www.binils.com Anna University | Polytechnic | Schools

,						
Reg. No. :						

Question Paper Code: X86435

M.E./M.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2021

Second Semester

Applied Electronics

AP5252 - ASIC AND FPGA DESIGN

(Common to Electronics and Communication Engineering/Electronics and Communication Engineering (Industry Integrated))
(Regulations 2017)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. What is the advantage of λ based design rule?
- 2. What is the difference between EEPROM and UVPROM technology?
- 3. What is meant by Timing Driven Placement and Timing Driven Routing?
- 4. List the different design checks used in ASIC.
- Define MRST and EDIF.
- 6. What is meant by Built-in-Self-Test (BIST)?
- 7. Compare Xilinx LCA, Actel Act and Altera MAX architecture.
- 8. What is the difference between Act2 and Act3 logic modules?
- 9. List the Signal Integrity Effects in SOC Design.
- 10. Write SOC architecture typical design steps.

PART – B (5×13=65 Marks)

- 11. a) Explain the performance and characteristics for the following design styles.
 - i) Standard cells.

(7)

ii) Cell based ASIC.

(6)

(OR)

b) i) Explain in details how an EPROM can be used to realize a sequential circuit.

(7)

(6)

ii) Why SRAM based FPGAs are popular when compared to other types? Explain.

www.binils.com Anna University | Polytechnic | Schools

X86435

12.	a)	i)	What are the goals and objectives of system partitioning? Explain any	/- \
			one algorithm for partitioning.	(7)
		ii)	Distinguish between global routing and detailed routing.	(6)
			(OR)	
	b)	i)	Explain SDF (Standard Delay Format) back annotation/SPEF (Standard Parasitic Exchange Format) timing correlation flow.	(7)
		ii)	How is scan DEF(Design Exchange Format) generated?	(6)
13. a)	a)	i)	Explain about Boundary Scan Architecture design and its Routing.	(7)
		ii)	Explain in detail about design flow of the Half Gate ASIC. (OR)	(6)
	b)	W	rite about :	
		i) Verilog and logic synthesis.	(5)
) VHDL and logic synthesis.	(4)
		iii	Scan design testing.	(4)
14.	a)	i)	How FPGA placement and routing is different from ASIC placement and routing process.	(7)
		ii)	Why SRAM based FPGAs are popular when compared to other types? Explain.	(6)
			(OR)	
	b)	i)	Design 3-bit shift register and implement using Xilinx FPGA.	(7)
		ii)	Explain the basic logic programming elements of the FPGA with a suitable example.	(6)
15. a)	a)	i)	Explain in detail about the types Configurable SOC Platform.	(7)
		ii)	Write a complete system for capturing, improving and storing digital images.	(6)
			(OR)	
	b)	i)	Explain briefly how the hardware/software co-simulation and co-synthesis issued are addressed.	(7)
		ii)	Write a note on SOC design and verification techniques.	(6)
			PART - C (1×15=15 Mar	ks)
16.	a)		onstruct the conceptual architecture of Embedded Core-Based SOC, and alyze the challenges of SOC Testing and Verification.	,
	b)		(OR) splain the ASIC design flow with a neat diagram and write the difference stween custom IC and standard IC?	