www.binils.com

Anna University | Polytechnic | Schools

Reg. No. :

No. :

Question Paper Code : X86918

M.E./M.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2021 Second Semester Structural Engineering ST5204 – FINITE ELEMENT ANALYSIS OF STRUCTURES (Regulations 2017)

Time : Three Hours

Maximum : 100 Marks

Answer ALL questions

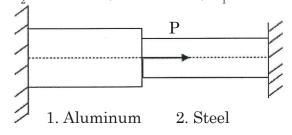
 $\operatorname{PART}-\operatorname{A}$

(10×2=20 Marks)

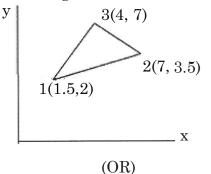
- 1. How to analysis Degrees of freedom with examples ?
- 2. Differentiate between global and local axes.
- 3. Write down the stress strain relationship matrix for plane stress condition.
- 4. Distinguish between essential boundary condition and natural boundary.
- 5. Differentiate between CST and LST.
- 6. Why higher order elements are necessary ?
- 7. What are the assumptions for thin shell theory ?
- 8. Draw the kirchoff plate after bending.
- 9. List the methods of meshing.
- 10. What are the types of non-linearity ?

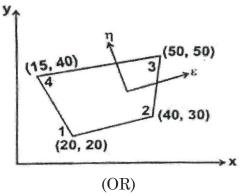
PART – B (5×13=65 Marks)

11. a) The following differential equation is available for a physical phenomenon AE $(d^2y/dx^2 + q_0) = 0$ with the boundary conditions $y(0) = 0(dy/dx)_{x=L} = 0$. Find the value of f(x) using the weighed residual method. (OR)

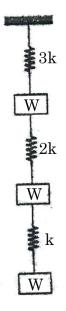

www.binils.com Anna University | Polytechnic | Schools

X86918

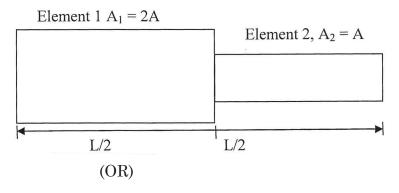

-2-


b) For the bar shown in fig, evaluate the nodal displacement, stress in each Material and reaction forces. $L_1 = 350 \text{ mm} \text{ and } L_2 = 450 \text{ mm}. A_1 = 2450 \text{ mm}^2$, $A_2 = 650 \text{ mm}^2$, P = 250 kN, $E_1 = 70 \text{ GPa}$, $E_2 = 200 \text{ GPa}$.

12. a) Evaluate the shape functions N1, N2, N3 at the interior point P (3.85, 4.8) for the triangular element shown in fig.



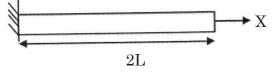
- b) Derive the shape functions for four noded bar element using Lagrangian interpolation function. Nodes are equally spaced.
- 13. a) For the four noded quadrilateral element shown in fig. determine the Jacobian and evaluate its value at the point $(1/2, \frac{1}{2})$.



www.binils.com Anna University | Polytechnic | Schools

b) Figure depicts a system of three linearly elastic springs supporting three equal weights W suspended in a vertical plane. Treating the springs as finite elements, determine the vertical displacement of each weight.

- 14. a) Explain in detail the finite element analysis of skew plate. Find the K Value. (OR)
 - b) Explain in detail the basic relationships and consecutive equations of thin plate theory.
- 15. a) Find the natural frequency of longitudinal vibration of the unconstrained steeped bar as shown in fig.



www.binils.com Anna University | Polytechnic | Schools

X86918

b) For the bar as shown in fig with length 2L, modulus of elasticity E, mass density, cross sectional area A, determine the first two natural frequencies.

-4-

PART – C (1×15=15 Marks)

16. a) The differential equation of a physical phenomenon is given by $(d^2y/dx^2) + y = 4x$; $0 \le x \le 1$. The boundary conditions are: y (0) = 0 and y (1) = 1. Obtain one term approximation solution by using Galerkin's method of weighed residuals.

(OR)

b) Consider the eight nodded quadrilateral element defined by the following nodal coordinates : $x_1 = 5$, $y_1 = 7$, $x_2 = 1$, $y_2 = 4$, $x_3 = 2$, $y_3 = 1$, $x_4 = 8$, $y_4 = 4$, $x_5 = 3$, $y_5 = 3$, $x_6 = 6$, $y_6 = 5$, $x_7 = 2.5$, $y_7 = 3$, $x_8 = 1.5$, $y_8 = 2$. Determine the global coordinates $\eta = 1$, $\varepsilon = 0.75$.