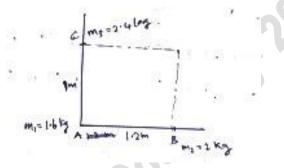
DEPARTMENT OF SCHOOL EDUCATION Government JEE Coaching- 2019-20

<u>UNIT TEST - 4</u>

Time: 60 min

Marks: 180


Instructions:

- 1) Answer all the questions
- 2) For Every correct answer Four marks will be given
- 3) For Every wrong answer One mark will be deducted

CHOOSE THE CORRECT ANSWER

45x4=180

1. Three point masses m_1, m_2 and m_3 are placed at corners of a thin massless rectangular sheet (1.2m x 1m) as shown. Centre of mass will be located at the point

a)(0.8, 0.6) m

c)(0.4,0.4) m

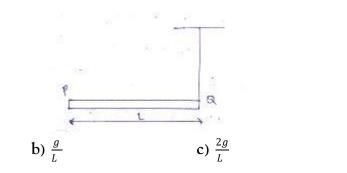
b)(0.6,0.8)m d)(0.5,0.6)m

2. Two particles of equal mass have co-ordinates (2m,4m,6m) and (6m,2m,8m). Of these $V_1 = 2\hat{i} m s^{-1}$, and another particle has velocity $V_2 = 2\hat{j} m s^{-1}$ at time t = 0. The co-ordinator of mass at time t = 1s will be

a)(4m,4m,7m) b)(5m,4m,7m) c)(2m,4m,6m) d)(4m,5m,4m)

3. From a circular disc of radius R, a square is cut out with radius as its diagonal. The centre of mass of remaining portion is at a distance (from the centre)

4. A man of mass M stands at one end of a plank of length L which lies at rest on a friction less surface . The man walks to the other end of the plank. If the mass of the plank is $\frac{M}{3}$, the distance that man moves relative to the ground is a) $\frac{3L}{4}$ b) $\frac{L}{4}$ c) $\frac{4L}{5}$ d) $\frac{L}{3}$


5 A ball falls freely from a height of 45m. When the ball is at a height of 20m, it explodes into two

equal pieces. One of them moves horizontally with the speed of 10ms⁻¹. The distance between the two pieces on the ground is

a) 20m b) 30m d) 60m c) 40m A wheel which is initially at rest is subjected to a constant angular acceleration about its axis. It 6. rotates through an angle of 15° in time 't' second . The increase in angle through which it rotates in the next '2t' s is b)120° d) 45° a) 90° c) 30° The moment of inertia of a solid cylinder of mass M, length 2R and radius R about an axis passing 7 through the centre of mass and perpendicular to the axis of the cylinder is L and about an axis passing through one end of the cylinder and perpendicular to the axis of the cylinder is I_2 c) $\frac{l^2}{l^1} = \frac{19}{12}$ a) $I_2 - I_1 = MR^2$ b) $I_2 = I_1$ d) $I_1 - I_2 = MR^2$ The radius of gyration of a solid sphere of radius R about its tangential is 8 b) $\sqrt{\frac{2}{r}} \mathbf{R}$ c) $\sqrt{\frac{5}{\pi}}$ R a) $\sqrt{\frac{7}{r}} R$ d)R The unit mass having ----- and ----- in its angular momentum is 9 b) 64 units in + \hat{k} direction a) 64 units in $-\hat{k}$ direction c) 64 units in $-\hat{i}$ direction d) 64 units in $+\hat{i}$ direction A solid sphere of radius r is rolling on a horizontal surface. The ratio between the rotational kinetic 10 energy and total energy c) $\frac{1}{2}$ a) $\frac{5}{7}$ b) $\frac{2}{7}$ d) $\frac{1}{7}$ A disc and a sphere of same radius but different masses roll off on two inclined planes of the same 11 altitude and length which one of the two objects get to the bottom of the plane first? a) sphere b) both reach at same time c) Depends on their mass d) Disc A body having moment of inertia about its axis of rotation equal to 3kg m² is rotating with angular 12 velocity of 3rad s⁻¹kinetic energy of this rotating body is same as that of a body of mass 27kg moving with the velocity v. The value of v is

a) 1 ms^{-1} b) 0.5 ms^{-1} c) 2 ms^{-1} d) 1.5 ms^{-1}

13 A rod PQ of mass M and length L is hinged at end P. Therod is kept horizontal by a massless string tied to a point Q as shown in the figure. When string is cut, the initial angular acceleration of the rod

d) $\frac{2g}{3L}$

a) $\frac{3g}{2L}$

is

14	A solid sphere of mass 2kg rolls up a 30° incline with an initial speed of 10 ms ⁻¹ . The maximum height reached by the sphere is $(g = 10 \text{ ms}^{-1})$					
	a) 3.5m b) 7m	c)10.5m	d)14m			
15	The rotational kinetic energy of a body is E and its moment of inertia is I. The angular momentum					
	is					
	a) EI b) $2\sqrt{EI}$	c) $\sqrt{2EI}$	d) $\frac{E}{r}$			
16	Change in volume of the system does no equilibrium		moles in which of the following			
	1) $N_{2(g)}$ + $O_{2(g)}$ \rightleftharpoons 2N0(g)	2) $PCl_{5(g)}$	$\Rightarrow \operatorname{PCl}_{3(g)} + \operatorname{Cl}_{2(g)}$ $\Rightarrow \operatorname{SO}_{2(g)} + \operatorname{Cl}_{2(g)}$			
	3) $N_{2(g)}$ +3 $H_{2(g)}$ \Rightarrow 2 $NH_{3(g)}$	4) SO_2Cl_{20}	$P_{2(g)} \rightleftharpoons SO_{2(g)} + Cl_{2(g)}$			
17	The exothermic formation of ClF_3 is a					
	= – 329KJ which of the following will i	ncrease the quantity of	f clF ₃ in an equilibrium mixture of $Cl_{2^{\prime}}$			
	F_2 and ClF_3					
	1)Increasing the temperature	2) Removing C	l_2			
	3) Increasing the volume of the container 4) Adding F_2					
18	What is the effect of having the pressure by doubling the volume on the following system at 500 $^\circ m C$					
	$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$					
	1)Shift to reactant side 2)Shift to product formation					
	3) Liquifaction of HI	4) No effect				
19	Which of the following information can be obtained on the basis of Le – Chatelier's principle					
	1)Entropy change in a reaction					
	2) Dissociation constant of a weak acid	2) Dissociation constant of a weak acid				
	3) Equilibrium constant of a chemical					
	4) Shift in equilibrium position on changing value of a constant					
20	20 The yield of product in the reaction					
	$A_2(g) + 2B(g) \rightleftharpoons C(g) + Q. KJ$ would be high at					
	1)High temperature and high pressure	2) High temp	perature and low pressure			
	3) Low temperature and high pressure		perature and low pressure			
21	H2(g) + $I_2(g) \rightleftharpoons 2HI(g) \Delta H = +q \text{ cal, then}$	$H_2(g) + I_2(g) \rightleftharpoons 2HI(g) \Delta H = +q \text{ cal, then formation of HI}$				
	1)Is favoured by lowering the temperat	ure 2) Is favoure	ed by increasing the pressure			
	3) Is unaffected by change in pressure 4) Is unaffected by change in te					
22	The equilibrium $SO_2cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$ is attained at 25 C in a closed container and an inert ga					
	helium is introduced					
	which of the following statement is correct					
	1)More chlorine is formed	2) Concentration of S	SO_2 is reduced			

23	$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ in closed con	ntainer at equilibrium	$Cl_2(So_2)$ and Cl_2 does not change n . What would be the effect of			
	addition of $CaCO_3$ on the equilibrium conce					
0.4		is not sufficient	4) Remains unaffected			
24	In which of the following the reaction proceed					
	1) $K X 10^3$ 2) $K X 10^{-2}$	3) K X 10 ¹	4) K=1			
25	According to Le - Chartelier principle, if heat is given to solid-liquid systes, then					
	1)Quantity of solid will reduce	2) Quantity of liquid will reduce				
	3) Increase in temperature	4) Decrease in temp	erature			
26	Which of the following statement is correct for a galvanic cell					
	1)Reduction occurs at cathode	2) Oxidation occurs at anode				
	3) Electrons flow from anode to cathode	4) All the statement				
27	In the reaction VO+Fe ₂ O ₃ \rightarrow FeO + V ₂ O ₅ the					
	1) mol.wt 2) $\frac{\text{mol.wt}}{8}$	$3)\frac{\text{mol.wt}}{6}$	4) None of these			
28	Equivalent weight of $Mn O_4^-$ in acidic, neutra	al and basic media are	in ratio of			
	1) 3:5:15 2) 5:3:1	3) 5:1:13	4) 3:15:5			
29	In the balanced chemical reaction $IO_3^- + aI^-$	$+bH^{-} \rightarrow CH_2O + dI_2$				
	a, b, c and d respectively corresponds to					
	1)5,6,3,3 2) 5,3,6,3	3) 3,5,3,6	4) 5,6,5,5			
30	Consider the following standard reaction pot	tentials				
	$Ca^{2+}+2e^- \Rightarrow Ca E^\circ = -2.76 V$					
	$Pb^{2+}+2e^- \Rightarrow Pb E^{\circ} = -0.13 V$					
	$Cu^{2+}+2e^{-} \rightleftharpoons Cu E^{\circ} = 0.34V$					
	$Hg^{2+}+2e^- \Rightarrow Hg E^\circ = 0.80 V$					
	$Pt^{2+}+2e^- \Rightarrow Pt E^\circ = -1.20 V$					
	Which of the following metals is the stronges	st reducing agent				
	1)Ca 2) Pb	3) Cu	4) Hg			
1.	If $\begin{bmatrix} a+b & b+c & c+a \\ b+c & c+a & a+b \\ c+a & a+b & b+c \end{bmatrix} = K \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$ then k	=				
	1) 1 2) 2	3) 1	4) 8			
2.	$\begin{vmatrix} a^{2} + 1 & a & b & a & c \\ a & b & b^{2} + 1 & b & c \\ a & c & b & c & c^{2} + 1 \end{vmatrix} = 1)1+a+b+c (2) 1+a^{2}+b^{2}+c^{2}$					
	$\begin{vmatrix} ab & b+1 & bc \\ ac & bc & c^2+1 \end{vmatrix}^{-1}$					
			4) None			
3.	The value of $\begin{vmatrix} 1 & 1 \\ (2^{X} + 2^{-X})^{2} & (3^{X} + 3^{-X})^{2} \\ (2^{X} - 2^{-X})^{2} & (3^{X} - 3^{-X})^{2} \\ (5^{X} - 3^{-X})^{2} & (5^{X} - 3^{-X})^{2} \end{vmatrix}$	$\begin{bmatrix} 1 \\ + 5^{-X} \end{bmatrix}$				
	$\frac{(2^{X} - 2^{-X})^{2}}{(2^{X} - 2^{-X})^{2}} (3^{X} - 3^{-X})^{2} (5^{X} - 3^{-X})^{2} (5^$	$-5^{-X})^2$				
	1)0 2) 30^x	3) 30 ^{-x}	4) None of these			

4.	If p+q+r = 0 and $\begin{vmatrix} pa & qb & rc \\ qc & ra & pb \\ rb & pc & qa \end{vmatrix}$ = k $\begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix}$	then k =	
	$\begin{array}{cccc} 1rb & pc & qal & 1b & c & al \\ 1)0 & & 2) abc \end{array}$	3) pq <i>r</i>	4) a+b+c
5	If $\Delta = \begin{vmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{vmatrix}$ then Δ lies in	the interval	b
6.		3) [2,4] b	4) (2,4)
	1)[2,3] If a+b+c = 0, then one root of $\begin{vmatrix} a-x & c \\ c & b-x \\ b & a & c \end{vmatrix}$	$\begin{vmatrix} a \\ -x \end{vmatrix} = 0$ is	
7			4) $x = 0$
	If s = a+b+c then the value of $\Delta = \begin{vmatrix} x + c & a \\ c & x + a \\ c & a \end{vmatrix}$ 1) 2S ² 2) 2S ³	$\begin{vmatrix} b \\ x+b \end{vmatrix}$ is	
8	1) $2S^2$ 2) $2S^3$ $ \lambda^2 + 3\lambda \lambda - 1 \lambda + 3 $	3) S ³	4) 3S ³
	$\left f \begin{vmatrix} \lambda^2 + 3\lambda & \lambda - 1 & \lambda + 3 \\ \lambda + 1 & 2 - \lambda & \lambda - 4 \\ \lambda - 3 & \lambda + 4 & 3\lambda \end{vmatrix} = p(\lambda^4) + q(\lambda^3) + r.$	$\lambda^2 + S\lambda + 6$, then t =	
9	1)16 2) 17 The number of number that are divisible by 9 be	3) 18	4) 19
10	1)101 2) 110 If 100 times the 100 th term of an AP with non –	3) 111	4) 100 ce equals to 50 times 50^{th}
10	term, then the 150 th term of AP is		
11	1)1502) zeroIf a and x are positive integers such that x		4) 150 times 50 th term , $\sqrt{a+x}$ are in AP then least
	possible value of a is 1) 5 2) 7	3) 11	4) None of these
12	In a GP consisting of positive terms, each term common ratio of their progression equals	equals the sum of the	next two terms. Then the
10	1) $\frac{1}{2}(1-\sqrt{5})$ 2) $\frac{1}{2}\sqrt{5}$	3) √5	4)) $\frac{1}{2}(\sqrt{2}-1)$
13	The sum of an infinite GP is 2. If the sum of the 1) 1/2 2) 1	ir squares is 4/3 , then 3) ¼	4) 1/8
14	1) $1/2$ 2) 1 (6,6,6 n digits) ² + (8,8,8 n digits) = 1) $\frac{4}{9}(10^{n} - 1)$ 2) $\frac{4}{9}(10^{2n} - 1)$	$(3)^{\frac{4}{2}}(10^n - 1)^2$	4) None of these
15	If 2p th term of a G.P is q ² and 2q th term is p ² the	n(p+q) th term is	
	1)0 2) 1	3) p+q	4) pq
CO.			

ANSWER KEY

			<u>ANSW</u>	<u>ER KEY</u>			K.51-1
]	1	3	16	1	31	2	
	2	2	17	4	32	2	
	3	1	18	4	33	1	
	4	2	19	4	34	3	
	5	3	20	3	35	3	
	6	2	21	3	36	4	
	7	1	22	4	37	2	
	8	1	23	4	38	3	
	9	2	24	1	39	3	
	10	2	25	1	40	2	
	11	1	26	4	41	1	
	12	1	27	3	42	4	
	13	1	28	1	43	3	
	14	2	29	2	44	2	
	15	3	30	2	45	4	
Governm	ents						