www.binils.com Anna University | Polytechnic | Schools

Reg. No. :

Question Paper Code : X10665

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020 AND APRIL/MAY 2021
Fourth/Fifth/Sixth Semester
Civil Engineering
MA 8491 - NUMERICAL METHODS
(Common to Agriculture Engineering/Aeronautical Engineering/Aerospace Engineering/Electrical and Electronics Engineering/Electronics and Instrumentation Engineering/Instrumentation and Control Engineering/ Manufacturing Engineering/Mechanical Engineering (Sandwich)/Mechanical and Automation Engineering/Chemical Engineering/Chemical and Electrochemical Engineering/Plastic Technology/Polymer Technology/Textile Technology) (Regulations 2017)

Time : Three Hours
Maximum : 100 Marks

Answer ALL questions

PART - A
(10×2=20 Marks)

1. State the order and criterion of convergence of Newton-Raphson method for $f(x)=0$.
2. Find all the Eigen values and Eigen Vectors of $\mathrm{A}=\left[\begin{array}{cc}2 & 2 \\ 2 & -1\end{array}\right]$ by Jacobi method.
3. Establish the relation $1+\mu^{2} \delta^{2}=\left(1+\delta^{2}\right)^{2}$, where μ is the averaging operator and δ is the central difference operator.
4. Form the divided difference table for $x=1,3,6,11$ and $f(x)=x^{2}+x+2$.
5. Apply Simpson's $1 / 3$ rule to evaluate $I=\int_{0}^{2} \frac{1}{x^{2}+x+1}$ dx, taking $h=0.25$.
6. Derive the formula for finding Integral value I by Romberg's method given I_{1} and I_{2} the two values of I got from two different values of $h_{1}=h$ and $h_{2}=h / 2$.
7. Use Euler's modified formula to find $y(0.1)$ given $\frac{d y}{d x}=x^{2}+y^{2}, y(0)=1$.
8. Write down the Adam-Bashforth predictor and corrector formulae to solve $\frac{d y}{d x}=f(x, y)$.
9. Derive the difference equation for $y^{\prime \prime}(x)+a(x) y^{\prime}(x)+b(x) y(x)=f(x)$ with $\mathrm{y}\left(\mathrm{x}_{0}\right)=\alpha, \mathrm{y}\left(\mathrm{x}_{1}\right)=\beta$ by using the difference approximation formula for first and second derivatives of y.
10. Write down the Leibmann's iteration formula for solving Laplace equation.

www.binils.com
 Anna University | Polytechnic | Schools

X10665
-2-
PART - B
(5×16=80 Marks)
11. a) i) Find a positive root of $f(x)=3 x-\sqrt{1+\sin x}=0$, using fixed point iteration.
ii) Find the dominant Eigen value and the corresponding Eigen vector by power method for the matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & 3 & -1 \\ 3 & 2 & 4 \\ -1 & 4 & 10\end{array}\right]$.
(OR)
b) i) Solve the following linear system of equations by Gauss elimination method $2 \mathrm{x}+3 \mathrm{y}+\mathrm{z}=-1 ; 5 \mathrm{x}+\mathrm{y}+\mathrm{z}=9 ; 3 \mathrm{x}+2 \mathrm{y}+4 \mathrm{z}=11$.
ii) Use Gauss-Seidal iterative method to obtain the solution of the equations $30 \mathrm{x}-2 \mathrm{y}+3 \mathrm{z}=75 ; 2 \mathrm{x}+2 \mathrm{y}+18 \mathrm{z}=30 ; \mathrm{x}+17 \mathrm{y}-2 \mathrm{z}=48$.
12. a) i) If $\mathrm{f}(1)=1, \mathrm{f}(2)=5, \mathrm{f}(7)=5$ and $\mathrm{f}(8)=4$, find a polynomial that satisfies this data using Newton's divided difference formula. Hence, find $f(6)$.
ii) Find the cubic spline in $[0,2]$ and $[2,4]$ given $\mathrm{M}_{0}=0, \mathrm{M}_{3}=-12$, for the data below :

X	0	2	4	6
$\mathrm{y}=\mathrm{f}(\mathrm{x})$	1	9	41	41

(OR)
b) i) Find the number of students who scored marks not more than 45 , from the following data.

x	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
y	35	48	70	40	22

ii) Find $y(10)$ given $y(5)=12, y(6)=13, y(9)=14$ and $y(11)=16$ by Lagrange's formula.
13. a) i) Given the data below, find $y^{\prime}(6)$ and the maximum value of y.

x	0	2	3	4	7	9
y	4	26	58	112	466	922

ii) Evaluate $\int_{1}^{2} \int_{3}^{4} \frac{d x d y}{(x+y)^{2}}$ by Trapezoidal and Simpson's formula by taking $\mathrm{h}=\mathrm{k}=0.5$.

www.binils.com
 Anna University | Polytechnic | Schools

b) i) Use Gaussian three-point formula to evaluate $\int_{1}^{5} \frac{d z}{z}$ and compare with exact value.
ii) Use Romberg's method to evaluate $I=\int_{0}^{1} \frac{1}{(1+x)} d x$ correct to four decimal places by taking $\mathrm{h}=0.5,0.25$ and 0.125
14. a) i) Solve $\frac{d y}{d x}=y-\frac{2 x}{y}$, given $y(0)=1$ and find values of $y(0.1)$ and $y(0.2)$ using improved Euler's method, correct to four decimal places.
ii) Compute $y(0.1)$ given $\frac{d y}{d x}+y+x y^{2}=0, y(0)=1$, by taking $h=0.1$ using Runge-Kutta method of fourth order, correct to 4 decimal accuracy.
(OR)
b) i) Use Milne's predictor-corrector formula to find $y(0.4)$, given $\frac{d y}{d x}=x y+y^{2}, y(0)=1$, $\mathrm{y}(0.1)=1.1167, \mathrm{y}(0.2)=1.2767$ and $\mathrm{y}(0.3)=1.5023$.
ii) Solve by finite difference method $y^{\prime \prime}-y=x, y(0)=0, y(1)=0$, by taking mesh length $\mathrm{h}=1 / 4$.
15. a) i) Solve : $\nabla^{2} \mathrm{u}=-10\left(\mathrm{x}^{2}+\mathrm{y}^{2}+10\right)$ over the square mesh with sides $\mathrm{x}=0$, $\mathrm{x}=3, \mathrm{y}=3$ with $\mathrm{u}=0$ on the boundary and mesh length 1 unit.
ii) Derive the Bender-Schmitt formula for one dimensional heat equation. Hence, slove, $\frac{\partial^{2} u}{\partial x^{2}}=2 \frac{\partial u}{\partial t}$ given $u(0, t)=0, u(4, t)=0, u(x, 0)=x(4-x)$ taking $h=1$. Find $u(x, t)$ upto $t=5$.
(OR)
b) Solve by explicit difference method :

$$
25 \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}=\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{t}^{2}}, \frac{\partial \mathrm{u}}{\partial \mathrm{t}}(\mathrm{x}, 0)=0, \mathrm{u}(0, \mathrm{t})=0, \mathrm{u}(5, \mathrm{t})=0 \text { and } \mathrm{u}(\mathrm{x}, 0)=\left\{\begin{array}{c}
2 \mathrm{x}, \text { when } 0 \leq \mathrm{x} \leq 2.5 \\
10-2 \mathrm{x}, \text { when } 2.5 \leq \mathrm{x} \leq 5
\end{array}\right.
$$

Take $\mathrm{h}=1$ and compute $\mathrm{u}(\mathrm{x}, \mathrm{t})$ upto $\mathrm{t}=2$.

