Notes
Syllabus
Question Papers
Results and Many more...

CE8602 STRUCTURAL ANALYSIS-II

Important 13 Mark Questions

Part-B

1. A single moving load of 10 kN moves on girder of span 200 mConstruct the influence lines for shear force and bending moment for a section 50 m from the left support. Construct the Influence lines for points at which the maximum shears and maximum bending moment also determine these maximum values.
2. Two-wheel loads of 12 kN and 6 kN at a fixed distance apart of 2 m , cross a beam of 12 m span, Draw the influence line for bending moment and shear force for a point 5 m from the left support, and also determine the maximum bending moment and shear force at that point.
3. Four-wheel loads of $60,40,80$ and 50 kN cross a girder of 20 m span, from left to right followed by udl of $8 \mathrm{kN} / \mathrm{m}$ and 2 m long with the 60 kN load leading. The spacing between the loads in the same order are $3 \mathrm{~m}, 3 \mathrm{~m}$ and 2 m . The head of the udl is at 4 m from the last 50 kN load, using influence lines calculate the S.F and B. M at a section 8 m from the left support when the 40 kN load is at centre of the beam.
4. The four equal loads of 150 KN , each equally spaced at apart 2 m and UDL of $60 \mathrm{KN} / \mathrm{m}$ at a distance of 1.5 m from the last 150 KN loads cross a girder of 20 m from span R to L.Using influence line calculate the S.F and BM at a section of 8 m from L.H.S support when leading of 150 KN 5 m from L.H.S
5. Draw the IL for reaction at B and for the support moment M_{A} at A for the propped cantilever $A B$ of 12 m as shown in fig. Compute influence line coordinates at 1.5 m intervals.

6. Using muller Breslau principle, draw the ILD for the bending moment at D . the middle point of span $A B$ of a continuous beam shown in fig. compute the ordinates at 1 m interval. Determine the maximum hanging bending moment in the beam when two concentrated loads of 8 KN each and separately by a distance 1 m passes through the beam from left to right.

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes
Syllabus
Question Papers www.Binils.com
Results and Many more...

7. Draw the ILD for the propped cantilever reaction of a propped cantilever beam having span 6 m . El is constant.
8. Draw the influence line for M_{B} for the continuous beam $A B C$ of span $A B=3 m$ and $B C$ $=4 \mathrm{~m}$ Simply supported at $\mathrm{A}, \mathrm{B} \& \mathrm{C}$. Compute the ordinates at every 1 m interval using Muller Breslau principle. El= constant.
9. A circular three hinged arch of span 25 m with a central rise of 5 m is hinged at the crown and the end supports. It carries a point load of 100 kN at 6 m from the left support. Examine and Calculate the reaction at the supports and Moment at 5 m from the left support.
10. A three hinged circular arch of span 16 m and rise 4 m is subjected to two-point loads of 100 kN and 80 kN at the left and right quarter span points respectively. Examine and find the reaction at the supports. Find also the bending moment, radial shear and normal thrust at 6 m from left support.
11. A symmetrical three hinged arch has a span of $50 \&$ rise 5 m . Find and examine the maximum bending moment at a quarter point of the arch caused by a uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}$ which occupies any portion of the span. Indicate the position of the load for this condition.
12. A three hinged parabolic arch has supports at different levels having span 20 m and carries a UDL of $30 \mathrm{kN} / \mathrm{m}$ over the left half of the span. The left support is 5 m below the crown and the right support is 4 m below the crown. Draw the BMD. Also analyze and find the normal thrust and radial shear at a section 4 m from the left support.
13. A suspension cable of 130 m horizontal span is supported at the same level. It is subjected to a udl of 28.5 kN per horizontal meter. If the maximum tension in the cable is limited to 5000 kN , calculate the minimum central dip needed.
14. A suspension bridge is of 50 m span with a 16 m wide roadway. It is subjected by a pair of cables having a central dip of 4.2 m . Find the cross-sectional area of the cable necessary if the maximum permissible stress in the cable material is not to exceed $600 \mathrm{~N} / \mathrm{mm}^{2}$.
15. A suspension cable of span 100 m and dip 10 m carries a udl of 8 kN of horizontal span over the full span. Find the vertical and horizontal forces transmitted to the supporting pylons.

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes
Syllabus
Question Papers
Results and Many more...
www.Binils.com
16. A suspension cable of 75 m horizontal span and central dip 6 m has a stiffening girder hinged at both ends. The dead load transmitted to the cable including its own weight is 1500 kN . The girder carries a live load of $30 \mathrm{kN} / \mathrm{m}$ uniformly distributed over the left half of the span. Assuming the girder to be rigid, calculate the shear force and BM in the girder at 20 m from the left support. Also calculate the maximum tension in the cable.
17. Calculate the shape factor for a Rectangle section of breadth ' b ' and depth ' d ', Diamond section of breadth ' b ' and depth ' d '.
18. Calculate the shape factor for a triangle Centroid lying at $d / 3$ from the base of depth, ' d ', and breadth ' b '. Circular section of diameter ' D '.
19. A mild steel I-section 200 mm wide and 250 mm deep has a mean flange thickness of 20 mm and a web thickness of 10 mm .Analyse the S.F. and the fully plastic moment if $\sigma_{y}=252 \mathrm{~N} / \mathrm{mm}^{2}$.
20. Analyse the shape factor of the 1 -section with top flange 100 mm wide, bottom flange 150 mm wide, 20 mm thick and web depth 150 mm and web thickness 20 mm .
21. A continuous beam $A B C$ is loaded as shown in the Fig. Examine the required M_{p} if the

load factor is 3.2.
22. A fixed beam of span 'l' carries a uniformly distributed load ' w ' on the right half portion. Find the value of collapse load W_{c}. The beam is of uniform moment of resistance.
23. A three-span continuous beam $A B C D$ has the span lengths of $A B=B C=C D=8 m$ and carries an udl of $40 \mathrm{kN} / \mathrm{m}$ completely covering the spans and A \& D are simply supported ends. If the load factor is 1.5 and Shape factor is 1.15 for the " T " section. Find the section modulus needed. Assume the yield stress for the material as $300 \mathrm{~N} / \mathrm{mm}^{2}$.
24. Determine the collapse load of the beam load as shown in fig.

