www.binils.com Anna University | Polytechnic | Schools

Roll No.

QUESTION PAPER CODE: X10666

B.E. / B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 Fifth Semester Computer Science and Engineering MA8551 –ALGEBRA AND NUMBER THEORY (Common to Computer and Communication Engineering and Information Technology) (Regulations 2017) Answer ALL Questions

Time: 3 Hours

PART-A

Maximum Marks:100 $(10 \times 2 = 20 \text{ Marks})$

1. Find the inverse of 3 under the binary operation * defined in R by $a * b = \frac{ab}{3}$.

- 2. How many units and proper zero divisors are there in Z_{17} .
- 3. Given an example of a polynomial that is irreducible in Q[x] and reducible in C[x].
- 4. If $f(x) = 2x^4 + 5x^2 + 2$ and $g(x) = 6x^2 + 4$, then determine $f(x) \cdot g(x)$ in $Z_7[x]$.
- 5. State the pigeonhole principle.
- 6. Find six consecutive integers that are composite.
- 7. When does the linear congruence $ax \equiv b \pmod{m}$ has a unique solution?
- 8. Find the remainder when 4^{117} is divided by 15.
- 9. State Wilson's theorem.
- 10. Find the value of $\tau(n)$ and $\sigma(n)$ for n = 29.

<u>PART-B</u> $(5 \times 16 = 80 \text{ Marks})$

- 11. (a) (i) Determine whether (Z, \oplus, \odot) is a ring with the binary operation $x \oplus y = x + y 7$, $x \odot y = x + y - 3xy$ for all $x, y \in Z$. (8)
 - (ii) For any group G, prove that G is abelian, if and only if, $(ab)^2 = a^2b^2$ for all $a, b \in G$. (8)

(OR)

(b)	(i) Prove that Z_n is field, if and only if, n is a prime.	(8)

(ii) Find[777]⁻¹ in Z_{1009} . (8)

www.binils.com Anna University | Polytechnic | Schools

- 12. (a) (i) State and prove the factor theorem and remainder theorem.
 - (ii) Find the remainder, when $f(x) = x^{100} + x^{90} + x^{80} + x^{50} + 1$ is divided by g(x) = x 1in $Z_2[x]$. (8)

(8)

(8)

(OR)

(b) (i) If $(F, +, \cdot)$ is a field and char(F) > 0, then prove that char(F) must be prime. (8)

- (ii) Find the gcd of $x^4 + x^3 + x + 1$ and $x^3 + x^2 + x + 1$ in $Z_2[x]$. (8)
- 13. (a) (i) Find the number of positive integers ≤ 3000 and divisible by 3, 5 or 7. (8)
 - (ii) Apply Euclidean algorithm to express the gcd of 2076 and 1776 as a linear combination of themselves.
 (8)

(OR)

- (b) (i) Prove that there are infinitely many primes. (8)
 (ii) State and prove the fundamental theorem of arithmetic. (8)
- 14. (a) (i) Find the general solution of the linear Diophantine equation 6x + 8y + 12z = 10. (8)
 - (ii) Prove that no prime of the form 4n + 3 can be expressed as the sum of two squares. (8)

(OR)

- (b) (i) Solve $x \equiv 2 \pmod{5}$, $x \equiv 3 \pmod{7}$ using Chinese remainder theorem. (8)
 - (ii) Solve the linear system $\begin{array}{l} 3x + 4y \equiv 5(\mod 7) \\ 4x + 5y \equiv 6(\mod 7) \end{array}.$ (8)
- 15. (a) (i) State and prove Fermat's little theorem.
 - (ii) Let *n* be a positive integer with canonical decomposition $n = p_1^{\theta_1} p_2^{\theta_2} \dots p_k^{\theta_k}$. Derive the formula for evaluating Euler's phi function $\phi(n)$ and hence, evaluate the same for n = 6125. (8)

(OR)

- (b) (i) Solve the linear congruence $25x \equiv 13 \pmod{18}$. (8)
 - (ii) Prove that tau and sigma functions are multiplicative. (8)

* * * * * * *