DOTE TAMILNADU

Government of Tamil Nadu

CIVIL ENGINEERING DRAWING - II

DIPLOMA IN CIVIL ENGINEERING
FIFTH SEMESTER / THIRD YEAR

Untouchability is a sin
Untouchability is a crime
Untouchability is a inhuman

DIRECTORATE OF TECHNICAL EDUCATION GOVERNMENT OF TAMIL NADU

www.binils.com
Anna University, Polytechnic \& Schools

First Edition - 2018

CHAIR PERSON

Dr. R. Palaniswamy I.A.S.,
Commissioner of Technical Education (FAC) / Chief Implementation Officer
Directorate of Technical Education, Chennai

CONVENER

Thiru N. Muralikrishniah, M.E.,M.I.S.T.E., Principal
Dr. Dharmambal Government Polytechnic College for Women, Chennai
Principal (addtl charge)
Institute of Printing Technology, Chennai

AUTHORS

Thiru T. Arul Kumar M.Tech.
Lecturer in Civil Engineering,

Thiru R. Ramarathnam M.Tech.
Lecturer in Civil Engineering, Government Polytechnic College, Uthangarai

Tmt N. Ramya Gandhi M.E.
Lecturer in Civil Engineering
Government Polytechnic College, Uthangarai

REVIEWER :

Dr. R. Amutha, M.E., Ph.D, F.I.E
Principal
Rajagopal Polytechnic College, Gudiyatham

This book has been prepared by the Directorate of Technical Education This book has been printed on 60 G.S.M Paper
Through the Tamil Nadu Text book and Educational Services Corporation

PREFACE

We are in much happiest occasion to present CIVIL ENGINEERING DRAWING - II book for Diploma in Civil Engineering under Directorate of Technical Education, Tamil Nadu. An attempt has been made in this text learning material to meet the requirements and standards of M-Scheme curriculum of Civil Engineering Drawing -II of Fifth Semester Diploma in Civil Engineering prescribed by DOTE.

It is important to every Civil Engineer to have knowledge of public health engineering drawings, bridge drawings and structural drawings. This book deals about public health engineering drawings in first part, bridge drawings in second part and structural engineering drawings in the third part.

It is hoped that with the content exposed in this text, the readers and learners will be able to understand and pursue further in their studies. This book is written in simple and easily understandable manner.

The convener, authors and reviewer are very much grateful to the Commissioner of Technical Education Chennai for his deep involvement and encouragement in preparing this syllabus based learning material. Thanks are due to officials of DOTE, Chennai for their timely help whenever needed. Further suggestions and fair criticisms are welcome for fine tuning in future

INDEX

S. No.	Content	Page no.
$\mathbf{1}$	List of Drawings	-
$\mathbf{2}$	Public Health Engineering Drawing	1
$\mathbf{3}$	Bridge Drawing	14
$\mathbf{4}$	Structural Engineering Drawing with Bar Bending Schedule	20
$\mathbf{5}$	Annexure	59

www.binils.com

LIST OF DRAWINGS

PUBLIC HEALTH ENGINEERING DRAWING

1. Infiltration gallery (with one infiltration well, one straight gallery pipe, one inspection well and one jack well)
2. Rapid Sand Filter
3. Septic Tank with dispersion Trench / Soak pit
4. Bio gas plant with floating type

BRIDGE DRAWING

5. Two span Pipe Culvert
6. Two span Tee Beam Bridge with square returns.

STRUCTURAL ENGINEERING DRAWING WITH BAR BENDING SCHEDULE
7. Simply supported one-way slab
8. Simply supported two-way slab
9. Restaind momAdAW. binils.com
10. Singly reinforced Simply supported beam
11. Doubly reinforced Continuous beam with two spans
12. Tee Beams supporting continuous slab
13. Dog-legged staircase
14. Lintel cum Sunshade
15. R.C.C Column with square Isolated footing

1. INFILTRATION GALLERY (WITH ONE INFILTRATION WELL ONE STRAIGHT GALLERY PIPE, ONEINSPECTION WELL AND ONE JACK WELL)

If a perennial river is running nearer to the town, the infiltration gallery is one of the cheapest sources of water supply for a town. The water from Infiltration Gallery does not require any treatment except chlorination.

The infiltration gallery consists of infiltration well, inspection well and jackwell.

Infiltration Well

Infiltration wells are shallow wells which are constructed in series along the banks of the rivers. The water will be collected into the wells by seeping through their bottom. The wells are covered at top and open at bottom so water can be easily entered through its bottom. The sides of the wells are constructed by brick masonry with open joints. The water which received through the filtration well is very pure. Sandy beds are placed at the bottom of the tank. So that the suspended impurities and inorganic impurities get filtered.

Inspection Well

Inspection wells are alsō called man holes. For inspection purpose man holes are provided. Inspection wells are provided at an interval of 30 m to 50 m .

Jack Well

The infiltration wells are connected by porous pipes to a collecting sump known as jack well. The water thus collected through the infiltration wells flows by gravity into the jack well. Then the water from the jack well is pumped to the purification plant for further treatment.

The following particulars of an infiltration gallery are.

River bed level
River bank level
Inner diameter of infiltration well
Outer diameter of infiltration well
Number of infiltration well
Maximum flood level (MFL)
Lowest summer water level (LSWL)
Invert level of stone water pipe
Diameter of stone water pipe
Length of gallery pipe
Width of gallery
Cover Slab Thickness

- + 100.000m
- + 104.50m
$-4 \mathrm{~m}$
$=4.80 \mathrm{~m}$
= 1
$=103.0 \mathrm{~m}$
$=+98.20 \mathrm{~m}$
$-+94.00$
- 0.40 m
- 50 m
- 1.80 m
- 100mm

Filter media

Layer of filter media adjacent to the pipe 200 mm
Next two layers are of 100 mm each
Inner diameter of jack well with pump house $=6 \mathrm{~m}$
Outer diameter of jack well
Inner diameter of inspection well
$=6.90 \mathrm{~m}$

Outer diameter of inspection well
$=3.00 \mathrm{~m}$
$=3.60 \mathrm{~m}$

Assume any data suitably if required.

Draw the following views to a suitable scale

1. General layout of the scheme showing infiltration well, infiltration galleries, inspection wells, jack well and pump house. (Not to scale).
2. Longitudinal section of infiltration well, one straight gallery, one inspection well and one jack well.
3. Sectional plan of infiltration well, gallery, inspection well and jack well.
4. Cross sectional details of infiltration gallery.

Assumptions

1. Diameter of infiltration well -2 m to 6 m
2. Diameter of inspection well 2 m to 3 m
3. The gallery should be laid at a minimum depth of 2 m below the lowest summer water level.
4. Diameter of gallery pipe 300 mm to 450 mm .
5. Rate of infiltration for wells and galleries $=4500$ to $6000 \mathrm{lit} / \mathrm{m}^{2} /$ day.

www.binils.com Anna University, Polytechnic \& Schools

2. RAPID SAND FILTER

Filtration is the process of removing bacteria, colour, taste, odour, iron, manganese from water. The efficiency of rapid sand filter is 55% more than the slow sand filter. It removes 95% of bacterial impurities. Its rate of filtration is 4000-5000 liters / m² / hours.

The components of rapid sand filter are

1. Enclosure tank
2. Bases materials
3. Filter media
4. Wash water trough
5. Air compressor

Enclosure tank

It is a rectangular water tight tank constructed either of masonry or concrete generally the length of tank is 6 m to 9 m .

Filter media

Filter mediais provided to a depth of 600 mm to 900 mm using a sand of effective size 0.35 to 0.6 .

Base materials

Here gravel is used as a base material and is placed on the top of the under drainage system. This depth varies from 450 mm to 600 mm .

Under drainage system

Area of cross section of main drain or manifold should be greater than twice the area of cross section of lateral drain. The laterals are provided approximately at a rate of $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ to $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$. Diameter of perforations in the laterals should be between 6 mm and 12 mm and the spacing of perforations varies from 80 mm to 200 mm .

Wash water trough

The troughs are placed at a distance of 1.5 m to 2 m edge to edge. The bottom of the trough is about 450 mm to 750 mm above the sand bed. The dirty water coming from the filter bed is collected and removed.

Air compressor

The agitation of sand grains during washing of filter is carried by compressed air. Compressed air is passed at the rate of $60-80 \mathrm{~mm}^{3} /$ minute / m^{2} of filter area for 4 minutes. By this process sand gets purified and can be reused.

The following particulars of rapid sand filters are given below.
$\begin{array}{ll}\text { Size of filter unit } & -8000 \times 5000 \mathrm{~mm} \\ \text { Size of inlet chamber } & -5000 \times 1000 \mathrm{~mm} \\ \text { Depth of filtration tank } & -3500 \mathrm{~mm} \\ \text { Depth of Filtration Chamber } & -2600 \mathrm{~mm} \\ \text { Thickness of Filter media } & -1350 \mathrm{~mm} \\ \text { Wall thickness at top } & -450 \mathrm{~mm} \\ \text { Wall thickness of bottom } & -600 \mathrm{~mm} \\ \text { Thickness of foundation } & -450 \mathrm{~mm} \\ \text { Diameter of main drain } & -380 \mathrm{~mm} \\ \text { Diameter of laterals } & -80 \mathrm{~mm} @ 300 \mathrm{~mm} \text { c/c } \\ \text { Diameter of air laterals } & -70 \mathrm{~mm} @ 300 \mathrm{mmc} / \mathrm{c} \\ \text { Diameter of air pipe } & -150 \mathrm{~mm} \\ \text { Slope of lateral }-1 \text { in } 50 & \\ \text { Diameter of inlet pipe }-300 \mathrm{~mm} & \\ \text { Diameter of wash water drain pipe- } 300 \mathrm{~mm} \\ \text { Number of wash water drain pipe- } 3 \mathrm{Nos} \\ \text { Size of wash water trough- 300mm x } 450 \mathrm{~mm} \\ \text { Free board - 300mm } \\ \text { Diameter of wash water inlet-200mm } \\ \text { Assume any other data suitably if required. }\end{array}$

Draw the following views to a suitable scale

1. Plan of the filter unit
2. Longitudinal section of the filter unit.
3. Cross section of filter unit.

www.binils.com Anna University, Polytechnic \& Schools

3. a) SEPTIC TANK WITH DISPERSION TRENCH

Septic tank is a type of sedimentation tank. It is a water tight tank in which sewage is retained for sufficient time to permit sedimentation is called a septic tank. It is a rectangular tank whose length is 2 to 4 times more than the breadth. Free board of 0.3 to 0.45 m is provided. ' T ' shaped outlet pipe is provide to a depth of 150 mm below the liquid level.

Baffle wall is provided at $1 / 5$ length of the tank from the inlet pipe. The floor is provided with all sides sloping towards one point to facilitate de-sludging operation. R.C.C cover slab with man hole is provided on the top of the tank.

Ventilation is provided with vent pipe.The vent pipe is made of PVC of 50 to 100 mm diameter and 3 m height. It prevents foul smell and birds for nesting.

It can be disposed-off on land by

1. Disposal by soak pit
2. Disposal by absorption (or) dispersion trenches

1. Disposal by soak pit

Soak pit is also called seepage pitwhere space is restricted as in towns. Soak pit may be used particularly in areas where rainfall is not heavy. No underground drinking water supply line should be situated within a radius of at least 60 m from a disposal site or soak pit. The pit is laid with brick or concrete blocks with dry joints which should be packed with clean coarse aggregate. The lining above the inlet level should be finished with cement mortar 1:3 to form a masonry ring to support the R.C.C covers.

2. Disposal by Dispersion trench

They are also called soakage trenches. The effluent is discharged through open jointed pipes placed in trenches. Trenches should be 0.5 to 1 m deep and 0.3 m to 1 m wide excavated to a slight gradient. It should be provided with 150 mm to 250 mm of washed gravel or crushed stone. The open jointed pipes shall be made of unglazed earthen ware or concrete, have a minimum internal diameter of 75 mm to 100 mm . The dispersion trench should not be longer than 30 m and placed should not closer than 1.8 m .

Following are the particulars of a septic tank with dispersion trench.

Septic Tank

Cleaning Interval	-2 years
Length of tank	-10.50 m
Breath of tank	-3.00 m
Width of walls	-300 mm
Foundation concrete in CC $1: 4: 8$	-200 mm

Wearing coat is provided at a slope of 1 in 20 above the foundation concrete
Depth of liquid

- 1.20 m

Free board

- 0.40 m

Distance of baffle wall from inlet end

- 2.0 m

Height of 50 mm thick baffle wall

- 750 mm

Distance of partition baffle wall from inlet - 7.0 m
Height of 50 mm thick partition baffle wall -1500 mm
Outlet Chamber

- 1000x1000x550 mm

Dispersion trench

Number of trenches - 3Nos
Length of trench - 30m
Width of trench - 1 m
Slope of pipe - 1 in 100
Depth below ground level - 0.9m
Diameter of inlet and outlet pipes - $100 \mathrm{~mm} \varphi$

Any more data required may be assumed suitably.

Draw the following views with suitable scale

1. Sectional plan of septic tank and dispersion trench.
2. Longitudinal section of septic tank and dispersion trench.
3. Cross section of dispersion trench.

3.(a) SEPTIC TANK WITH DISPERSION TRENCH

www.binils.com
Anna University, Polytechnic \& Schools

3. b) SEPTIC TANK WITH SOAK PIT

Following are the particulars of a septic tank with soak pit.

Septic tank

Length of tank $=3.0 \mathrm{~m}$
Breadth of tank $=1.50 \mathrm{~m}$
Depth of liquid $=1.80 \mathrm{~m}$
Free board $\quad=0.3 \mathrm{~m}$
Distance of baffle wall from inlet end $=450 \mathrm{~mm}$
Tank walls of B.W in C.M 1:3 300mm thick
Diameter if inlet and outlet $\quad=100 \mathrm{~mm}$
Precast R.C.C cover slab $=100 \mathrm{~mm}$ thick
Diameter of ventilating pipe $=50 \mathrm{~mm}$
Size of distribution chamber $\quad=750 \mathrm{~mm} \times 750 \mathrm{~mm}$
Size of manhole $\quad=750 \mathrm{~mm} \times 750 \mathrm{~mm}$
Foundation concrete in CC 1:4:8 $=200 \mathrm{~mm}$
Wearing coat is provided at a slope of 1 in 20
Distribution Chamber

Soak pit

Inner diameter
Depth below invert level of inlet pipe
B. W in Cm 1:5 dry open joint below inlet pipe

Depth below ground level
Cover slab in CC 1:2:4
B. W in Cm 1:5 above inlet pipe with plastering

- 1.5 m
- 2 m
- 200 mm
- 2.6 m
- 100 mm
$-200 \mathrm{~mm}$

Any more data required may be assumed suitably.

Draw the following views to a suitable scale

1. Sectional plan of septic tank
2. Longitudinal section of septic tank

www.binils.com
Anna University, Polytechnic \& Schools

4. BIO-GAS PLANT (FLOATING TYPE)

Bio gas is obtained by anaerobic fermentation of organic materials. Bio gas is used for cooking and lighting. The Bio-gas plant consists of the following parts.

1. Inlet tank
2. Digester
3. Outlet tank
4. Gas holder

Inlet tank

In this tank, the raw cowdung is mixed with water and then allowed to pass through an inlet pipe into the digester.

Digester

The digester is a deep well, connected by inlet and outlet pipes.

Gas holder

A mild steel gas - storage drum, inverted over the slurry goes up and down around a guide pipe corresponding to the accumulation of gas.

The following are the particulars of a floating type bio-gas plant.

1. Dia of cylindrical drum

1900 mm
2. Height of drum

- 1000 mm

3. Dia of digester well

- 2000 mm

4. Height of digester well from foundation of cornice- 1350 mm
5. Height of inlet and outlet at the digester well - 700mm
6. Thickness of foundation concrete for digester well- 150 mm
7. Thickness of brick wall in C.M 1:4

- 230 mm

8. Thickness of partition wall

- 150 mm

9. Size of brick pillar at the centre

- $230 \mathrm{~mm} \times 230 \mathrm{~mm}$

10. Size of cornice

- $75 \mathrm{~mm} \times 300 \mathrm{~mm}$

11. Size of inlet tank
$-750 \times 750 \times 600 \mathrm{~mm}$
12. Size of outlet tank
$-600 \times 600 \times 600 \mathrm{~mm}$
13. Diameter of inlet and outlet pipe

Any more data required may be assumed suitably.

Draw the following views to a suitable scale.

1. Top plan
2. Sectional elevation

4. BIO GAS PLANT (FLOATING TYPE)

www.binils.com Anna University, Polytechnic \& Schools

5. TWO SPAN PIPE CULVERT

Pipe culverts are provided when discharge of stream is small. Usually one or more pipes of diameter not less than 300 mm are provided side by side. These pipes may be of cement concrete, cast iron or steel. Pipe culvert should be provided with suitable concrete bedding at bottom. The gradient of the pipe should not be less than 1 in 1000. A minimum clearance of 150 mm is maintained between the H.F.L and the crowns of the pipe. An earth cushion of minimum depth of 450 mm should be provided at the top of pipes. R.C.C Hume pipes are commonly used.

The specifications for a two span pipe culvert are given below.

Hydraulic Particulars

Road and stream

$\begin{array}{ll}\text { Width of road } & -5000 \mathrm{~mm} \\ \text { Bed level of stream } & -+20.00 \\ \text { Road level } & -+22.10 \\ \text { Water level } & -+21.80 \\ \text { Thickness of W.B.M road } & -250 \mathrm{~mm}\end{array}$
Number of pipes

- 2 Nos

Diameter of concrete Hume pipe - 1000mm
c/c distance of pipes -1600mm
Type of joint - Collar joint in C.M 1:2
Width of concrete seating for pipes at top -3300mm
Width of concrete seating for pipes at bottom - 2700mm
Thickness of concrete seating for pipes -500mm

Retaining wall

Top level	-+22.20 m
Bottom level	-+19.20 m
Top width	-500 mm
Bottom width	-1200 mm

Front face vertical
Width of foundation concrete -1600mm
Thickness of foundation concrete -300 mm

Parapet

Length	-4100 mm
Thickness	-400 mm
Height	-600 mm
Coping	-100 mmtk

Earth filling

Earth filling above the pipe

- 700 mm
Thickness of surface dressing
- 10 mm

Draw the following views of the pipe culvert

1. Half plant at top and half plan at foundation.
2. Longitudinal section
3. Front elevation
4. Section showing bedding details of the pipe
www.binils.com

www.binils.com
Anna University, Polytechnic \& Schools

6. TWO SPAN TEE BEAM BRIDGE WITH SQUARE RETURNS

These types of bridges are constructed when the width of the drain is to be crossed by a road is wider. It consists of 'Tee' beams supported on piers and abutments.

Abstract

Abutment Abutments are provided with wing walls.The wing walls are constructed on both sides of abutments to protect the earthen banks. The wing walls may be of straight, splayed or return. The depth of foundation is based on the scour depth. Cut water and ease water shall be provided for piers and abutments.

Piers

The intermediate supports of abridge super structure are known as piers. The pier end of upstream side is called cut water and on the downstream side is known as ease water. The R.C.C piers are normally rectangular in cross section.

Approach road

The approach road width is reduced at the point of crossing. Road kerbs are provided at the end of the deck slab. IRC recommends that a minimum straight length of 15 m on either side of a bridge has to be provided. Suitable handrails and parapet are provided at the bridge. The width of approach should be equal to the width of bridge.

Following are the particulars of a two span 'T' Beam bridge with square returns.

Hydraulic particulars

Drain

Bed level of canal	-+50.00
Full supply level (F.S.L)	-+51.30
Bed width of canal	-6600 mm
Top level of Road	-+52.50
Clear width of road way	-4000 mm
Top width of approach road way	-5000 mm
Top of foundation for all walls	-+49.70
Bottom level of foundation for all walls	-+49.40
Offset of foundation concrete	-200 mm
Top of parapet	-+53.35
Top of kerb	-+52.65
Size of kerb	$-300 \times 150 \mathrm{~mm}$

Abutment

Top width	-600 mm
Bottom width	-1200 mm
Water face vertical	
Length of abutment	-5700 mm
Size of bed block	$-600 \times 600 \times 150 \mathrm{~mm}$
Width of foundation concrete	-1600 mm
Thickness of foundation concrete	-300 mm

Pier

Top and bottom width	-600 mm
Length of pier	-5700 mm

Return wall in C.R masonry C.M 1:5

Length of return wall

- 3500mm

Top width

- 600mm

Bottom width

Front face vertical

Tee Beam

Size of beam /N/NN/ Oル $150 \times 300 \mathrm{~mm} \bigcirc \cap \cap$
Thickness of R.C.C deck slab

- 200mm

Parapet

Thickness of parapet

- 300mm

Size of parapet pillars

- $300 \mathrm{~mm} \times 700 \mathrm{~mm}$

Spacing of parapet pillars

- 2500 mm

Provide $25 \mathrm{~mm} \varphi$ G.I pipe for hand rails
Length of rough stone revetment on both side U/s and D/s 2000mm

Thickness of revetment

- 400mm

Size of RCC post

- 100x100x700mm

Assume any other data required suitably

Draw the following views to a suitable scale

1. Half plan at foundation and half plan at top
2. Longitudinal sectional elevation
3. Cross section

6. TWO SPAN TEE BEAM BRIDGE WITH SQUARE RETURNS

www.binils.com
Anna University, Polytechnic \& Schools

7) SIMPLY SUPPORTED ONE WAY SLAB

When the slab is supported on two opposite sides alone by walls or beams is said to be one way slab. When Ly/Lx ratio is greater than 2, one way slabs are provided.

The load on the way slab is transferred to the two supports only, hence the main reinforcement is provided along the shorter span direction 50% of the main reinforcements are bend to the top for length of $0.1 \boldsymbol{l}$ from the face of the support.

The bars in longer direction of the slab are called distribution or transverse steel. Distributors are placed in the upper layer and tied with the main steel bars to keep them in correct position during concreting.

Problem

The following are the particulars of a simply supported one way roof slab.

Size of room	$=3.10 \mathrm{~m}$
Clear span	$=230 \mathrm{~mm}$
Width of supporting walls	
Total thickness of slab	$=120 \mathrm{~mm}$
Clear cover	$=15 \mathrm{~mm}$
Main reinforcement	@ 140 mm dia Fe 415 Bars
	$=8 \mathrm{~mm} \mathrm{dia} \mathrm{Fe} 415 \mathrm{Bars}$
Distributors	@ $250 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

50% of main Reinforcement can be bent up 0.1 from the face of the support.

Cover: For tensile, compressive, shear or any other reinforcement in Slabs, minimum cover shall not be less then 15 mm , and the side Cover 25 mm .

Anchorage and curtailment of reinforcement may be adopted with standard values. Assume any other data required suitably.

Draw to a suitable scale

1. Plan at bottom showing reinforcement arrangements.
2. Plan at top showing reinforcement arrangements.
3. Cross section of the slab showing reinforcement details.
4. Prepare bar bending schedule for 1 m width to slab

CRANK LENGTH CALCULATION

$1.414 \mathrm{X} \mathrm{D}=1.414 \times 90=127.26$

Where D = Depth of slab - top @ Bottom cover $D=120-(2 \times 15)=90$

PLAN SHOWING THE BOTTOM REINFORCEMENT

All dimensions are in mm
www.binils.com
Anna University, Polytechnic \& Schools

BAR BENDING SCHEDULE

Type No.	Size	Shape	Length In \mathbf{m}	Number	Weight/Unit length in N/m	Total weight in ' N '	Remarks
1.	10\#	$448 x^{2}{ }^{2972}$	3.547	$\frac{1000}{280}=3.70$	6.2	81.36	Main Reinforcement
2.	10\#	$2972 / \overbrace{}^{448}$	3.547	$\frac{1000}{280}=3.70$	6.2	81.36	Main Reinforcement
3.	8\#	1000	1.000	$\frac{3510}{250}+1=15.04$		60.00	Distributors
4.	8\#	1000	1.000	$\begin{gathered} {\left[\frac{448}{250}+1\right] \times 2} \\ =5.58 \approx 6 \end{gathered}$	4.0	24.00	Supporting main bar
					Total weights	246.72	
Add 5\% extra for wastage in cutting \& others						12.34 N	
Total quantity of steel required						259.06 N	Say 260 N

www.binils.com
 Anna University, Polytechnic \& Schools

8) SIMPLY SUPPORT TWO WAY SLAB (CORNERSNOT HELD DOWN)

A slab is called 'two way slab' when the load on it is distributed in both directions to all its four supports. Two way slabs are provided whenly/lx ratio is less than $2[\mathrm{Ly} / \mathrm{Lx}<2$].

Since two way slabs deflect in both directions the tension reinforcement (main reinforcement) is provided in bothshorter span and longer span.
50% of the reinforcement are curtailed or cranked at 0.1 Lx and 0.1 Ly for shorter and longer direction respectively. Remaining 50% of the reinforcements should be extended in to the supports.

Problem

The following are the particulars of a simply supported two way slab in which corners are not held down.

Reinforcement details:

Reinforcement along shorter span $=10 \mathrm{~mm} \mathrm{Fe} 415 @ 200 \mathrm{~mm} \mathrm{C} / \mathrm{C}$
Reinforcementalong longer span $\quad=10 \mathrm{~mm} \mathrm{Fe} 415 @ 220 \mathrm{~mm} \mathrm{C} / \mathrm{C}$
Distributors in both directions $=8 \mathrm{mmFe} 415 @ 290 \mathrm{~mm}$
Anchorage and curtailment of reinforcement may be adopted with standard values and any more data required may be assumed suitably.

Draw the following views to a suitable scale

1. Plan at bottom showing reinforcement arrangements.
2. Plan at top showing reinforcement arrangements.
3. Cross section of the slab showing reinforcement details.
4. Prepare bar bending schedule for 1 m width of slab.
www.binils.com

SIMPLY SUPPORTED TWO WAY SLAB

www.binils.com
 Anna University, Polytechnic \& Schools

BAR BENDING SCHEDULE

Type No.	Size	Shape	Length In m	Number	Weight/Unit length in N/m	Total weight in ' N '	Remarks
1.	10\#		5.100	$\begin{gathered} \frac{6650}{400}+1=17.6 \\ \text { (say } 18 \text {) } \end{gathered}$	6.2	569.16	Main Reinforcement along shorter span
2.	10\#	$635 / 6^{68}$	5.100	$\begin{gathered} \frac{6650}{400}=16.6 \\ \text { (say 17) } \end{gathered}$	6.2	537.54	Main Reinforcement along shorter span
3.	10\#		6.696	$\begin{gathered} \frac{5050}{440}+1=12.47 \\ \text { (say 12) } \end{gathered}$	6.2	498.18	Main reinforcement along longer span
4.	10\#		6.696	$\begin{gathered} \frac{5050}{440}=11.47 \\ (\text { say } 11) \end{gathered}$	6.2	456.66	Main reinforcement along longer span
5.	8\#	6650	6.650	$\begin{gathered} \frac{635}{290}+1=3010 \\ \text { (say } 3+3=6 \text {) } \end{gathered}$	4.0	159.60	Distributor along longer span
6.	8\#	5050	5.050	$\begin{aligned} & \frac{805}{290}+1=3.7 \\ & \text { (say 4) } 4+4=8 \end{aligned}$	4.0	161.60	Distributor along shorter span
Total weights						2382.74	
Add 5\% for wastage in cutting, bending overlapping etc						119.13	
						2501.87 N	

www.binils.com
 Anna University, Polytechnic \& Schools

9) RESTRAINED TWO WAY SLAB

In restrained two way slabs, the corners are restrained and not allowed to lift away from the supports. If this is done, torsion is induced at corners and the slab be suitably reinforced for torsion.

Slabs are considered as divided in each direction into middle strip and edge strips. The middle strip being $3 / 4^{\text {th }}$ of the width and each edge strip $1 / 8^{\text {th }}$ of the width. Reinforcement in edge strip parallel to the edge, shall comply with the minimum reinforcement requirements and the requirements for tension.

Torsion reinforcement shall be provided at any corner where the slab is simply supported on both edges meeting at that corner. It shall consist of top and bottom reinforcement, each layer of bars placed parallel to the sides of the slab and extending from the edges to a minimum distance of $1 / 5^{\text {th }}$ the shorter span.
www.binils.com

Problem

The following are the details of a simply supported slab of a reading room of dimension $5 \mathrm{~m} \times \mathrm{m}$ which is discontinuous along all of its four edges. The corners of the slab are prevented from lifting.

Width of support	$=300 \mathrm{~mm}$
Thickness of slab	$=150 \mathrm{~mm}$
Clear cover of reinforcement	$=15 \mathrm{~mm}$

Reinforcement details

In middle strip
Rft. along shorter span $\quad=10 \mathrm{~mm}$ dia Fe 415 bars @100mm c/c
Rft. along longer span $\quad=10 \mathrm{~mm}$ dia Fe415bars @ 150mm c/c
Edge strip
10 mm Fe415 bars @ $150 \mathrm{mmc} / \mathrm{c}$ along both spans.
Torsion reinforcement
Both at top and bottom8mmdia Fe 415 bars @ 100mm c/c in both directions forming a mesh.

Use standard anchorage and curtailment of reinforcement may be adopted with standard values.

Assume any other data required suitably.

1. Plan showing the arrangement of reinforcement at bottom.
2. The plan showing arrangement of reinforcement at top.
3. The cross section along shorter span middle strip.
4. The cross section along longer span middle strip.
5. Prepare a bar bending schedule.

www.binils.com
Anna University, Polytechnic \& Schools

BAR BENDING SCHEDULE

Type No.	Size Grade	Shape Dimension	Length In m	Number	Weight/Unit length in N/m	Total weight in ' N '	Remarks
1.	10\#	$4745 \hat{8}{ }^{685}$	5.60	$\begin{gathered} \frac{5475}{200}=27.4 \\ \text { say } 28 \end{gathered}$	6.17	987.27	Main Reinforcement along shorter span (middle strip)
2.	10\#	$\stackrel{685}{ } \underbrace{69}>{ }^{4745}$	5.60	$\begin{gathered} \frac{5475}{200}=27.4 \\ \text { say } 28 \end{gathered}$	6.17	987.27	Main Reinforcement along shorter span (middle strip)
3.	10\#	$\begin{array}{l\|l} & 895 \\ \hline 6545 & 155.6 \end{array}$	7.60	$\begin{gathered} \frac{3975}{300}=13.25 \\ \text { Say } 14 \end{gathered}$	6.17	656.11	Main Reinforcement along longer span (middle strip)
4.	10\#		7.60	$\begin{gathered} \frac{3975}{300}=13.25 \\ \text { Say } 14 \end{gathered}$			Main Reinforcement along longer span (middle strip)
5.	10\#	5550	5.550	$\begin{gathered} \frac{912.5}{150}=6.08 \\ 6+6=12 \end{gathered}$	6.17	410.92	Reinforcement along shorter span (edge strip)
6.	10\#	\qquad	7.550	$\begin{aligned} \frac{662.5}{150} & =4.42 \\ 5+5 & =10 \end{aligned}$	6.17	465.84	Reinforcement along longer span (edge strip)
7.	10\#	3825	3.825	$\begin{gathered} \frac{895}{150}+1=6.97 \\ 7+7=14 \end{gathered}$	6.17	330.40	Distributor at top along shorter span.
8.	10\#	5375	5.375	$\begin{gathered} \frac{685}{150}+1=5.57 \\ 6+6=12 \end{gathered}$	6.17	397.96	Distributor at top along longer span.

9.	8\#	1335	$1 . .335$	$\begin{gathered} \frac{1060}{100}+1=11.60 \\ \text { Say } 12 \\ 12+12=24 \end{gathered}$	3.95	126.55	Torsion reinforcement
					Total weights	5018.44 N	
INCL 5\%EXTRA 5269.34							
Say 5270 N							

www.binils.com

www.binils.com
Anna University, Polytechnic \& Schools

10. SINGLY REINFORCED SIMPLY SUPPORTED BEAM

A singly reinforced simply supported beam is a structural member supported on bearing walls or columns and subjected to roof or floor loads and reinforced on the tension side only.

Problem

The following are the details of a singly reinforced simply supported fixed beam.

1. Size of beam $=300 \times 450 \mathrm{~mm}$
2. Clear span $\quad=4000 \mathrm{~mm}$
3. Width of support $=300 \mathrm{~mm}$
4. Clear cover to $\mathrm{rft}=25 \mathrm{~mm}$
5. Reinforcement details:

Main reinforcement (tensile) $=16$ mmdia Fe 415 bars -5 Nos

(a) $160 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

Anchorage and curtailment of reinforcement may be adopted with standard values.

Assume any other data required suitably.
Draw the following views to a suitable scale.

1. Longitudinal section of the beam showing reinforcement details.
2. Top and bottom plan showing arrangement of reinforcement details.
3. Cross sectional view of the beam at mid span and at supports.
4. Prepare a bar bending schedule.

SINGLY REINFORCED SIMPLY SUPPORTED BEAM

www.binils.com Anna University, Polytechnic \& Schools

BAR BENDING SCHEDULE

Type No.	Size Grade	Shape Dimension	Length In \mathbf{m}	Number	Weight/Unit length in N/m	Total weight in ' N '	Remarks
1.	16\#	4550	4.550	3	15.78	215.39	Tensile reinforcement
2.	16\#	3312	3.312	2	15.78	104.53	Tensile reinforcement (Curtailed)
3.	12\#	4550	4.550	2	8.88	80.80	Hanger rods
4.	8\#	$\begin{aligned} & (250+450) 2+20 d \\ & 1400+(20 \times 8) \\ & =1560 \end{aligned}$	1.560	$\frac{4550}{150}+1=3$	3.95	193.05	Stirrups
					Total weights		593.77
Add 5\% of above total weight for wastage							29.69
						623.46 N Say 624 N	

www.binils.com
 Anna University, Polytechnic \& Schools

11) DOUBLY REINFORCEMENT BEAM

Doubly reinforced beams are reinforced both on the tension and compression zones. If the depth of beam is restricted for any reasons, it becomes necessary section by providing reinforcements on the compression side.

Curtailment of main reinforcement is made for a length of 0.081 from the support on either side.

Problem

The following are the details of a doubly reinforced beam.

1. Clear span $\quad=4000 \mathrm{~mm}$
2. Width of support $=300 \mathrm{~mm}$
3. Size of beam $=300 \times 500 \mathrm{~mm}$

Reinforcement details

MID SPAN

Compressive reinforcement $=2$ Nos 16 mmdia Fe 415 steel

AT SUPPORT

Tension
Compression
Shear reinforcement
$=3$ Nos \#16mm, Fe415
$=2$ Nos \#16mm, Fe415
$=8 \mathrm{mmdia}$ Fe 415bars 2 leggedstirrups at $160 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ up to a distance of 800 mm from the edge of the support on both sides. Beyond this point use these shear stirrups @ 300 mm c/c.

Anchorage and curtailment of reinforcement may be adopted with standard values.

Assume any other data required suitably.

Draw the views to a suitable scale

1. The longitudinal section of the beam.
2. The c / s of the beam at mid span.
3. The cross section of the beam at support.
4. The top and bottom plan of reinforcement.
5. Prepare the bar bending schedule for the beam.
www.binils.com

DOUBLY REINFORCED CONTINUOUS BEAM

www.binils.com Anna University, Polytechnic \& Schools

BAR BENDING SCHEDULE

www.binils.com
 Anna University, Polytechnic \& Schools

12. TEE BEAMS SUPPORTING CONTINUOUS SLAB

A slab having three or more supports is called a continuous slab. Slabs spanning in one direction supported at ends and also at intermediate points on beams shall be designed for maximum sagging moment (+ve bending moment) at spans and hogging moment (negative bending moment) at supports.

Tension Reinforcement is to be provided at the bottom of mid span section and at the top of support sections.

Problem

The following are the particulars of a continuous one way slab over the beams.

Size of room	$=12 \mathrm{mx} \mathrm{4m}$
Spacing of 'T' beams	$=3 \mathrm{~m} \mathrm{c} / \mathrm{c}$
Depth of Tee beams	$=450 \mathrm{~mm}$ overall
Breadth of web or rib	$=250 \mathrm{~mm}$
Width of support	$=250 \mathrm{~mm}$
Thickness of slab	$=120 \mathrm{~mm}$

Main Reinforcement in Tee beam

Main Tensile reinforcement $=20$ mmdia Fe 415 bars 5 Nos
Hanger rods $=12$ mmdia Fe 415 bars 2 Nos
Shear reinforcement $=2$ legged stirrups 8mmdia Fe 415 steel @250 $\mathrm{mm} \mathrm{c} / \mathrm{c}$

Reinforcement in slab

Main reinforcement for positive moment at ends spans
= 10mmdia Fe415 bars @ 300 mm c/c
Main reinforcement for negative moment at support next end support
$=10 \mathrm{mmdia}$ Fe415 bars @ 290 mm c/c
Main reinforcement for positive moment at interior span
$=10 \mathrm{mmdia} \mathrm{Fe} 415$ steel 230 mm c/c
Distribution $\quad=8 \mathrm{mmdia}$ Fe415 steel 340mm c/c
Reinforcement at top at support
$=16$ mmdia Fe415 steel 2 Nos for a length 0.1 l
(orLd) whichever is greater.
Anchorage and curtailment of reinforcement may be adopted with standard values.

Assume any other data required suitably.
Draw the following views to a suitable scale.

1. The layout of beams
2. Plan showing reinforcement details at bottom and at top
3. The cross section of beam and slab for end span and interior span showing reinforcement details.
4. Longitudinal section of Tee beam.
5. Cross section of beam at mid span and at supports.
6. Prepare a bar bending schedule for all spans except beam portion for 1 m width of slab.

www.binils.com Anna University, Polytechnic \& Schools

BAR BENDING SCHEDULE FOR TEE BEAM

www.binils.com Anna University, Polytechnic \& Schools

www.binils.com
 Anna University, Polytechnic \& Schools

13. DOG -LEGGED STAIRCASE

Staircase is a structural form provided in building to facilitate easy vertical movements of persons from one floor to another.

Dog legged stairs are one of the different stairs adopted and in which the succeeding flight goes in the opposite direction.

The two flights are not separated with the gap and are suited where the width of room is sufficient to accommodate the width of two flights.

Problems

The following are the particulars of a dog legged staircase

Clear size of staircase room	$=5.90 \times 3.40 \mathrm{~m}$
Width of supporting wall	$=230 \mathrm{~mm}$
Height of the floors	$=3.30 \mathrm{~m}$
Width of Landing	$=1600 \mathrm{~mm}$
Number of flight	$=150 \mathrm{~mm}$
Rise of steps	$=270 \mathrm{~mm}$
Tread of steps	$=10 \mathrm{mmdia} \mathrm{Fe} 415$ steel
Main reinforcement	@ $120 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
	$=8 \mathrm{mmdia} \mathrm{Fe} 415$ steel
Distributors	@ $160 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

50% of the main reinforcement is provided at the bottom of landing slab and extended to the top of waist slab for a length of $0.15 l$ (or) Ld whichever is greater.

Assume any other data required suitably.

Draw the following views to a suitable scale

1. Plan and elevation of dog legged stair.
2. Section of waist slab.
3. Prepare a bar bending schedule.
www.binils.com

www.binils.com Anna University, Polytechnic \& Schools

Bar bending schedule for First flight

Type No.	Size grade	Shape Dimension	Length in m	Number	$\begin{gathered} \text { Weight/U } \\ \text { nit } \\ \text { length in } \\ \mathrm{N} / \mathrm{m} \\ \hline \end{gathered}$	Total weight in ' N '	Remarks
1.	10\#	$\sqrt[3892]{105}$	5.165	$\frac{1550}{120}+1=13.92 \text { say } 14$	6.17	446.15	Main reinforcement
2.	10\#	$8 \quad 1927$	2.577	$\frac{1550}{240}+1=7.46$ say 8	6.17	127.20	Main reinforcement
3.	10\#		1.219	$\frac{1550}{240}+1=7.46 \text { say } 8$	6.17	60.17	Main reinforcement
4.	8\#	1550	1.550	$\frac{195}{160}+1=2.22$ say 3 3892 $\frac{160}{}=24.33$ say 25 $\frac{1078}{160}=6.74$ say 7 $\frac{650}{160}+1=5.10$ say 6 $\frac{1927}{160}=12.04$ say 12 $\frac{569}{160}+1=4.56$ say 5 $\frac{650}{160}=4.120$ say 5 Total $=63$	3.95	385.72	Distributor
				Total weights 1019			
Add 5% of above total weight for wastage during cutting, bending etc 50.96 N							
Total quantity of steel required 1070.20 N							
say 1075 N							

www.binils.com
Anna University, Polytechnic \& Schools

Bar bending schedule for Second flight

Type No.	Size grade	Shape Dimension	Length in \mathbf{m}	Number	Weight/ Unit length in \mathbf{N} / m	Total weight in ' N '	Remarks
1.	10\#	${\underset{3398}{ }}_{1078}$	6.738	$\frac{1550}{120}+1=13.92 \text { say } 14$	6.17	582.03	Main reinforcement
2.	10\#	$\sqrt{137}_{1413}$	2.786	$\frac{1550}{240}+1=7.46$ say 8	6.17	137.52	Main reinforcement
3.	10\#	$\overline{1927}$	2.847	$\frac{1550}{240}+1=7.46$ say 8	6.17	140.53	Main reinforcement
4.	8\#	1550	1.550	$\begin{aligned} & \frac{1078}{160}+1=7.74 \text { say } 8 \\ & \frac{3898}{160}=24.33 \text { say } 22 \\ & \frac{2262}{160}=14.14 \text { say } 15 \\ & \frac{1373}{160}+1=9.58 \text { say } 10 \\ & \frac{1413}{160}=8.83 \text { say } 9 \\ & \frac{1927}{160}=13.04 \text { say } 13 \\ & \frac{920}{160}=5.75 \text { say } 6 \\ & \text { Total }=83 \end{aligned}$		508.17	
Total weights 1368.25 N							
Add 5\% of above total weight for wastage during cutting, bending etc 68.4 N							
Total quantity of steel required 1436.66 N							
Say 1440 N							

www.binils.com Anna University, Polytechnic \& Schools

14. LINTEL CUM SUNSHADE

Lintels are horizontal structural elements provided over the openings on walls (doors, windows, ventilators etc) to carry the masonry over them. Lintel beams are designed as small rectangular beams of width always equal to the thickness of wall.

In the external openings it may be cast monolithically with sunshade. In sunshade the tension develops at top. The reinforcements of sunshade are well anchored into the lintel.

Problem

The following are the details of a lintel cm sunshade.

Clear span of lintel	$=2.10 \mathrm{~m}$
Bearing on either side	$=300 \mathrm{~mm}$
Size of lintel	$=300 \times 200 \mathrm{~mm}$
Width of support	$=300 \mathrm{~mm}$
Width of sunshade	$=900 \mathrm{~mm}$
Thickness of sunshade	$=70 \mathrm{~mm} @$ support and $50 \mathrm{~mm} @$ free end.

Reinforcement details

Main reinforcement (tension) $=12 \mathrm{~mm} \mathrm{Fe} 415$ bars 5Nos
Hanger rods
$=10 \mathrm{~mm} \mathrm{Fe} 415$ bars 2 Nos
Shear reinforcement $\quad=8 \mathrm{~mm} \mathrm{Fe} 415$ bars 2 legged stirrups
@ $175 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

Sunshade

$$
\begin{array}{ll}
\text { Main reinforcement } & =10 \mathrm{~mm} \text { Fe } 415 \text { bars @ } 230 \mathrm{~mm} \mathrm{c} / \mathrm{c} \\
\text { Distributor } & =8 \mathrm{~mm} \text { Fe } 415 \text { bars @ } 300 \mathrm{~mm} \mathrm{c} / \mathrm{c}
\end{array}
$$

Anchorage and curtailment of reinforcement may be adopted with standard values.

Assume any other suitable data if not given

Draw the following views to a suitable scale

1. Longitudinal section of lintel
2. Cross section of lintel and sunshade at mid span and at support.
3. Prepare a bar bending schedule for the lintel cum sunshade.
www.binils.com

www.binils.com Anna University, Polytechnic \& Schools

BAR BENDING SCHEDULE

Type No.	Size Grade	Shape Dimension	Length In m	Number	Weight/ Unit length in \mathbf{N} / \mathbf{m}	Total weight in ' N '	Remarks
1.	12\#	2650	2.650	3	8.88	70.59	Main reinforcement
2.	12\#	1740	1.740	2	8.88	30.90	Main reinforcement
3.	10\#	2650	2.650	2	6.17	32.70	Hanger rods
4.	8\#	$\begin{aligned} & 250 \\ & (250+150) 2+2 \mathrm{~d} \\ & 800+(20 \times 8)=960 \end{aligned}$	0.960	$\frac{2250}{175}+1=15.57 \text { say } 16$	3.95	60.67	Stirrups
5.	10\#	$\begin{aligned} & 275,875 \\ & \frac{40}{155} \\ & \\ & \hline \end{aligned}$	1.345	$\frac{2550}{460}+1=6.54 \text { say } 7$	6.17	58.09	Main reinforcement
6.	10\#		0.920	$\frac{2550}{460}=5.54 \text { say } 6$	6.17	34.06	Main reinforcement
7.	8\#	2650	2.650	$\frac{875}{300}+1=3.92$ say 4	3.95	41.87	Distributor
Total weights							328.88
Add 5\% of above total weight etc							16.44
						345.32 N Say 350 N	

15. R.C.C COLUMN WITH SQUARE ISOLATED FOOTING

A column is a vertical compression member provided to carry a compressive load and whose effective length exceeds three times its least laterals dimensions. Columns are used to transmit the load from super structure to foundation. Based on the shape of columns, it is classified into square, rectangular and circle.

The foundation provided for a R.C. column is called a 'Column base' or a 'Column footing'. The main function of column base is to transfer the load carried by the column safely on a larger area of the soil. Individual footings are generally square and supports a central column.

Problems

The following are the particulars of a R.C.C square column with square footing.

Column size	$=400 \mathrm{~mm} \times 400 \mathrm{~mm}$
Clear cover	$=40 \mathrm{~mm}$
Size of footing	$=2100 \mathrm{~mm} \times 2100 \mathrm{~mm}$
Thickness of footing	$=600 \mathrm{~mm}$
Bottom cover	$=50 \mathrm{~mm}$
Side cover	$=75 \mathrm{~mm}$

Reinforcement details

Main reinforcement $=20 \mathrm{~mm} \mathrm{Fe} 415$ bars 8 Nos
Lateral ties $\quad=8 \mathrm{~mm} \mathrm{Fe} 415$ bars @ $250 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
Footing $\quad=12 \mathrm{~mm} \mathrm{Fe} 415$ bars @ $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

Anchorage and curtailment of reinforcement may be adopted with standard values.

Assume any other data required suitable

Draw the following views to a suitable scale.

1. Plan column with reinforcement details
2. Sectional view of column with footing
3. Plan of footing showing reinforce details
4. Prepare a bar bending schedule for column and footing (for $1 \mathrm{~m} h t$ of column)
www.binils.com
R.C.C.COLUMN WITH FOOTING (SQUARE)

Note:-
From table : 8 for bar in compression grade of concrete $=$ M20
bar diameter $=20 \mathrm{~mm}$
fy $=415 \mathrm{~N} / \mathrm{mm}^{2}$
Development length $L d=752$
$L d=526+226=752$

CROSS SECTION OF COLUMN WITH FOOTING

BAR BENDING SCHEDULE FOR R.C.C column WITH FOOTING (SQUARE)

www.binils.com Anna University, Polytechnic \& Schools

Type	Size	Shape		Length In m	Number	Weight/Unit length in N/m	$\begin{aligned} & \text { Total weight } \\ & \text { in ' } N \text { ' } \end{aligned}$	Remarks	
		Column	Footing						
1.	20\#	$\begin{array}{r} \circ \\ \stackrel{\circ}{\circ} \\ 526 \\ \\ \hline \end{array}$		1.752	8	24.66	345.63	Main Reinforcement	
2.	8\#			1.440	$\frac{1526}{250}=6.10 \text { say }$	3.95	34.13	Lateral ties	
3.	8\#	(226.3+226.3)2+20d $905.2+(20 \times 8)=1065.2$		1.065	$\frac{1526}{250}=6.10 \mathrm{say}$			Lateral ties	
4.	12\#		1950	1.950	$\frac{1950}{150}=13$	8.88	225.10	Main Reinforcement	
5.	12\#		1950	1.950	$\frac{1950}{150}=13$	8.88	225.10	Main Reinforcement	
Total weights							$\begin{aligned} & 855.20+42.76=897.96 \\ & \text { Say } 900 \mathrm{~N} \\ & \hline \end{aligned}$		
Add 5\% of above total weight etc									

www.binils.com
 Anna University, Polytechnic \& Schools

ww Annexure ${ }_{n}$

Anna University, Polytechnic \& Schools

Development Length for fully stressed plain Bars

$$
\begin{aligned}
\mathrm{f}_{\mathrm{y}} & =250 \mathrm{~N} / \mathrm{mm}^{2} \text { for bars up to } 20 \mathrm{~mm} \text { diameter } \\
& =240 \mathrm{~N} / \mathrm{mm}^{2} \text { for bars over } 20 \mathrm{~mm} \text { diameter }
\end{aligned}
$$

(Tabulated values are in millimeters)

Bar Diameter	Tension Bars for Grade of Concrete			Compression Bars for Grade of Concrete					
	M15	M20	M25	M30	M15	M20	M25	M30	
1	2	3	4	5	6	7	8	9	
mm									
6	326	272	233	218	261	218	186	174	
8	435	363	311	290		348	290	249	232
10	544	453	388	363	435	363	311	290	
12	653	544	466	435	522	435	373	348	
16	870	725	621	580		696	580	497	464
18	979	816	699	653	783	653	559	522	
20	1088	906	777	725	870	725	621	580	
22	1148	957	820	766	919	766	656	612	
25	1305	1088	932	870	1044	870	746	696	
28	1462	1218	1044	974	1169	974	835	780	
32	1670	1392	1193	1114	1336	1114	955	896	
36	1879	1566	1342	1253	1503	1253	1074	1002	

Note 1: The development lengths given above are for a stress of $0.87 \mathrm{f}_{\mathrm{y}}$ in the bar.
Note 2: It is important to note that hook should normally be provided for plain bars in tension. Threfore, the straight length required in such cases is equal to the value taken from the table minus the enchprage value of hook.

WWW.OlnilS.COn
Anna University, Polytechnic \& Schools

Development Length for fully stressed deformed Bars

$$
\mathrm{f}_{\mathrm{y}}=415 \mathrm{~N} / \mathrm{mm}^{2}
$$

(Tabulated values are in millimeters)

Bar Diameter	Tension Bars for Grade of Concrete		Compression Bars for Grade of Concrete						
	M15	M20	M25	M30		M15	M20	M25	M30
1	2	3	4	5		6	7	8	9
mm								193	181
6	338	282	242	226		271	226	301	258
8	451	376	322	301		361	241		
10	564	470	403	376		451	376	322	301
12	677	564	484	451		542	451	387	361
16	903	752	645	602		722	602	516	481
18	1015	846	725	677		812	677	580	542
20	1128	940	806	752		903	752	645	602
22	1241	1034	887	827		993	827	709	662
25	1410	1175	1007	940	1128	940	806	752	
28	1580	1316	1128	1053		1264	1053	903	842
32	1805	1504	1289	1203	1444	1203	1032	963	
36	2031	1693	1450	1354	1625	1354	1161	1083	

Note : The development lengths given above are for a stress of $0.87 \mathrm{f}_{\mathrm{y}}$ in the bar.
www.binils.com
Anna University, Polytechnic \& Schools

Development Length for fully stressed deformed Bars

$\mathrm{f}_{\mathrm{y}}=500 \mathrm{~N} / \mathrm{mm}^{2}$ (Tabulated values are in millimeters)

Bar Diameter	Tension Bars for Grade of Concrete		Compression Bars for Grade of Concrete						
	M15	M20	M25	M30	M15	M20	M25	M30	
1	2	3	4	5	6	7	8	9	
mm								272	232
6	408	340	291	272		326	278		
8	544	453	388	363	435	363	312	290	
10	680	566	485	453	544	453	388	363	
12	816	680	583	544	653	544	466	435	
16	1088	906	777	725		870	725	621	580
18	1223	1020	874	816	979	816	699	653	
20	1359	1133	971	906	1088	906	727	725	
22	1495	1246	1068	997	1196	997	854	798	
25	1699	1416	1214	1133	1359	1133	971	906	
28	1903	1586	1359	1269	1523	1269	1088	1015	
32	2175	1813	1554	1450	1740	1450	1243	1160	
36	2447	2039	1748	1631	1958	1631	1398	1305	

Note : The development lengths given above are for a stress of $0.87 \mathrm{f}_{\mathrm{y}}$ in the bar.
www.binils.com
Anna University, Polytechnic \& Schools

Reinforcement characteristics - Area, Weight and Perimeter

Size	Area	Weight	Perimeter	Length per Kn	Size	Area	Weight	Perimeter	Length per Kn
1	2	3	4	5	1	2	3	4	5
mm	$\mathrm{~mm}^{2}$	$(\mathrm{~N} / \mathrm{m})$	(mm)	(m)	mm	mm^{2}	$(\mathrm{~N} / \mathrm{m})$	(mm)	(m)
6	28.3	2.22	18.90	450.5	22	380.1	29.8	69.1	33.6
8	50.3	3.95	25.10	253.2	$\boxed{25}$	490.9	38.54	78.5	26.0
10	78.5	6.17	31.40	162.1	28	615.7	48.30	88.0	20.7
12	113.1	8.88	57.70	112.5	32	804.2	63.13	100.5	15.9
14	153.9	12.06	44.00	82.9	36	1017.9	79.90	113.1	12.5
16	201.1	15.78	50.30	63.3	40	1256.6	98.64	125.7	10.1
18	254.5	20.00	56.50	50.0	45	1590.4	124.90	141.4	8.0
20	314.2	24.66	62.80	40.5		50	1963.5	154.10	157.1
6.5									

www.binils.com
 Anna University, Polytechnic \& Schools

