www.binils.com Anna University Polytechnic Schools

Question Paper Code : X85081

M.E./M.Tech. DEGREE EXAMINATIONS - NOV / DEC 2020

First Semester

VLSI Design and Embedded Systems

AP5151 Advanced Digital System Design

(Common to: Applied Electronics/ M.E. VLSI Design)

(Regulations 2017)

Time: 3 Hours

Answer ALL Questions

Max. Marks 100

<u> PART- A (10 x 2 = 20 Marks)</u>

1. Draw the state diagram for the following state table :

	x=0	x =1	0	1
S ₀	\mathbf{S}_1	\mathbf{S}_{0}	0	0
S ₁	S_0	S_2	1	0
S ₂	S_2	S_2	1	1
S ₃	S_0	S_1	0	1

- 2. What is an iterative network?
- 3. Name the two types of Asynchronous sequential circuit.
- 4. Give the truth tables for Inverter with positive logic for the input and negative logic for the output

- 5. Define S-a-0 and S-a-1 faults.
- 6. Define Fault Equivalence and Fault Dominance.
- 7. Draw the structure of an EEPROM transistor used in FPGA programming technologies.
- 8. What is a dedicated carry logic in Xilinx 4000 series FPGA? Give its significance.
- 9. What are functions and tasks in Verilog?
- 10. Write the Verilog code for an half adder using data flow modeling?

www.binils.com Anna University | Polytechnic | Schools PART- B (5 x 13 = 65 Marks)

11. a) Analyze the following sequential network using a state table and timing chart. (13)

b) (i) Construct a timing chart for the network for an input sequence X=10011. Indicate at what timer Z has the correct value and specify the correct output sequence.(Assume that X changes midway between clock pulses) Initially, $Q_1=Q_2=0$

(7)

(6)

(7)

(ii) With an example, explain the ASM chart.

12. a) (i) Explain cycles and races in asynchronous sequential circuits with suitable examples.

www.binils.com Anna University | Polytechnic | Schools

	U	<u> </u>	X ₂		
	00	01	11	10	$Z_1 Z_2$
1		7	-	4	1 1
2	(2)	5	-	4	0 1
3	-	7	3	11	1 0
4	2	-	3	4	0 0
5	6	5	9	-	1 1
6	6	7	-	11	0 1
7	1	7	14	-	1 0
8	8	12	-	4	0 1
9	-	7	9	13	0 1
10	-	7	10	4	1 0
11	8	-	10	11	0 0
12	6	12	9	-	1 1
13	8	-	14	13	1 1
14	-	12	14	11	0 0

(6)

OR

b)	(i) Design a synchronizer circuit to synchronize the input changes with clock in a	
	sequential network.	(5)

(ii) Explain static and dynamic hazards with suitable example. (8)

www.binils.com

13. a) Apisons the Comparison of the strice of a strice of a strice of the strice of t

(13)

OR

b)	(i) Explain design for testability (DFT) scheme.	(5)	
	(ii) Deduce the set of all possible single stuck –at-faults and the fault –free and		
	faulty response of the following logic circuit using Fault table method:		
	\sim a \sim		

14. a) (i) With suitable examples, explain the basic difference between PLA and PAL. (5) (ii) Design the following circuit and realize it with a sequential PLA. (8)

	b)	Discuss the configurable logic block architecture and Input-Output block of Xilinx 4000 series FPGA.	(13)
15.	a)	Design a full adder and write the Verilog code using	
		(i) Structural modeling	(5)
		(ii) Behavioral modeling	(4)
		Also write the test bench.	(4)
		OR	
	b) (i) Write the Verilog code for a D flip flop using behavioral modeling. (ii) Design Moore based serial adder and Mealy based Serial adder. Write the		(5)
		Verilog code to realize it using structural modeling.	(8)

PART- C (1 x 15 = 15 Marks)

16. a) Derive the test vector to detect the Stuck- at-o fault in line 9 of the following logic circuit using D-Algorithm: (13)

- b) Derive the test vector to detect the single Stuck- at-fault using
 - (i) Path Sensitization method
 - (ii) Boolean difference method

(7)

(8)
