AllAbtEngg.com

For Questions, Notes, Syllabus & Results

Design of Reinforced Concrete Elements

Important 13mark questions

Unit I

- 1. Explain the codal recommendations for limit states design? State their significance.
- 2. Design a simply supported reinforced concrete beam to carry a bending moment of 50 kNm as doubly reinforced section by working stress design. Keep the width is equal to half the effective depth.

Unit II

1. Design the reinforcement for a T-beam for the following data:

Effective span: 8m

Spacing of beams = 3m, Thickness of slab = 130 mm

Total depth = 450 mm, Live load = $10kN/m^2$

2. A T beam slab floor of an office comprises of a slab 150 mm thick spanning between ribs spaced at 3 m centres. The effective span of the beam is 8 m. Live load on floor is $4kN/m^2$. Using M20 grade concrete and Fe 415 HYSD bars, design one of the intermediate T beams.

Unit III

- 1. Explain the terms Diagonal tension and bond stress with reference to R. C beams.
- 2. Design the reinforcement required for the section 300 mm × 500 mm for the following data:

Bending moment = 65 kNm, Torsional moment = 40 kNm, Shear force = 70 kN.

Unit IV

- 1. Design a short column to carry an axial load of 1200 kN and moment of 60 kNm about the major axis. The effective height of column is 3 m.
- 2. Design the reinforcement for a column of size 250 mm \times 300 mm if it is subjected Pu = 500 kN, Mux = 50 kNm and Muy = 30kNm. Provide effective cover of 50 mm.

Unit V

- 1. A rectangular RCC column of size 400 mm \times 600 mm carrying an axial load of 1800 kN. If the safe bearing capacity of the soil is 150 kN/ m^2 . Design a suitable footing. Use M20 concrete and Fe 415 steel.
- 2. Design a combined footing for two columns 300 mm \times 300 mm, 4m apart to transfer an axial load of 1500 kN each. The width is restricted to 2.5 m. The safe bearing capacity of soil is 200 kN/ m^2 .