(g) + H_2O(g) \frac{\Delta}{catalant}$	rogen gas via water – $g CO_2(g) + H_2(g)$	gas shift reaction is as	follows					
	The CO ₂ gas is removed	d by scrubbing with sol	lution of						
	1)Sodium arsenite	2) Calcium oxide	3) Sodium phosphite	e 4) Aluminium oxide					
17.	Non – stoichiometric hy	drides are formed by	0.1						
	1)Palladium & vanadiun	ו	2) Manganese & lithi	2) Manganese & lithium					
	3) Nitrogen & fluorine		4) Carbon & nickel						
18.	Which is the poorest reducing agent ?								
	1)nascent hydrogen		2) Atomic hydrogen						
	3) Dihydrogen		4) None of these						
19.	In the lab, H_2O_2 is prep	In the lab, H_2O_2 is prepared by the action of							
	1)Cool dilute H_2SO_4 or	hydrated BaO ₂	2) dil HCl on MnO_2						
	3) Cold H_2 SO ₄ on MnC	2	4) aqueous alkali on Na_2O_2						
20.	What would happen when small quantity of H_2O_2 is added to $FeSO_4$ solution								
	1)O ₂ is evolved 2) H_2 i	s evolved 3) an elec	tron is added to Fe ²⁺	4) an electron is lost by Fe ²⁺					
21.	Strength of 10 volume solution of H_2O_2								
	1) 10 %	2) 3 %	3) 5%	4) 6 %					
22.	How many hydrogen bonded water molecules are associated in $CuSO_4.5H_2O$								
	1) 5	2) 1	3) 4 4) 3						
23.	Formula of baking soda	is							
24	1) NaHCO ₃ W high of the following is	$ 2\rangle$ NaNO ₂	3) BaCl ₂	4) Na_2CO_3					
24.									
	1)Lithium is the stronge	st reducing agent	2) Na forms supe	2) Na forms superoxide with oxygen					
0	3) Li ⁺ is exceptionally sr	 3) Li⁺ is exceptionally small 4) Alkali metals have high reactivity in waater 							
25.	Which one of the alkali metals forms only the normal oxide M_2O on heating in air ?								
	1) Rb	2) K	3) Li	4) Na					

26.	Epsom salt is								
	1) CaSO ₄ .2H ₂ O	2) $BaSO_4 \cdot 2H_2O$	3) MgSO ₄ .2H ₂ O	4) MgSO ₄ .7 H_2O					
27.	Which of the following is strongest base ?								
	1) $Ca(OH)_2$	2) $Ba(OH)_2$	3) Mg(OH) ₂	4) Be $(OH)_2$					
28.	Which of the following	g arrangements is correc	ct with respect to solut	pility in water					
	1) Ba <mg <ca="" <sr<="" td=""><td>2) Mg <ca <ba<="" <sr="" td=""><td>3) Ba <mg <sr<ca<="" td=""><td>a 4) Ba <sr<ca <mg<="" td=""></sr<ca></td></mg></td></ca></td></mg>	2) Mg <ca <ba<="" <sr="" td=""><td>3) Ba <mg <sr<ca<="" td=""><td>a 4) Ba <sr<ca <mg<="" td=""></sr<ca></td></mg></td></ca>	3) Ba <mg <sr<ca<="" td=""><td>a 4) Ba <sr<ca <mg<="" td=""></sr<ca></td></mg>	a 4) Ba <sr<ca <mg<="" td=""></sr<ca>					
29.	Which one of the follo	owing alkali metal chloric	des is expected to hav	e highest melting point					
	1) LiCl	2) NaCl	з) KCl	4) RbCl					
30.	Which of the following	g properties is not true fo	or an alkali metal						
	1) low atomic volume)	2) low ionisation e	nthalpy					
	3) low density		4) low electronegat	tivity					
31.	Sum to infinity	of the series $1 + \frac{4}{5} + \frac{7}{5^2}$	$+\frac{10}{5^3}+$						
	1) $\frac{5}{4}$	2) $\frac{35}{16}$	3) $\frac{15}{16}$	4) 0					
32.	Sum to infinity	of the series $1-3x+$	$-5x^2 - 7x^3 + $	when 1x1 < 1					
	1) $\frac{1-x}{(1+x)^2}$	2) $\frac{1-x}{1+x}$	3) $\frac{1}{(1+x)^2}$	4) $\frac{1+x}{1-x}$					
33.	The sum to 50 terms	of the series 1+2(1+1/50	$\frac{3}{1+1}(1+1/50)^2 + \dots $ is	<u>.</u> 3					
34	1) 2500	2) 2550	3) 2450	4) None					
J .	$1 + \log_e x + \frac{(\log_e x)^2}{2!} + \frac{(\log_e x)^2}{3}$	<u>*)</u> • !							
35	1) 1	2)e	3)x	$4)e^{x}$					
55.	$\left \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \dots \right $								
	1) e	2) e/2 3	b) e ⁻¹	4) e-2					
36.	$\sum_{n=1}^{\infty} \frac{2n}{(2n+1)!} - \cdots$								
	1) $\frac{1}{e}$	2) $\frac{e}{2}$	3)e	4) 2e					
37.	The sum of the series $\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} +$ is								
	$1)\frac{e^2-1}{2}$	$2)\frac{e^2-2}{e}$	$3)\frac{e^2-1}{2e}$	4) $\frac{(e-1)^2}{2e}$					
38.	$\frac{1}{2!} + \frac{1+2}{3!} + \frac{1+2+3}{4!} +$								
	1								

	1)1-log_2			2)1+log_2		3)2-log_2		$(4)1-2\log_{2}2$	
40.	If P:7>4, q: 7<9, then py				, <u>St</u>		, -06-		
	1)True		2) Fals	se	3) Canno) Cannot be determined		4) None	
41.	The negation of \sim sV (\sim r \wedge s) is equivalent to								
	1) S∧~ <i>r</i>			2) $S \wedge (r \wedge s)$)	3) SV($rV \sim s$)		4) S∧ <i>r</i>	
42.	The contrapositive of 1			$\mathbf{p} \Rightarrow q \text{ is}$					
	1) $\mathbf{p} \Longrightarrow q$			2) $q \Rightarrow p$	3	$p \rightarrow q$	4)~	$q \Rightarrow \sim p$	
43.	P: she is be	eautifu	ıl, q: sh	e is intelliger	nt. The sym	bolic form of "if	she is r	ot beautiful	
	not intellig	gent " i	s			1			
	1) $p \Longrightarrow \sim q$			2) ~p \Rightarrow q		$3) \sim p \Longrightarrow \sim q$	•	$ 4) \sim q \Longrightarrow \sim p$	
14.	$[p\Lambda(\sim q)]\Lambda$	$\sim pV(q$)] is			0	S		
	1) a tautolo	ogy			2) a contradiction			
<u></u>	3) a tautology and a contradiction				4) neither tautologynor a contradiction				
45.	The statement is $\sim (p \leftrightarrow \sim q)$ is								
	Thestaten	nent is	$\sim (p \leftarrow$	$\rightarrow \sim q$)is	1) includer talatoro	6) nor u	contradictio	
	The staten 1)a tautolo	nent is gy	5~(p ← 2)a f	→ ~q)is allacy	3) equiva	lent to $p \leftrightarrow q$	4)ec	quivalent to ~	
	The staten 1)a tautolo	nent is gy	5~(p ← 2) a f	→ ~q)is allacy	3) equiva	lent to $p \leftrightarrow q$	4) ec	juivalent to ~	

ANSWER KEY

ANSW		<u>ER KEY</u>		
16 1	16	31	2	
17 1	17	32	1	
18 3	18	33	1	
19 1	19	34	3	
20 4	20	35	3	
21 2	21	36	1	
22 2	22	37	3	
23 1	23	38	4	
24 2	24	39	3	
25 3	25	40	1	
26 4	26	41	4	
27 2	27	42	4	
28 2	28	43	4	
29 2	29	44	2	
30 1	30	45	3	
G				