DEPARTMENT OF SCHOOL EDUCATION Government JEE Coaching- 2019-20 UNIT TEST- 2

8 ASSERTION : When a particle moves with a uniform circular motion, it has two components of acceleration namely radial (centripetal) and tangential acceleration REASON : Along an uniform circular motion, acceleration is an irregular (non-uniform)vector 1)Both Assertion and reason are true; Reason is the correct explanation for Assertion 2)Both Assertion and reason are true but reason is notthe correct explanation for Assertion 3)Assertion true; Reason false 4)Reason true; Assertionfalse

Equal masses are tied by means of a thin were in the system above. The tension in the string connected to nth mass is 3) mg 4) mng

$$1)\frac{mMg}{m+M}$$

9

- 2) $\frac{mMg}{nmM}$ The force applied moves the particle in the x - y plane. The particles linear momentum is given by 10 $\rightarrow^{p}(t) = A \cos\{i \cos(kt) - j \sin(kt)\}$. Find the angle between force and momentum 1) 0° 2) 30° 3) 90° 4) 45°
- Two forces 8N and 6N act perpendicular with each other on a 5kg mass. Find the acceleration of 11 the particle and its direction 1)2 ms⁻², 37° 2) 20ms⁻²,45° 3) 14 ms⁻² ,20° 4) None of the above
- A Bomb at rest explodes into 3 parts in their mass ratio 1:1:3. Equal masses move Perpendicular 12 to each other with a velocity of bigger part 2) $\frac{10}{\sqrt{2}}$ m/s

1)10
$$\sqrt{2} m/s$$

3) $15\sqrt{2} m/s$

- 4) $\frac{15}{\sqrt{2}}$ m/s
- The graph below shows the motion of a particle in (x,t) (y,t) motion. If the mass of the particle is 13 500g find the force acting on the particle

1)1 N along y direction 3)0.5N along x axis

2) 1 N along x axis 4) 0.5N along y axis

A ball rises up and goes down on an upstairs. It rises to the next step of height h and goes down 14 comparing the height of the stairs with its width 'd' it causes an elastic dimensional (1-D) collision. The relation between 'h' and 'd' is

 $1)h = \frac{d}{1+e^2}$ 2) h = $\frac{d}{1-e^2}$ 3) h = $\frac{d}{1+e}$ 4)h = $\sqrt{\frac{d}{1+e^2}}$ A wooden block of mars on collides with another wooden block of mass 2m. The lesser mass lomes to rest. If the velocity of the first block is v find the value of coefficient of restitution 1)0.8 3) 0.6 4) 0.5 2) 0.4 16 The statement that is not correct for periodic classification of elements is

- 1) The properties of elements are periodic function of their abomic numbers
 - 2) Non metallic elements are less in number than metallic elements

	3) For transition elements, the 3 ^d – orbitals are filled electrons after 3p – orbitals and before4s -								
	Orbitals A)The first ionisation onthaloios of elements generally increase with in atomic number as we ge								
	along a period								
17	The formation of the oxide ion, $o^{2^{-}}(q)$ from oxygen atom requires first an exothermic and then an								
	endothermic step as shown below								
	$o(g) + e^{-} \rightarrow o^{-}(g)$ $H^{v} = 141 \text{ KJ mol}^{-1}$								
	$o(g) + e^{-} \rightarrow o^{2-}(g)$ H ^v = +780 KJ mol ⁻¹								
	Thus process of formation of o ^{2—in gas} phase is unfavourable even though o ^{2—} is isoeletronic wi heon. It is due to the fact that 1) Oxygen iis more electronegative								
	2) Addition of electron in oxygen results in longer size of the lon								
	a) Electron repulsion out weighs the stability gained by achieving hope gas configuration								
10	4) o ion nas comparatively smaller size than oxygen alone								
18	Consider the isoelectronic species Na ⁺ , Mg ²⁺ , F ⁻ and O ²⁻ . The correct order of increasing length								
	1) $E < 0^{2-1} < M0^{2+} < N0^{+}$		2) Ma ²⁺ ~ Na+ ~ E	< 0 ²					
	$(3) < 0^{2^{-1}} < F^{-1} < Na^+ < Ma^+$	2+	$(2) \log < \log < 1$ 4) < $0^{2} < F^- < Mo$	$^{2+}$ < Na ⁺					
19	Electronic configuration of	of four elements A.B.C	and D are given below	N					
	1) $1S^2 2S^2 2P^6$		2) $1S^2 2S^2 2P^4$	-					
	3) 1) $1S^2 2S^2 3S^1$		4) $1S^2 2S^2 2P^5$						
	Which of the following is	the correct order of inc	creasing tendency to ga	ain electron					
	1) A < C < B < D	2) A < B < C < D	3) D < B < BC< A	4) D < A < B < C					
20	Total number of lone pair	r of electron in XeoF ₄ i	S						
04	1) 0	2) 1	3) 2	4) 3					
21	Which of the following is	an electron deficient n							
22	1) $C_2 \square_6$ Number of $n - n$ bonds in	$2) P\Pi_3$	3) B ₂ Π ₆	4) SIH 4					
	1) 17	2) 16	3) 15	4) 6					
23	Of the following sets which	ch does not contain iso	pelectronic species	., .					
	1) SO3 ²⁻ , Co3 ²⁻ , No3	2)CN , N ₂ , C2 ²	3) BO3 ³ , Co3 ²⁻ , No3	4) PO4 ³ , SO4 ²⁻ , CLO4					
24	The ion which is not tetra	ahedral in shape is							
	1) BF4	2) NH4+	3) [Ni(CN) ₄] ^{2–}	4) <i>NiCl</i> ₄ ²⁻					
25	How many sigma and pi	bonds are present in the	oluene						
	1) $3\pi + 15\sigma$	2) $6\pi + 6\sigma$	3) 3 3π + 6σ	4) $3\pi + 8\sigma$					
26	The acid having $0 - 0$ bo								
27	1) $H_2 S_2 U_3$	2) $H_2S_2U_5$	3) $H_2 S_2 U 8$	4) $\Pi_2 \Im_4 U \Im$					
21	hybridization is		s polar and has the ce	ntrai atom with sp					
	1) H ₂ co3	2) SIF₄	3) BF ₃	4) Hcl O_2					
28	Match the following	_) • 4	0) = 1 3	1) 11010 2					
	LIST I (Compounds) LIST II (Structure)								
	1) CS ₂		Bent						
	2) SO ₂		Linear						
	3) BF ₃		Trigonal planner						
	4) NH ₃		Tetranedral						
	The correct matching is		rngonal pyramidal						
	1	2	3	4					
	1) (1)	(2)	(4)	(5)					
	2) (2)	(1)	(3)	(5)					
	3) (1)	(2)	(5)	(4)					
	4) (2)	(1)	(5)	(4)					

29 In which of the following pairs molecules/ions have similar shape 1) ccl_4 and $ptcl_4$ 2) NH₃ and BF₃ 3) BF₃ and t – butyl canbonium ion 4) Co₂ and H₂o 30 Pick out the isoelectronic structures from the following 1)CH₃° 2) H₃O⁺ 3)NH₃ 4) CH₂° a) 1 and 3 b) 3 and 4 c) 1 and 3 d) 2,3 and 4 31 If \propto and β are different complex numbers with $|\beta| = 1$ then $\left| \frac{\beta - \alpha}{1 - \overline{\alpha} \beta} \right|$ 1) 0 2) 1/2 4) 2 1) 0 If z = x - iy and $z^{\frac{1}{3}} = p + iq$, then $(\frac{x}{p} + \frac{y}{q}) / (p^2 + q^2) = 2$ 32 3) 2 4) -1 If x = -5+4i, then $x^4+9x^3+35x^2-x+4=$ 33 1) -170 2) 160 3) 170 If $(1+x+x^2)^n = a_0+a_1x+a_2x^2+\dots+a_{2n}x^{2n}$, then $a_0+a_3x+a_6+\dots$ is 1)1 2) 2^n 3) 2^{n-1} 4) - 16034 4)) 3ⁿ⁻¹ If 1, w, w² are the cube roots of unity and if $\propto = w+2w^2$ -3, then $\propto^3+12\propto^2$ -3, then $\propto^3+12\propto^2+48\propto+3=$ 35 $If \frac{\sin(x/2) + \cos(x/2) + i\tan x}{1 + 2i\sin(\frac{x}{2})} \text{ is real, then x is}$ $1)n\pi or n\pi + \frac{\pi}{4} \qquad 2) 2n\pi \text{ or } n\pi + \frac{\pi}{4} \qquad 3) n\pi \text{ or } n\pi + \frac{\pi}{2}$ $\tan\{i \log(\frac{a - ib}{a + ib})\} =$ 4) -60 36 4) none 37 2) $\frac{2ab}{a^2-b^2}$ 3) $\frac{a^2 - b^2}{2ab}$ 1)ab 4) $\frac{2ab}{a^2+b^2}$ A complex number z is said to be unimodular if |z|=1. Suppose z_1 and z_2 are complex numbers 38 such that $\frac{z_1 - 2z_2}{2 - z_1 \overline{z_2}}$ is unimodular and z_2 is not unimodular. Then the point z_1 lies on a 2) straight line parallel to y-axis 1) straight line parallel to x-axis 3) circle of radius 2 4) circle of radius $\sqrt{2}$ If a and b are real numbers between 0 and 1 such that the point $z_1 = a+i$, $z_2 = 1+bi$ and $z_3 = 0$ from 39 an equilateral triangle, Then a and b are 3) $2 - \sqrt{3}$, $2 - \sqrt{3}$ 4) none 1) $2+\sqrt{3}$, $2-\sqrt{3}$ 2) $2+\sqrt{3}$, $2+\sqrt{3}$ If a,b,c,p,q,r are non – zero complex numbers such that $\frac{p}{a} + \frac{q}{b} + \frac{r}{c} = 1 + i$ and $\frac{a}{b} + \frac{b}{a} + \frac{c}{r} = 0$, then 40 value of $\frac{p^2}{a^2} + \frac{q^2}{b^2} + \frac{r^2}{c^2}$ is 1)0 2) -1 3) 2i 4) -2i 41 If a is a complex number and b is a real number, then the equation $\bar{a} z + a\bar{z} + b = 0$ represents a 1) straight line 2) parabola 3) circle 4) hyperbola If k > 0 and the product of roots of the equation $x^2 - 3kx + 2e^{2logk} - 1 = 0$ is 7, then the sum of the 42 roots is 2) 4 3) 6 4) 8 1) 2 43 Let \propto and β be the roots of the equation $x^2 + x + 1 = 0$. Then equation whose roots are \propto^{19} , β^7 is 2) $x^2 - x + 1 = 0$ $1)x^2 - x - 1 = 0$ 3) $x^2 + x - 1 = 0$ 4) $x^2 + x + 1 = 0$ If $\propto + \beta = -2$ and $\propto^3 + \beta^3 = -56$, then the quadratic equation whose roots are \propto and β is 1) $x^2 + 2x - 16 = 0$ 2) $x^{2} + 2x - 15 = 0$ 3) $x^{2} + 2x - 12 = 0$ 4) $x^{2} + 2x - 8 = 0$ The value of 'a' for which one root of quadratic equation ($a^2 - 5a+3$) x^2+ (3a-1) x + 2 = 0 is twice as 45 large as the other is 1) $\frac{-2}{3}$ 2) $\frac{1}{2}$ $3)\frac{-1}{2}$ $(4)^{\frac{2}{2}}$

ANSWER KEY

			ANSW	<u>ER KEY</u>			
							r
	1	1	16	3	31	3	
	2	4	17	4	32	2	
	3	1	18	2	33	4	
	4	1	19	1	34	4	
	5	1	20	2	35	4	
	6	3	21	3	36	2	
	7	2	22	2	37	2	
	8	4	23	1	38	3	
	9	1	24	3	39	3	
	10	3	25	1	40	3	
	11	1	26	4	41	1	
	12	1	27	1	42	3	
	13	1	28	2	43	4	
	14	2	29	3	44	4	
	15	4	30	4	45	4	
Co							