DEPARTMENT OF SCHOOL EDUCATION Government JEE Coaching- 2019-20

MILESTONE - 4

1.

2.

3.

4.

5

6.

7

The distance travelled by a particle starting from rest and moving with an active third second is 1. 12 2. 9 3. 10 4. 10 The velocity r of a particle as a function of its position (x) is expressed as $v = c_1$ and c_2 are positive constants. The acceleration of the particle is 1. C_2 2. $\frac{c_2}{2}$ 3. C_1 - C_2 4. $\frac{c_2}{2}$ A body starts from rest, with uniform acceleration a, the acceleration of the	Marks: 180
) For Every correct answer Four marks will be given) For Every wrong answer One mark will be deducted CHOOSE THE CORRECT ANSWER The position of a particle along x axis at time 't ' is given by $x = 2+t-3t^2$. The the distance travelled in the internal , $t = 0$ to $t = 1$ s are respectively 1. 2,2 22,2.5 3. 0,2 4. The distance travelled by a particle starting from rest and moving with an acc the third second is 1. 12 2. 9 3. 10 4. 10 The velocity r of a particle as a function of its position (x) is expressed as $v = c_1$ and c_2 are positive constants. The acceleration of the particle is 1. C_2 2. $\frac{c_2}{2}$ 3. C_1 - C_2 4. $\frac{C_2}{2}$ A body starts from rest, with uniform acceleration a, the acceleration of the	
The position of a particle along x axis at time 't ' is given by $x = 2+t-3t^2$. The the distance travelled in the internal , t = 0 to t= 1 s are respectively 1. 2,2 22,2.5 3. 0,2 4. The distance travelled by a particle starting from rest and moving with an acceleration dis 1. 12 2. 9 3. 10 4. 10 The velocity r of a particle as a function of its position (x) is expressed as $v = c_1$ and c_2 are positive constants. The acceleration of the particle is 1. C_2 2. $\frac{c_2}{2}$ 3. C_1 - C_2 4. $\frac{c_2}{2}$ 4. body starts from rest, with uniform acceleration a, the acceleration of the particle is the provide the particle is the provide the particle is the parti	
CHOOSE THE CORRECT ANSWER The position of a particle along x axis at time 't ' is given by $x = 2+t-3t^2$. The the distance travelled in the internal , $t = 0$ to $t = 1$ s are respectively 1. 2,2 22,2.5 3. 0,2 4. The distance travelled by a particle starting from rest and moving with an acceleration dis 1. 12 2. 9 3. 10 4. 10 The velocity r of a particle as a function of its position (x) is expressed as $v = c_1$ and c_2 are positive constants. The acceleration of the particle is 1. C_2 2. $\frac{c_2}{2}$ 3. C_1 - C_2 4. $\frac{c_2}{2}$ A body starts from rest, with uniform acceleration a, the acceleration of the	
The position of a particle along x axis at time 't ' is given by $x = 2+t-3t^2$. The the distance travelled in the internal , t = 0 to t= 1 s are respectively 1. 2,2 22,2.5 3. 0,2 4. The distance travelled by a particle starting from rest and moving with an access the third second is 1. 12 2. 9 3. 10 4. 10 The velocity r of a particle as a function of its position (x) is expressed as $v = c_1$ and c_2 are positive constants. The acceleration of the particle is 1. C_2 2. $\frac{c_2}{2}$ 3. C_1 - C_2 4. $\frac{c_2}{2}$ A body starts from rest, with uniform acceleration a, the acceleration of the particle is	
the distance travelled in the internal , t = 0 to t= 1 s are respectively 1. 2,2 22,2.5 3. 0,2 4. The distance travelled by a particle starting from rest and moving with an acc the third second is 1. 12 2. 9 3. 10 4. 10 The velocity r of a particle as a function of its position (x) is expressed as v = c_1 and c_2 are positive constants. The acceleration of the particle is 1. C_2 2. $\frac{c_2}{2}$ 3. C_1 - C_2 4. $\frac{c_2}{2}$ A body starts from rest, with uniform acceleration a, the acceleration of the	45x4=180
the distance travelled in the internal , t = 0 to t= 1 s are respectively 1. 2,2 22,2.5 3. 0,2 4. The distance travelled by a particle starting from rest and moving with an acc the third second is 1. 12 2. 9 3. 10 4. 10 The velocity r of a particle as a function of its position (x) is expressed as v = c_1 and c_2 are positive constants. The acceleration of the particle is 1. C_2 2. $\frac{c_2}{2}$ 3. C_1 - C_2 4. $\frac{c_2}{2}$ A body starts from rest, with uniform acceleration a, the acceleration of the	
1.2,222,2.53.0,24.The distance travelled by a particle starting from rest and moving with an acceleration of its second is 1.122.93.104.10The velocity r of a particle as a function of its position (x) is expressed as v = c_1 and c_2 are positive constants. The acceleration of the particle is 1.C22. $\frac{c_2}{2}$ 3.C1-C24.C2A body starts from rest, with uniform acceleration a, the acceleration of the	displacement and
the third second is 1. 12 2. 9 3. 10 4. 1 The velocity r of a particle as a function of its position (x) is expressed as $v = c_1$ and c_2 are positive constants. The acceleration of the particle is 1. C_2 2. $\frac{c_2}{2}$ 3. C_1 - C_2 4. $\frac{c_2}{2}$ A body starts from rest, with uniform acceleration a, the acceleration of the	-2, 2.1
the third second is 1. 12 2. 9 3. 10 4. 1 The velocity r of a particle as a function of its position (x) is expressed as $v = c_1$ and c_2 are positive constants. The acceleration of the particle is 1. C_2 2. $\frac{c_2}{2}$ 3. C_1 - C_2 4. $\frac{c_2}{2}$ A body starts from rest, with uniform acceleration a, the acceleration of the	celeration $\frac{4}{3}ms^{-2}$ in
The velocity r of a particle as a function of its position (x) is expressed as $v = c_1$ and c_2 are positive constants. The acceleration of the particle is 1. C_2 2. $\frac{c_2}{2}$ 3. C_1 - C_2 4. $\frac{c_2}{2}$ A body starts from rest, with uniform acceleration a, the acceleration of the	Ū
A body starts from rest, with uniform acceleration a, the acceleration of the	$=\sqrt{c_1-c_2x}$, where
	$\frac{c_1 + c_2}{2}$
time 't' is given by the equation $a = pt$, where p is the constant, then the particle in the time interval $t = 0$ to $t = t$, will be	
1. $\frac{1}{2}$ pt ³ 2. $\frac{1}{2}$ pt ² 3. $\frac{1}{2}$ pt ²	$4 \frac{1}{\epsilon} pt^3$
A particle moves along a straight line OX . After a time t (in seconds) the di . How far would the particle travel before coming to rest ?	0
	16m
A boggy of uniformly moving train is suddenly detached from train and stops distance. The distance covered by the boggy and distance covered by the tr relation	
1. Both will be equal2. First will be half of s	econd
3. First will be $\frac{1}{4}$ of second 4. No definite ratio	
A ball is thrown vertically upward with the speed v from a height h metre al time taken for the ball to hit ground is	pove the ground. The
1. $\frac{v}{g}\sqrt{1-\frac{2hg}{v^2}}$ 2. $\frac{v}{g}\sqrt{1-\frac{2gh}{v^2}}$	
3. $\sqrt{1 + \frac{2hg}{v^2}}$ A point mass moves in a straight line so that its displacement x at a time t it	

A point mass moves in a straight line so that its displacement x at a time t is given by $x^2 t^2 + 1$. Its 8 acceleration is

19			4. None of these n are equal, the minimum	n uncertainty in		
	velocity is 1. $6.6 \times 10^{-29} \text{ cm}$	1	2. 6.6 x 10 $^{-30}$ cm			
	3. 6.6 x 10^{-31} cm		4. $6.6 \times 10^{-32} \text{ cm}$			
20	Time independent of \wedge	Schrodinger's wave	e equation is 1			
	1. $H\Psi = E \Psi$		2. $\nabla \Psi = E \Psi$	6		
	3. $H\Psi = V \Psi$		4. All the above			
21	The total spin result	ing from a d ⁷ config	uration has			
<i>L</i> 1	1) ± ¹ / ₂	2) ±2	3) ±1	4) $\pm 3/2$		
22	The correct net of qu	antum numbers for	the Outremont electron	of Ru37 is		
	1) 5.0,0 $\pm \frac{1}{2}$	2) 4.3, $1\frac{-1}{2}$	3) 5.1,0 $\frac{-1}{2}$	4) 5.1,1 $I_{\frac{1}{2}}^{1}$		
23	The energy of the fir	st electron in heliun	n will be	2		
	1) -13.6ev	2) -54.7 ev	3) +54.4 ev	4) 0		
24	As we move away from nucleus the energy of orbit					
	1. decreases	20	2. increases			
	3. remain unchar	nged	4. none of thes	e		
25	Ruther ford scatterin	g experiment is rela	ted to the size of the			
	1. nucleus	2. atom	3. electron	4. neutron		
26	The value of Planck'	s constant				
	1) 6.6 256 x 10 ⁻²⁷ erg. s		2) 66.256 2	2) 66 .256 x 10 ⁻²⁷ erg. s		
	3) 6.01 x 10 ⁻¹	⁵ erg. s	4) 3.01 x 10	4) $3.01 \times 10^{-23} \text{ erg. s}^{-1}$		
27	The metal does not give photo electron easily					
	1. Li	2. Na	3. Ce	4. Cs		
28 The fundamental particle which are responsible for keeping nuclear together						
	1. meson	2. antiprotor	a 3. positron	4. electron		
29	The ratio of energy	the ionigation of H	and Be is			
	1) 1:1	2) 1:3	3) 1:9	4) 1:16		

30	If r is the radius of First orbit the radius of n th orbit of H- atom is			
	1. r n ²	2. rn	3. r/n	4. $r^2 n^2$
31	If A = { a, b}, B = { c, d}, C = { 1) A∩(BUC) 3)AX(BUC)	d, e}, then {(a, c), 2)AU(B∩ 4)AU(B∩	IC)	b,e)} is equal to
32	Let $Y = \{1, 2, 3, 4, 5\}$, $A = \{1, 2, 3, 5\}$, $A = \{1, 3, 5$	}, B= {3,4,5} and & and B , then (Y x A 2)A	ð denote the null set. If A	x B denotes the
33	3)B If P = {a,b,c } and Q = {1,2} is		ber of relations from P to	o Q which are not function
	1) 56 3) 9	2) 8 4) 53		
34	Set A has 3 elements and Se from A to B is 1) 144	/	ts, the number of injectio	ns that can be defined
	3) 24	4) 64		
35	If f : $R \rightarrow R$ is given by $f(x) = 3$ 1) 1		is	
	3x – 5 3) does not exists becaus is not one - one	$\frac{2) \times + 5}{3}$ se f 4) does	not exists because f is or	ne - one
36	Let f (x) = x^2 and g (x) = 2^x th 1) R	nen the solution se 3) [0]	et of the equation fog (x)	= gof(x) is
37	3) [0,2] Let $f(x) = \frac{\alpha x}{X+1}$, $x \neq -1$, then, for	4) None	of the above [f(x)]=x?	
	1)√2	2) - √2		
38	3) 1 If f (x) = α x + β and f = { (1,1	4) -1), (2,3), (3,5), (4,7)} then the value of α , β	
	1) 2,-1 3) 3, -1	2) -2, 1 4) -2,-1		
39	The function f : $R \rightarrow R$ define	d by f(x) = sin x is		
	1) Into	2) onto		
40	3) one – one	4) many 1	one	
10	The domain of the function f	$x) = \frac{1}{\sqrt{ x - x}}$		
	1) (-∞,0) 3) (-∞,∞)	2) (-∞, ∞ 4) (0,∞)) — [0]	
41	The domain of $\sqrt{4 - x^2}$ 1) (2,-2)	4) (0,33)		
	3) (-∞,-2) ∪ (2,∞)		2) [−2,2] 4) (-∞,2]∪[2,∞)	
42	The domain of log (x-3) (5-x) 1) (3,5)	is 2) (3,5)		
	3) (-∞,3) ∪ (5₁∞)	4) (-∞, 3)	∪ (5 ₁ ∞)	

43	a) If f:R – {2} R→ i	is defined by $f(x) = \frac{2 + x}{2 + x}$	for x ϵ R-{2} then the range of f is 2 - x
	1) R	2 - x 2) R-{1}	
44	3) R – {-1 } The range of <u>x²- 4</u> x- 2	4) R-{-2 }	
45	1) R 3) R – { <u>+</u> 2} The range of x^2 1+x ²	2)R - {2} 4) R - {4}	
	1+x² 1) (0,1) 3) (0,∞)	2) (0,1) 4) [0,∞)	
		20	
		a 22	
		chims	
	C.	20	
	Ser.		
	contraction of		

ANSWER KEY

1	4	16	1	31	3
2	1	17	1	32	4
3	2	18	2	33	1
4	4	19	3	34	3
5	3	20	1	35	2
6	2	21	4	36	2
7	4	22	1	37	4
8	2	23	2	38	1
9	2	24	2	39	4
10	1	25	1	40	1
11	3	26	1	41	2
12	1	27	• 1	42	2
13	3	28	1	43	2
14	3	29	4	44	4
15	3	30	1	45	1