DEPARTMENT OF SCHOOL EDUCATION

Government JEE Coaching- 2019-20

UNIT TEST- 9

Time: 60min

Marks: 180

Instructions:

1) Answer all the questions

2) For Every correct answer Four marks will be given

3) For Every wrong answer One mark will be deducted

CHOOSE THE CORRECT ANSWER

45x4=180

 $4)121 \, \text{cm/s}$

- 1. A wave travelling in positive x direction with A = 0.2m has a velocity of 360m/s if λ = 60m then correct expression for the value
 - 1) $y=0.2 \sin \left[2\pi \left(6t + \frac{x}{60}\right)\right]$ 3) $y=0.2 \sin \left[2\pi \left(6t - \frac{x}{60}\right)\right]$ 4) $y=0.2 \sin \left[\pi \left(6t - \frac{x}{60}\right)\right]$

2 The equation of a wave is given (all quantity in SI units) $y=5 \sin 10\pi (t-0.01x)$ along the x axis. The magnitude of phase difference between the points separated by a distance of 10m along x axis is

- 1) $\frac{\pi}{2}$ 2) π 3) 2π 4) $\frac{\pi}{4}$
- 3. The equation of a transverse wave travelling on a rope is given by $y=10 \sin \pi (0.01 \text{ x} 2.00 \text{ t})$ y, x, t where y and x are in cm and t in seconds. The maximum transverse speed of a particle in the rope is about

```
1) 63 cm/s 2) 75 cm/s 3) 100 cm/s
```

4. A transverse periodic wave on a string with a linear mass density of 0.2... kg/m is described by the following equation 0.200 kg/m , y= $0.05 \sin(420 t - 21.0 x)$ where x and y are in metres and t is in seconds. The tension in the string is equal to

1) 32 N 2) 42 N 3) 66 N 4) 80 NTwo waves having equations, $x_1 = a \sin(wt + \varphi_1) x_2 = a \sin(wt + \varphi_2)$ If in the resultant wave the frequency and amplitude remain equal to those of superimposing waves. Then phase

difference between them is

1) $\frac{\pi}{6}$ 2) $\frac{2\pi}{3}$ 3) $\frac{\pi}{4}$ 4) $\frac{\pi}{3}$

	is 256. The number of beats heard increases when fork of frequency 256 is loaded with was The frequency of the other fork is							
	- ,			4) 050				
7	1) 504	2) 520	3) 260	4) 252	- U7			
7.	-	t the outer signal of a rai	•					
		begins to move with the s l by an observe standing o	-	-				
	1) 420 HZ	2) 430 HZ	3) 440 HZ	4) 450 HZ	som/s			
•	<i>,</i>		,		4 - IZI			
8.		is closed at one end whi	ch harmonic mode of t	he pipe resonates at	1.5KF			
	· -	ound in air = 340 ms⁻¹) ₹2) Third	a) E:feh	1) Sowon th				
•	1) First	,	3) Fifth	4) Seventh	1.4.1.			
9.	A graph is drawn with temperature in °C along x axis and °F along y axis. If the graph obtained							
	in a straight line, which of the following is true							
	1) The line makes an intercept in the + ve x axis							
	2) The line makes an intercept in the +ve y axis							
	3) The line passes through the origin							
10	4) The line makes an interscept in both - ve x and y axis							
10.	A rectangular metallic frame is heated from 0° c 100°c. If the increase in percentage of length is 0.10%, find the increase in its volume in percentage							
		2) 0.10 %		() None of these				
	1) 0.03 %			4) None of these	T4 :			
11.	From what height must a block of ice be dropped in order that it may melt completely .It is a assumed that the whole of energy is retained by ice(Latent heat of ice = 3.33×10^5 J/Kg							
	1) 3.4 $\times 10^5$ m	2) $3.4 \times 10^4 \text{ m}$	$3) 34 \times 10^2 \text{ m}$	$4) 34 \mathrm{m}$				
12.			,		+			
12.	Two mole of oxygen gas is mixed with 8 mole of Helium gas. At constant volume, the net specific heat capacity of the mixture is							
	1) 1.3 R	2) 1.4 R	3) 1.7 R	4)1.9 R				
13.		,			intern			
10.	1 kg of water is heated from 40°C If its volume remains constant then the change in interna energy is $$ (specific heat capacity of water = 4148J/kg/k)							
	1) 2.44 $\times 10^5$ J	2) 1.62 x 10 ⁵ J	$3) 1.24 \times 10^5 \text{ J}$	4) 2.62 x 10 ⁵]				
14.		, -	<i>,</i> ,	· ·				
	A solid ball of mass 10kg at 40°c is gently placed in a liquid of mass 20kg at 20°c and of specific heat capacity 1 cal/g °c When the thermal equilibrium is attained temperature of the system is							
	35°c. The specific heat capacity of the ball is (Neglect the heat capacity of the vessel)							
	1) 1 cal/g°c	2) 2 cal/g°c	3) 3 cal/g°c	4) 6 cal/g°c				
4	i) i cui / 5 c	<i>L</i> , <i>L</i> cui / g C	0, 0 cm/ g C	\rightarrow) \cup car / g \cup				

In figure, which strip brass or steel have higher coefficient of linear expansion 15.

15.	In figure, which strip brass or steel have h	higher coefficient of linear exp $\tau > \tau_{o}$.	ansion				
	1) Brass strip	2) Steel strip	Steel strip				
	3) Both strips have same coefficient 4) Cannot be decided from the given data						
	of linear expansion						
16.	A 500g toothpaste sample has 0.2g fluori	de concentration. What is the	concentration of				
	fluoride in terms of ppm level?						
	1) 250 2) 200	3) 400	4) 1000				
17.	The amount of oxalic acid (mol.wa 63)	required to prepare 500ml of i	ts 0.10N solution is				
	1) 0.315 g 2) 3.150 g	3) 6.30 g	4) 63.0 g				
18.	The solubility of gas in liquid increases with						
	1)Increase in temperature	2) Reduction of gas pr	2) Reduction of gas pressure				
	3) Amount of liquid taken	4) Decrease in temper	4) Decrease in temperature				
19.	A binary liquid solution is prepared by mixing n-heptane and ethanol. Which one of the						
	following statement is correct regarding behaviour of the solution						
	1)The solution formed is an ideal solution						
	2) The solution is non ideal, showing +ve deviation from Raoult's law						
	3) The solution is non idea, showing –ve deviation from Raoult's law						
	4) N–Heptane shows +ve deviation while ethanol shows –ve deviation from Raoult's law						
20.	Which of the following is satisfied by an ideal solution?						
	1)Formation of an azeotropic mixture	$2)\Delta S mix=0$					
	3) Raoult's law is obeyed under particula						
	of conditions only						
21.	For which of the following Van'tHoft factor cannot be greater than unity?						
	1) $K_4[Fe(CN/6)]$ 2) $AlCl_3$	3) $\mathrm{NH}_2\mathrm{CO}\mathrm{NH}_2$	4) KNO_3				
22.	Benzoic acid dissolved in benzene shows						
	1)Its normal molecular man	2) Double of its norma	2) Double of its normal molecular mass				
	3) Half of its normal molecular mass	4) Not definite	4) Not definite				
23.	The boiling point of a solution of 0.11g of a substance in 15g of ether was found to be 0.1° C						
	higher than that of pure ether. The molecular weight of the substance will be (Kb= 2.16 $^\circ$ C						
	kgmol ⁻¹						
	1) 148 2) 168	3)178	4) 158				

24.	The values of observed and calculated molecular weight of silver nitrate are 92.64 and 170 respectively. The degree of dissociation of $AgNo_3$ will be						
	1) 60 %	2) 83.5 %	3)46.7%	4) 60.25 %			
25.	,						
20.	KBr is 80% dinociated in solution is the freezing point of a 0.5 molal solution is (Kf for water = 1.86° C/m)						
	1) 273K	2) 277K	3) 269K	4) 271.326K			
26. Which inorganic precipitate acts as a semi-pe							
20.	1)Calcium phosphate		3) Calcium sulphate	4) Copper			
)culeium phosphule	2)Theref photphate	o) culerum surphute	ferrocyanide			
27.	An aqueous solution co	ontaining 1g a urea hoils					
21.	An aqueous solution containing 1g q urea boils at 60.25° C. The agnean solution containing 3g of glucose in the same volume will boil at						
	1) 100.25° C	2) 100.75°C	3) 100.5° C	4) 100° C			
28				,			
28. If \propto is the degree of dissociation of NaSO ₃ the Van's Hoff father (i) used for cal molecular mass is							
	1) 1+∝	2) 1−∝	3) 1+2∝	4) 1−2∝			
29.	Which has maximum osmotic presume						
	1) 200 ml of 2M NaCl	solution	2) 200 ml of 1M glucose solution				
	3) 200 ml 2M urea sol	ution	4) All have same				
30.	The osmotic pressure o	f 253 ml of a solution di	issolving 34.2 g of sugar at 27° C will be				
	1) 7.12 atm 2) 5.26 atm		3) 3.96 atm	4) 9.73 atm			
31.	If $x = a \sin 2\theta (1 + \cos 2\theta)$), y = b cos 2 θ (1 – cos 2 θ),	then $\frac{dy}{dx}$				
1) $\frac{a}{b}$	1) $\frac{a}{b}$ tan θ	2) $\frac{b}{a}$ tan θ	$3)\frac{a}{b}\cot\theta$	4) $\frac{b}{a}\cot\theta$			
32.	$\mathbf{X} = \frac{1 - \sqrt{y}}{1 + \sqrt{y}} = \frac{dy}{dx} =$		b	u			
	$1)\frac{4}{2}$	2) $\frac{4(x-1)}{(1+x)^3}$	3) $\frac{x-1}{(1+x)^3}$	$4)\frac{4}{(x+1)^3}$			
22	$\int (x+1)^2$ If using using the p dy		$(1+x)^3$	$(x+1)^3$			
33.	If $y \sin x = x + y$ then $\frac{dy}{dx}$						
~ ~	1)1	2) -1 πdy	3)0	4)2			
34.	If $y = ((\tan x)^{\tan x})^{\tan x}$	1 0000					
1) -1 2) 0			3)1	4)2			
35.	If $y = \tan^{-1} \left(\frac{5 \cos x - 12 \sin x}{12 \cos x + 5 \sin x} \right)$	$\left(\frac{dx}{dx}\right)$ then $\frac{dy}{dx} = ?$		1			
	1)1	2)-1	3)-2	4) $\frac{1}{2}$			
36.	The deviation of $\sin^{-1}($	$3x - 4x^3$) with respect to	$\tan^{-1}(\frac{x}{\sqrt{1-x^2}})$ is				
	1)0	2)1	3)2	4)3			
37.	If $Y = e^{\sqrt{x}} + e^{-\sqrt{x}}$ then $xy^{11} + \frac{y^{1}}{2} = ?$						
	1) y	2)4y	$(3)\frac{y}{2}$	$4)\frac{y}{4}$			

38.	If $X = \frac{2}{t^2}$, $Y = t^3 - 1$ then $\frac{2}{t^3}$	$\frac{d^2y}{dx^2} = ?$						
	1)15 t ²	2) $\frac{15}{16t^2}$	$3)\frac{15t^7}{16}$	4)16t ²				
39.	$y = sin^{-1} x \Rightarrow (1-x^2) \frac{d^2y}{dx^2}$	$\frac{2}{2}$ =						
	1) $-\mathbf{x}\frac{dy}{dx}$	2) 0	3) $\mathbf{x} \frac{dy}{dx}$	4) x $\left(\frac{dy}{dx}\right)^2$				
40.	The constant 'c' of Rol	le's the even for the func	etion $f(x) = (x-a)(x-b)$ is [a	a,b] is				
	1) \sqrt{ab}	2) $\frac{a+b}{2}$	$(3)\frac{a-b}{2}$	$(4)\frac{b-a}{2}$				
41.	Rolle's the even can not applicable for the function							
	1) $f(x) = x^3 - 6x^2 + 11x - 6$ in [1,3] 2) $f(x) = \sin x$ in [0, π]							
	3) $f(x) = 1 - (x - 1)^{2/3}$ in [0,2] 4) $f(x) = x^2 - 2x + 2$ in [1,2]							
42.	2. Lagranges theorem can not be applicable for							
	1) $f(x)\sqrt{x^2-4}$	2) $f(x)= x $ in [-1,2]	3) $f(x)=x-\frac{1}{r}$ is [1,3]	4) $f(x) = \log x \text{ in } [1, e]$				
43.	The constant 'c' of Lag	ranges theorem for f(x)	$=\frac{x}{x-1}$ in [2,4] is					
	1)1	2) \sqrt{3}	$(x-1)^{x-1}$ 3) $\sqrt{3}+1$	4) $\sqrt{3}$ +2				
44.	A man is walking at th	A man is walking at the rate of 8 kmph towards the foot of a tower 60 m high. The rate of which						
	he is approaching the top when he is 8 m from the foot of the tower is							
	1) 6 km/h	2) 6.4 km/h	3)7.2 km/h	4) 8km/h				
45.	A man approaches the	e foot of a tower of heig	ht h units with a speed b	o units/sec. The speed at				
	which he approaches t	he vertex of the tower w	hen he is at a distance of	l units from the foot is				
	1) $\frac{b}{\sqrt{b^2+l^2}}$ unit/sec	2) $\frac{bl}{\sqrt{b^2+l^2}}$ unit/sec	3) $\frac{l}{h(h^2+l^2)}$ unit/sec	4) None				
	Vn2+12	Vn2+12	$D \vee h^2 + l^2$					
		C 0						
		6						
cole								
Cole								

ANSWER KEY

			<u>ANSWER</u>	<u>KEY</u>			1651.9
	1	3	16	3	31	2	
	2	2	17	2	32	2	
	3	1	18	4	33	2	
	4	4	19	2	34	4	
	5	2	20	4	35	2	
	6	3	21	3	36	4	
	7	3	22	2	37	4	
	8	2	23	4	38	3	
	9	2	24	2	39	3	
	10	1	25	4	40	2	
	11	2	26	4	41	3	
	12	1	27	1	42	2	
	13	3	28	3	43	3	
	14	4	29	2	44	2	
	15	1	30	4	45	2	
covernmer							
9							